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1. Introduction and summary. The distributions considered in this paper have the
probability density functions (pdf’s)
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and are respectively the Madow-Leipnik approximation distribution for the serial
correlation coefficient, circularly defined with known non-null mean, and Daniels’
(1956) modified approximation distribution for the coefficient, circularly defined
with fitted mean. (Note correction of misprints in (1.2).)

General expressions for the uncorrected moments (u.m’s) of (1.1) were given by
Kendall (1957) and by White (1957); these may also be obtained from Leipnik’s
(1958) Neumann-type series for the characteristic function (ch.f.). They have the
form of polynomials in r, with coefficients involving the Hermite polynomial
coefficients. The first four central moments (c.m’s) of (1.1) have been derived from
the u.m’s by Jenkins (1956), Kendall (1957) and White (1957). General expressions
for the u.m’s and c.m’s of (1.2) do not seem to appear in the literature.

In this paper we consider firstly the u.m’s of (1.1) about x = 1; these are shown
to be proportional to Gaussian hypergeometric functions, and to lead to repre-
sentations of the c.m’s and of the ch.f. by hypergeometric functionsin two variables.
The u.m’s of (1.2) about x = 1 are closely related to those of (1.1), yielding corres-
ponding formulas for its c.m’s and ch.f.

2. Notation and terminology.
(i) Let ,u; (1) and ,u; denote the jth moment about x = 1 and the jth central

moment respectively, for distribution (1.1).

(ii) Let ,i;’ (1) and ,fi; denote the jth moment about x = 1 and the jth central
moment respectively, for distribution (1.2).

(iii) The normalizing coefficient for the pdf (1.2) occurs repeatedly; put (n+ 1)/
(n—nr+1+r) = K, say.

(iv) A number of results concerning hypergeometric functions will be used in
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subsequent sections; these are summarized here together with relevant references:

r o b -
ZF,[a,b;c;z]=lﬁcc)_b)L Y=yt (1—yz) " dy,

@.1)
¢>b>0, |arg(l-2)|<m,

Erdélyi (1953) 2.12 (1).

(22) c[c—=1—Qc—a—b—1)z],F[a,b;c;z]+(c—a)c—b)z,F,[a,b;c+1;z]
—c(c—1)(1=2z),F [a,b;c—1;z] =0,

Erdélyi (1953), 2.8 (45).

(2.3) ,F,[a,b;a—b+1;z] = (1+z)"“2F1|:—,— ;a—b+1; ——
Erdélyi (1953), 2.11 (34), a Goursat transformation.

(2.4) 2Fila,bse;2] = (1=2)7° ,F [c—a,b;c;z/(z—1)],

Erdélyi (1953), 2.9 (4), a Kummer transformation.
(v) The following hypergeometric functions in two variables will also be

required:
Appell’s hypergeometric function of the first kind
. . (a)m +n(b)m(c)n xmyn
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T T(@rd—a))o
d > a >0, Erdélyi (1953), 5.8(5).

Humbert’s corresponding confluent hypergeometric function
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Appell’s hypergeometric function of the third kind
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Humbert’s corresponding confluent hypergeometric function
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N.B. (1), is Pochhammer’s symbol for the rising factorial u(u+1) - (u+i—1).
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3. Circular coefficient with known non-null mean. The u.m’s about the upper
end-point of the distribution (1.1) may be obtained by using the transformation
¥ = (14+x)/2 and the basic hypergeometric integral (2.1):
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A three-term recurrence formula for ,uj.; (1) follows, using the relationship for
contiguous hypergeometric functions (2.2):

62 (42427 it 1(1) = {0+ (L =) =2(1 +2)r} ;' (1)
’ +(n=142)(1 =12 ;-5 (D).

Application of the Goursat and Kummer transformations (2.3) and (2.4) to
(3.1) yields
(=2)’[H(n+1D)];
(n+1);

_ 2= 13+ 1),
(3.4) = i,

(33 M= 2Fi[n, —jsj+n+1;r]

Fili+1, —jsj+n+1;r/(r—1)].

Other representations (e.g. as a Legendre function or as a Jacobi polynomial) are
obtainable. Note that (3.3) is a polynomial in r (and will yield the usual formulas
for the u.m’s about x = 0), whereas (3.4) involves a terminating inverse factorial
series in 7 (and so will give more readily asymptotic formulas for large n).

General formulas for the c.m’s of the Madow-Leipnik distribution can now be
found, either by summation of the u.m’s using expression (3.1),

. . . 4r 2
(3.5) apui=0-p’A+r) F3<%(n+1),%("+1),%n,—J;n+1;(~1-_—|_—r?,l—_-#>,

or by integration of (x — u)’ over the pdf using (2.6),
(3.6) =(—1=pwy(1+r)""F{ (n+1);in —"n+1'——‘}r— 2
. nuj— 15 1\ 2 szhs =5 9(1+r)2’1+“ ’

where pu = 1+,1," (1) = rn/(n+2) (the mean). The equivalence of (3.5) and (3.6)
can be shown using a well-known transformation for such series, see e.g. Erdélyi
(1953), 5.11 (11).
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Similar results are obtainable for the ch.f. Summation of the u.m’s using ex-
pression (3.1) gives

(BT chf = ey, /(1))

. _ 4r ,
=e"(1+7) "Zl<%(n+1),%(n+1),=}n;n+1;(—1-~~_‘_r)2 , ——21t> ,

whereas integration of e”™* over the pdf using the confluent form of (2.6) yields

] . . 4r .
(3.8) chf. =e "(l+r) ¢1<%(n+1),%n; n+1;m ,th) .

The confluent form of Erdélyi’s formula 5.11 (11) demonstrates the equivalence of

(3.7) and (3.8). Note that Leipnik’s Neumann-type series is also a double power
series.

4. Circular coefficient with fitted (non-null) mean. The u.m’s about the upper
end-point of the distribution (1.2) are readily expressible in terms of those of’
distribution (1.1),

(n+D)(x—=1)/1 = x> 11 +r2=2rx)* "1 — x)

(n—nr+1+9BGn,3) dx

1
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whence expressions corresponding to (3.1), (3.2), (3.3) and (3.4) may be obtained.
General formulas for the central moments and for the ch.f. follow as before;
these are

_ . — . 4r 2
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: 4
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where i = 14,71, (1)
_ 2
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(the mean).
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In particular
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