The Annals of Mathematical Stanstws
1970, Vol. 41, No. 3, 888-89

TRANSLATING GAUSSIAN PROCESSES!

By BENNETT EISENBERG

Cornell University

0. Introduction. Let u, denote the measure on path space corresponding to a
stochastic process X. A function m is an admissible translate of X if u, and u,,,,
(alternatively du(w) and du(w—m)) are mutually absolutely continuous. The
problems of determining conditions for equivalence and of finding the correspond-
ing Radon-Nikodym derivative du, . /du, (alternatively the Jacobian of the path
space transformation w — w — m) have been widely studied for Gaussian processes.

For the stationary case, Parzen [1] showed that m is admissible if and only if for ¢
in the parameter set of the process m(t) can be written as | e'* g(4) dF(4) for some g
in L*(dF), where F is the spectral measure of the process. For the Wiener process
Segal [2] showed that m is admissible if and only if m(t) can be written as j’o g(s)ds
for g in L? and for ¢ in the parameter set. Completely general conditions for
admissibility of translations of arbitrary Gaussian processes are now known. One
form of these conditions is that m(¢) must be representable as E(X, ), where X, is
the random variable evaluation at time ¢ and where 1 is some element in the Hilbert
space spanned by X,, ¢ in the parameter set. Another form states that if R(s, ¢) is the
covariance of X, then m must be in the reproducing kernel Hilbert space with kernel
R. Finally, if R is assumed continuous, the condition is that m must be in the range
of R* acting on L2[T], where R? is the square root of the integral operator with
kernel R, and where T is the parameter interval.

These conditions have been derived by varied methods. To clarify the relation of
these results it is worthwhile, without going into the derivations, to show that the
different forms of description do indeed describe the same set of translations. This
is done in Section 1. :

These descriptions have only an indirect probabilistic appeal. In particular, none
gives a direct relation between what might be called the innovation structure of the
process and the properties of its admissible translations. In Section 2 a new form of
admissibility condition is given involving the innovations of the process X. In
Section 3 the structure of the Radon-Nikodym derivative considered as a stochastic
process is exposed.

Section 1. Let X be a mean zero Gaussian process with continuous covariance
R(s, t) over a real interval T. Denote by Hy the Hilbert space spanned by the
functions X(w), te T. Denote by X the integral operator from Hy to L*(T) with
kernel X(¢, w) (=X,(w)), which we may assume to be measurable.

PROPOSITION 1.
The following sets are the same:
1. The range of R? acting on L*(T).

Received September 10, 1969.
! This research was partially supported by NSF Grant GP-7128X.

888

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. STOR

d ®
www.jstor.org



TRANSLATING GAUSSIAN PROCESSES 889

2. The range of X acting on Hr.
3. The functions in the reproducing kernel Hilbert space with kernel R(s,t),

s,teT. (The R.K.H.S))

ProoF. 1. = 2.
From the Karhunen-Loéve expansion it is seen that X is a Hilbert-Schmidt
operator from Hr to L*(T). If X* denotes its adjoint then XX* is the operator

from L*(T) to L*(T) with kernel
[ X(t, 0) X (s, 0) du(w) = R(s, t).

(R¥)™! = R™* is an operator on a dense domain in L%(T)/kerR. X* is defined on
L?[T]/ker R since ker X* = ker R and X* R~?* gives a unitary map from L?(T)/ker R
to Hy. That is, if (+,-) and ( , ), denote the L%(du) and L*(T) inner products,
respectively, then for fin the domain of R™*

(X*R7,X*R7¥) = (XX*R7¥, R ¥ ) = (f,/)r

The map is onto since by the mean-square continuity of the process, as f, approaches
a delta function at ¢, X*f, approaches X,(w) and these functions generate H.

The induced map of operators on Hy takes X into XX*R™* = R* acting from
L*(T)/kerR onto the range of R? acting on L*(T).

2. =3.

Direct proofs that 2. = 3. are known, but we give one here for completeness.

For each ¢ in Hy define my(t) = (X,, ) and give this function space the inner
product {m,, m,» = (y,¢). These functions are precisely the functions in 2. and
we claim they form the reproducing kernel Hilbert space with kernel R.

Since m,, = R(t,-) the space is spanned by linear combinations of the functors
R(t,). R(t,*) is a reproducing kernel since (R(?, " ), my(*)> = (X,, ¥) = my(¢). []

The functions in 1. are really functionoids. To remove the ambiguity we take
continuous representatives. This is possible since the elements in 2. are obviously
continuous. Also it is important to note that for each admissible m there is a unique
Y in Hy for which m(t) = (X, §) for all ¢ in T. For if (X,, /) = O for all ¢ in T, then
y is 0. That is, the functions X, generate H.

The Parzen and Segal results follow by exploiting special isometries for stationary
processes and the Wiener process.

Section 2. Assume X and X+m are equivalent, where m(t) = (X,, ¥). Since the
processes have the same covariance function, the map U taking X, into X, —(X,, )
is an isometry from L*(dp,) to L*(du,.,,,) and extends linearly to a map from Hy to
the closed subspace of X,—(X,, ¥) in L*(du,. ) by defining Ug to be g—(g, ) for
g in Hp. Furthermore, since constants are orthogonal to Hy in L*(du,) as well as
to the span of X,—(X,, ¥) in L*(du,.,), U can be extended to the constants by
defining Uc to be c.

The Radon-Nikodym derivative A(w) = du, . .(@)/du, is given by

exp [Y(w)—3(¥, ¥)]
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(see Rozanov [3]). According to the measure du(w), log A(w) is Gaussian with
mean —3(, ¥) and variance (Y, ¥); according to du, ., ., log A(w) is Gaussian
with mean (¥ —3(, ¥), 1),,.,,, = (¥ +3(W, ¥), 1) = (¥, ¥) and variance

(‘p_(l//, !//)9 l//—(llf’ 'p))u;ﬂm = (‘//’ l//)

It follows that in the detection problem between u, and p, ., the greater (, y),
the smaller the error probabilities.

Now consider the problem of deciding between the hypotheses X and X +m over
the parameter set 7’. The processes are least distinguishable if m = 0, but if m
must take certain values on T< T’ the extension to T’ leaving the processes as
indistinguishable as possible is no longer trivial. From the preceding analysis,
assuming the processes are equivalent over T, m(¢) can be expressed as (X, ) for ¢
in T with some y in Hy. Moreover, the processes are least distinguishable the
smaller (, ) is. To minimize the additional information in 7’ we should therefore
keep the same Y and define m(s) as (X, y) for s in T’. We denote such an extension
of m by #i and call it the minimal extension of m.

Let T be a finite set {¢;}. Denote by T} the elements ¢, ' -, #,_; so that #ip,(t;)
is the minimal extension of m at ¢; assuming the values m(¢,), - - -, m(¢, ;) are fixed.

Denote the norm of the innovation (the prediction error) in the process X at ¢;
by or(t) = ||X,,— Pr.X.||- The ratio of the difference of m(r;) and the minimal
extension value #ir(2;) to the prediction error is the critical factor in admissibility.

PROPOSITION 2. Let X be a Gaussian process separable over a denumerable set r.
A continuous m is an admissible translate of X if and only if

sup Y (m(t)—nr(t))?
finite Tr 1 or*(t)
is finite where we say 0/0 = 0, k/0 = oo for k > 0.
PrOOF. Assume m(t) = (X,, ¥) for ¥ in H,. By definition of H,, suprc, ||Pry|| =

”zﬁ” < 0. But since
{X,i—PTi X,i}
or(t)
is an orthonormal basis for Hr,
HPT 'J/HZ =YW, X, — P, X)) o (t) = Y (m(t) — g (t) )?[or2(1).
Conversely, assume

Suprc, ., (m(t) —mir(t) )?lor*(t) < .

Then for each finite set T there exists a unique Y1 with m(t) = (X,, Y1), ¢t in T. (If
all 7(¢;) > 0, equivalence over T is trivial. If not, then for some i, X;, = Pr X,, =
Yizic X, and we clearly must have m(t;) = ¥ ¢,m(2,) for equivalence of X and
X+m. But m(t) = (X,,, ¥) for k < i, so Ye,m(t) = Qe X, ¥) = (Pr, Xy, ¥) =
i (t;) and m(t;) = riip(t;) by assumption.)
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If T< S then 4 = Pryg so that we may choose T, =T, ; with
lim, |[¥r, || = suprc, [[Wr|| and UT,=r
Y, is Cauchy and converges to some y with
(X, ¥) = (X, lim Py y) = m(1), teUT,=r.

But since m is continuous, X and X'+ m are separable over r so equivalence over r
implies admissibility of m. []

This form is a nice generalization of the Brownian motion result which now
takes the form supy Y (Am/At)* At < oo.

SECTION 3. A similar analysis yields another form for the Radon-Nikodym
derivative. If X and X+ m are equivalent over [0, T"] then
d:ux+m _ ’
e (@) =g4es MT", ) = exp [Y — 3y, Y)],
where m(t) = (X,, Y). It follows that over a smaller observation period T<T"
A(T, ) = exp [Pr Y~ 1 ||Pry||*]
as in the Brownian motion case where
A(t,w) = exp[[ofdb—4% [0/ ds].

In this section the differential structure of log A(¢, ) or from the above point of
view the relation of A, Py to the innovation structure of the processes is studied.
Let T be a finite set {#;}. Then
(‘/’9 th"PTkth)(th_PTerk)
ar’(t)
— (m(tk) - mTk(tk) )(th —PTk ka)
ar’(t)

(PTk+.—PTk)¢ =

and

log A(T,w) =
oonr - U

Taking limits we have

(m(t) — 1ty () WX . — Pry X 1 Z(m(tk) — i (t) *
2% o7 (t) .

log A(S, ) = limy__slog A(T,, w).
Again we have a direct generalization of the Brownian motion result, which
could be written

. Ab)Am 1 Am?
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an interesting observation, but everything is hidden in the formula A(w) =
exp (Y —3(¥, ¥)). A more direct approach gives insight and involves some novel
manipulations with Gaussian Hilbert spaces.

Assume A(T, o) is known for T a finite set {#;,},i=1--+k—1. Denote TU?, by

T’ and write A X for X, —X,, _,. A, X has a conditional Gaussian distribution with
respect to p, and ,ux+,,, For the process X, E, (AX l? ) = Pr(AX). For the
process X +m, the conditional mean can be expressed in several ways. Intuitively,
we have

(A X

Fr)w)=E, (A X | Frw—m)+Am
= Pr(A X)(@—m)+A, m.

l‘\‘+m

But what is Pr(AX)(w—m)?
Another approach in effect gives an explicit expression for Pr(AX)(w—m).
Let P, denote the projection on the span of X,—m,, te T'in L*(du, . ,,)- All elements

here have mean zero so that
(A X | Fr) = Pr(A X —Aym)+ A m.

”x+m

But the map U taking g to g—(g, ¥) is unitary from L*(du,) to L*(dpi.,) taking
H; to the span of X,—m, so that

Pr(AX —Aym) = UPH(A X) = Pr(A X)—(Pr A X, ¥)
= Pr(A X)) — i, (1) + m(t— ).
Hence
Epy s & X | F 1) = Pr(Ay X) = 1itg, (1) + Mty - )+ mlt) — m(t- 1)
= Pr(By X) = g, (1) +m(ty).
The conditional variance of A, X with respect to u, is
E, [(AX—Pr(AX))? |«9°-T] =E, (X, — PrX,)? | Fr) = a7 (t)

by the independence of (X, — PrX,)? and F. The conditional variance of AX;
with respect to p, ., is the same. For the finite dimensional case the Radon-

Nikodym derivative is
d.ux+m(A)£ lJT)

AT, ) = A(T, w )—_-————\
(Tho) = ML) = A |7
so that
AT w) =1 N \
log = (B X = Po(A X) — (m(t) — iiir,(1)))?

AT, ®)  2072(1)
|
2 Tz(tk)
_ (X1, — Pr X, )(m(t) — mq, (1)) _ (m(ty) — mrk(tkz_)z
or?(ty) 2077(ty)

(A X — P1(Ac X))
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In summary, it seems that the differential approach used in this paper comple-
ments the Fourier analytic method usually used in studying Gaussian processes
and is in line with the more recent work in stochastic processes.
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