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BOUNDS AND ASYMPTOTES FOR THE PERFORMANCE!
OF MULTIVARIATE QUANTIZERS

By PETER ELIAS

Massachusetts Institute of Technology
1. Introduction. Let x = (x;,X,, ' *,xy) be a vector-valued random variable
with probability measure p defined on the Lebesgue-measurable subsets of N-
dimensional Euclidean space EM. Let {R;}, 1 £i< K, be a set of K Lebesgue-
measurable disjoint subsets of EV, with

(1.1) = iRy = 1.

We define the K-region quantizer Q with quantization regions R; as a function
mapping the portion of EV covered by the union of the R; onto the integers 1 to K,
given by
(1.2) o) =i for xeR,.

Such a quantizer may be used as a model for the grouping of N-variate data
(statistics), the quantization of signals (communications engineering) and analog-
digital conversion (data-processing). It maps each x into the integer index i,
1 =i = K, which labels the region R; in which x falls, and saves only the value of
i for further processing.

Quantization simplifies the handling of data, but introduces an error in the
representation of x, since x must be estimated by some function &(i) of Q(x) = i
alone. The first exploration of a quantization problem seems to be due to Sheppard
[7], who analyzed the effect of quantization error on the estimate of the variance of
the distribution p of a scalar random variable x(N = 1), assuming a smooth y and
equal intervals for the R,.

Panter and Dite [6], also for N = 1, use the mean square value of the difference
between x and its estimate £(Q(x))

(1.3) [x = 2(Q())]* = [ [x—2(Q(x))]* du

as a measure of performance. For fixed K they seek the minimum of this measure
by moving the boundaries between the intervals R; and by choosing the K values of
£(i). For absolutely continuous y with sufficiently smooth density f = du/dx they
show that the minimum attainable value of their error measure is asymptotic in K
to

(1.4) [x—2(Q())]? ~ (Co/K?){[puf* dA}

where A is Lebesgue measure and C, is known. They credit this result to Pierre
Aigrain.
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1250 PETER ELIAS

Zador [8] extends the Panter and Dite results from the mean square performance
measure to the mean rth power, 0 <r < co. For N = 1 he gets asymptotically in
K, for absolutely continuous p with bounded f,

(1.5) [x = 2(Q)T ~ (C/K{Jg f1/O 7 .
Here C, is known. Zador also considers N > 1, and gets the general result
(1.6) [x=R(Qx))]" ~ (Cx/ K"M){Jpn fM 7 diy NN,

Again u is absolutely continuous with bounded f, and A is Lebesgue measure on
E™. The constants Cy, are not known for N > 1.

We consider below the same general problem as Zador, i.e. the minimization
of a measure of the error introduced by a quantizer Q having a fixed number K of
quantizing regions by varying the shapes of the regions. However we use very
different definitions of quantization error, and a different measure of that error.
Our results, unlike Zador’s, require that the probability measure x4 have compact
support, vanishing outside some cube in EV. However we do not need the absolute
continuity of u or the boundedness of its density f, we obtain firm lower bounds
which are also estimates asymptotic in K, there are no unknown constants for
general N and r, and the results extend to r = 0 and r = co.

We have discussed the case N =1 and given a more complete bibliography,
including other quantization problems, in [1].

2. Measures of performance and results. Given a K-region quantizer Q with
regions R;, one measure of performance is derived from a definition of the quanti-
zation error or uncertainty in the nth coordinate when x is in R; as the width
Ay(x,) of R; in the nth coordinate:

2.1 Ay(x,) = sup {x,} —inf {x,}.

xeR; x€R;

The performance of Q with respect to the probability measure x4 can then be
measured by M,(Q), the rth mean of the quantization errors A,(x,), averaging over
the N coordinates of each R; with equal weights and over the different R; with
weights u(R;):

2.2) MAQ) = {3 pRIN ™ Yo AT ()}, 0<r<oo.

This definition extends in the usual way (see e.g. Hardy et al [4] paragraph 2.3):
My(Q) is the geometric mean of the Ay(x,); and M (Q) is the largest of the A/(x,)
which occurs with positive probability:

(2.3) My(Q) = exp {ZF: {MRYNIY_ log Afx,)}
Moo(Q) = maxi:u(Rg)> o max, {Ai(xn)}'
A second measure of performance is given by

24 M M(Q) = {2i=  sRYAUR)I, 0<r<ow
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Here A(R;) is the Lebesgue measure (volume) of R;, its Nth root is a typical linear
dimension, and M,*(Q) is the rth mean of the K Nth roots. M, * is like M, but less
coordinate-bound. The two are related by an inequality:

MU(Q) z {¥i 1 mR) [ Ti= 1 A}
2.5) z {35 uRIARY ™M
= M,*(Q).

The first line applies the inequality of arithmetic and geometric means to the
definition (2.2) of M,(Q): equality requires that each R; haviag positive probability
be equally wide in all dimensions, like a sphere or a cube. The second line notes that
the volume of R, is no larger than that of the smallest interval (rectangle aligned
with the coordinate axes) which contains it: equality requires that the R; of positive
probability be cubes. The limiting cases r = 0, r = oo give the geometric mean and
the essential supremum of the A(R,)!/", and the inequality (2.5) persists. So does
the condition for equality at » = co. At r = 0, however, the arithmetic-geometric
inequality becomes an identity and the condition for M, = M* is that the R; of
positive probability be rectangles, not necessarily cubes.

A third similar measure, the Nth root of the rth mean of the volumes, needs no
separate discussion because it is trivially related to the second:

(XK HRIARY Y™ = M(Q).
In the case N = 1, all three of these measures are identical.

M, and M,* can be computed from the {R;} and the K numbers {u(R;)}—i.e.
from the grouped data and the decision boundaries between groups—with no other
knowledge of u. M, is infinite unless all R; with positive probability are bounded so
that p has compact support, which we henceforth assume. Let Q. be the support of
u—i.e. the smallest closed set in E¥ which has probability 1. Then Q, is compact
and can be covered by a finite closed cube. Let Q be the smallest such cube. Then

(2.6) M) =pQ=1;  AQ) = AQ) < .

The measure u is otherwise arbitrary. It has a Lebesgue decomposition into a
singular part u,, and an absolutely continuous part u, with density f:

(2.7 K= Ut He  f=du,/dA

where g vanishes except on a set Q,= Q, of Lebesgue measure A(Q,) = 0.

Since the quantizing regions {R;} together cover all those parts of EN which have
positive probability, the union of their closures must cover Q.. We now add the
requirement that the union of their closures is Q. Thus their characterization is

(2.8) RinR;=0, i#j; UL R=Q
and we can state the principal result.

THEOREM. Let A be Lebesgue measure on N-dimensional Euclidean space E.
Let u be any probability measure defined on the Lebesque-measurable subsets of EY,
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having compact support Q.. Let i, u, and f be defined by the Lebesgue decomposition
(2.7) of u. Let Q be the smallest closed cube in E which includes Q.. Let {R;} be any
class of K subsets of Q which satisfy (2.8), and let Q be a quantizer with {R;} as its
quantizing regions.

Then we have the following two results.

() The performance measures M, and M.* defined in (2.2), (2.3) and (2.4) are
bounded below for any nonnegative real r:

(29) KI/NM,. g KllNM,.* z {j‘nch/(N'i—r) d}'}(N+r)/Nr O<r<
(2.10) KY"M, = K'""M* 20 r=0, u(Q)>0
(2.11) K'™"M, = K'"My* z exp{—(1/N)[q.flogfdA}  r=0, p(Q)=0
(2.12) K'NM_ =2 KMM * = A(Q)VN. F= 00

(1) The four lower bounds of (I) can be approached for large K in all cases. Given
a fixed y and r, it is possible to construct a sequence {Q,,} of quantizers, Q,, having
K,, quantizing regions and K,, being an increasing sequence inm = 1,2, -+ -, such that
K,\'"M(Q,,), and thus a fortiori K,,''~N M, *(Q,,), converges to the expression on the
right corresponding to the given values of r and u(Q) as m — oo.

ComMENTS. Unfortunately no single procedure will generate the sequences of
{Q,,} required to prove (II) of the theorem in the four different cases. The proof
therefore covers (I) and (II) for each case in turn. Before proceeding, three com-
ments are in order.

First, all expressions in (I) are homogeneous of first degree in the length A(Q)!/Y
of the side of the cube Q. Where expedient the proof assumes A(Q) = 1: the general
case follows from the homogeneous dilation x,” = x,A(Q)/~.

Second, decomposing the unit cube into k¥ = K half-open cubes of side 1/k for
integer k gives a set {R;} with KM, = KM, * = 1 for any y on the unit cube.
The theorem shows how much smaller than 1 the constant on the right can be made
by optimum choice of {R;} so as to make A(R;) small when u(R;) is large.

Third, the singular part u, of u contributes to the lower bound only in (2.12) at
r = oo. There if e.g. u, = p is a distribution giving positive probability to points in
the unit cube with rational coordinates, Q.=Q and K M, =1, though
KYNM, - 0 with K for every finite r.

3. Proof. 0 <r < oo. The proof of (2.9) follows by elementary inequalities
from the definition (2.4) of M, *(Q) for 0 <r < 0. Let p = N/(N+r), p < 1.

[MXQ)T = KYK K~ {u(R)MR)Y™}
2 K{Y X K™ (uRYAR)NYV N+ DY +0N
(.1 = K™Y K (WR)IMR)PAR)}I?
= K™ YK (1/AR) [r, f AR AR)}P
Z K™Y K [rSPdAY?
= K_'/N{j'nf”dl} 1/p,
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The first inequality is Minkowsky’s: equality requires that all terms in the sum
be equal, i.e. that

(3-2) o1 = W(RYPAR)'™?

be equal to a constant ¢; = g, independent of i. The second inequality introduces
the density f of the absolutely continuous part p, of u: equality requires that there
be no other part, p, = 4, u, = 0 in (2.7). The third follows from the convexity N
of the pth power, 0 <p < 1: equality requires f to be piecewise constant,
f= u(R)/MR;) almost everywhere in each R;. (We use Gallager’s notation [2],
calling a function like x? “convex U”, which is convex in the sense of Hardy et al
[4], and a function like 1 —x2 “convex N, which is concave in the sense of [4].)

With the inequality (2.5) between M, and M, *, (3.1) proves (2.9) in the theorem.
It is not possible for Q to meet all of the conditions for equality required by both
(2.5) and (3.1) for an arbitrary u. However, they can all be met or approximated
so as to prove (II) of the theorem in this case.

We take A(Q) = 1. For each integer m divide Q into 2™" cubes {Y;} of side 27",
and given ¢ > 0, subdivide each Y, into L," smaller cubes, each of side 27"L;™ .
These smaller cubes are the quantizing regions R; of a quantizer Q,,. Then

K= ZJZZT Lf
(3.3) AY) =2
MR) =2""NL,~N for R, =Y,

The integer L; is selected so as to make approximately equal the o; in (3.2):
(3:4) L; = [Lo(u(R)/MRY) /™" +1].
where the square brackets denote the integer part of their argument. Then
(3.5 (L;/Lo)" ™" > p(RYIMRy) and
Lyj/Lo < {(u(R)/ARY) N +1/Lo}N*"

1 (RYARNN I (/L) - 1MV
B 1+(1/L,)

} ALY

< {u(R»/A(R,.)H/Lo

Tl }(1+(1/Lo)>

since the mean of order 1/(N+r) is less than the mean of order 1 (Hardy et al [4],
Theorem 16). Given ¢ > 0, it is clearly possible to choose the integer L, = L (m, €)
so large as to give

(3.6) (Li/L)"*" < (WR)/AMR)) (1 +e) +e.
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Since all R; are cubes, equality holds in (2.5). Thus

M,(Q,) = 212:7 i:RiSY; #(Ri)/l(Ri)r/N
= D u(Y2TL;
(3.7) = 3 (YA )27 NI,
g ZJ (Lj/LO)N+r2—m(N+r)Lj—r
= {2 L} N (/LY (Y o
S KN (L (X)) A(Y ) + )V VAT )y

where the second line uses A(R;) and the third A(Y;) from (3.3), the first inequality
is (3.5), the second uses K from (3.3) and inequality (3.6).

Taking the pth power of both sides in (3.7) and moving the power of K to the
left gives

{K'"MAQ)}? < Y ; (1 +8)u(Y)/A(Y)) +e)PA(Y)
(3:8) < YA+ (Y MY)VPAY)+er Y MY}
S AYDMYDIAY )P +ed m(Y)PAY ) ~P+eP
< [adnPdA+e+e?,

using (@+b)? < a?+b” (p £ 1) in the second line, (1+¢)’ < 1+¢ and A(Q) =1 in
the third, and u(Q) = 1 and the Holder inequality on the second sum in the third
line. In the fourth line the step function g,, has been introduced to convert the sum
over j to an integral over Q:

(3.9) Gu(%) = W(Y)/A(Y,), xe Y,

Now the limit of g,, as m — oo is the regular derivate of the Lebesgue-Stieltjes
measure g, which is equal to the density f of the absolutely continuous part p, of
i ae. in Q (see e.g. Munroe [5] paragraphs 41.3, 41.6). Since p > 0 (r < ), the
pth power is continuous and g,” also approaches f? a.e. in Q, and thus in measure
([5] paragraph 31.3). So given & > 0, there is an mq(¢) so large that for m > m, the
set Q, = {x:7,2(x) > fP(x)+¢} has Lebesgue measure

(3.10) Q) <e.
Then ’
Jadu’dA < Ja-o,(fP+€)dA+[o,Gun’ di
(3.11) < fa(fP+8) dA+MQ) fo, (Gu7IHQ,)) dA
< fafPdA+e+AQ){[a,GmdAMQ)}
S fafrdite+277(Q,)
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using the definition of Q, in the first line, the convexity n of the pth power in the
third, and the fact that g,, is a density, whose integral over Q.= Qis < 1.
Substituting (3.11) in (3.8) and using (3.10) to bound A(Q,) gives, for m > mq(e).

{K'Y"MA Q)7 < [ofPdA+2e+e?+¢' 77,

which together with (2.9) proves the convergence stated in (II) of the theorem for
m— oo when0<r<o,s0o0<p<l.

4. Proof. r =0, pu, > 0. The inequality in (2.10) is trivial, since the geometric
mean of nonnegative quantities is nonnegative. To prove (II) of the theorem in this
case, let u(Q) =a > 0. Construct the cubes Y; of side 27™ as before. Given
e =27°N < g, c an integer, it is possible to choose my(Q) so large that for m > m,
a finite union Q, of the Y; can approximate the singular set Q, of u to within ¢, in
the symmetric difference sense, in both 4 and u: i.e.

4.1) MQAQ) <& wQAQ) <&

(see e.g. Halmos [3] page 58 problem (8)). Since A(Q,).= 0 and u(Q,) = u(Q) = a,
this implies that

4.2) Q) <e=2"N  wQo)=u(Q)=b>a—e>0.

The quantizing regions R; are the Y; in Q—Q, and subdivisions of those Y; in
Q,: we define L;, not by (3.4), but by

(4.3) Lyj=2,jedo; Jo={j:Y;cQ}
L;=1,jeJy; Ji={j:Y;=(Q-Q)}.
Then the total number K of quantizing cubes is
K=Y3L" =Y e L+ e LY
(4.4) = 2V(AQ)/AY)) + 1 (MQ—-Q)/AY)))
< 2NN N N | = 2. 0mY,

using (4.2) and A(Q—Q,) £ A(Q) =1 in the last line.

The geometric mean quantization error My(Q) is the exponential of the mean
logarithm of the quantization error. Using logarithms to the base 2, it can be
bounded:

log, Mo(Q) = N~ Y51 u(R) log; A(R))
N7 u(Qo)(=Nc—Nm)+N "1 u(Q—Qo)(— Nm)

I

(4.5)

from (4.2). Exponentiating and using the bound on K of (4.4),
(4.6) K]/NA/IO(Q) é 21/’N . 2m . 2—m R 2—bc = 2(1/N)—bc

which can be made arbitrarily small by taking ¢ sufficiently large, proving the top
line of (2.10).
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5. Proof. r =0, u(Q) = 0. The proof of (2.11) parallels that of (2.9), starting
with the definition of the (geometric mean) quantizing error M,*(Q) from (2.3):

Mo*(Q) = exp {NTIYE, W(R;)log A(R)}
R e (HRY,uR),
= eXp {N i=21 W(Ry)logu(R)—N i=zl ( AR, log A Ri)) A'(Ri)}

K 1 1
(5.1) , = exp{—N""'logK}exp {—N—l '_Zl X(R.).[Rifdllog@jRifdﬂl(Ri)}

X 1
=K~ UN exp{—N"1 Z (/I(—R) jRiflogfdA)l(Ri)}

i=1

=K "Nexp{—N~"[oflogfdA}.

The first inequality in (5.1) is the analog to the Minkowski inequality in (3.1) at
r=0: it is the entropy inequality for the K-term discrete probability distribution
{uR)}: =YK 1 #(R)logu(R)) < log K and equality is attained only for equi-
probable quantizers with

(5.2) uR) = 1K, 1Si<K.

Also at this point we use the absolute continuity of u for the first time (i.e. u,(Q) = 0
in the second line of (2.8)), to replace K(R;) by the integral of the density f over R;.
The last inequality in (5.1) follows from the convexity U of the function xlogx,
which makes the function of the average smaller than the average of the function:
equality requires that f be piecewise constant a.e. and equal to the averaged density
function f, a step-function given by

(5.3) J) = u(RY/MR) = (/A(R)) fx,fdA, X€R;.

Thus (5.1) proves (2.11), and thus (I) of the theorem. To prove (II) of the theorem
in this case requires the inductive construction of a sequence {Q,,} of rectangular,
equiprobable quantizers for an arbitrary absolutely continuous p.

The quantizer Q, has K = 1 quantizing region, Q itself, with u(Q) = 1. Qe is
constructed from Q,, by dividing each of the K = 2" intervals {R;} in Q,, (each a
rectangle aligned with the coordinate axes) into two equiprobable intervals by
cutting R; with an (N—1)-flat orthogonal to the greatest dimension of R—i.e.
orthogonal to a coordinate x, so chosen that A,(x,) = Ai(x,) for 1 £ ¢ < N, in the
notation of (2.1). By the absolute continuity of u, such equiprobable division will
always be possible and will give two quantizing intervals in Q,,., each of which
has a width in the coordinate x, which is strictly positive and strictly less than
A(X,). 0,1, thus has K = 2m+1 equiprobable rectangular quantizing regions, each
with A(R;) > 0 for m < oo.

Let R(m, x) denote that quantizing interval R; in the quantizer Q,, which contains
the point x. In terms of the definition (1.2) of O(x), R(m, x) = Ry, - The change
in notation is introduced to avoid the double subscript. By construction
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R(m+ 1,x)< R(m, x) so there is a limiting interval R(co, x) included in all R(m,x).
Then
(5.4) H(R(m, x)) =2""
AR(m, x)) > A(R(o0, x)) 2 0.
We define the set Q;:

(5.5) Q; = {x: A(R(00, x)) > 0}.
For xeQ,, by the definition (5.3) of f and the properties (5.4) and (5.5),
56  limy. f(x) = lim,,, "B X)) _ 2

-0 = m- oo = O
" AR, %) T A(R(00, X))
and by the absolute continuity of u and (5.4),

(57) jR(oz::,x)fd'1 = liHlm—>oo J.R(m,x)fdj' = lin:lm—>oo #(R(m’ X)) = O

Since R(o0,x) >0 for xeQ;, the nonnegative function f must vanish almost
everywhere in R(co, x), and thus almost everywhere in Q,, which is a denumerable
set of such intervals of positive Lebesgue measure. This and (5.6) give

(5.9) lim,,, ., f(x) = f(x) =0a.e. in Q.

For x in Q—Q,, by (5.5) A(R(m,x)) — 0 as m increases. Since it cannot vanish
for finite m, at least one width, say A,(x,) must decrease to zero in an infinite number
of steps. But then so must all widths, since A,(x,) must be the largest width each
time it decreases, by construction. Thus not only the volume but the diameter of
R(m,x) — 0 for x in Q—Q,, and if fis bounded its integral u has a strong derivate.

(5.9) lim,,_, . f(x) = f(x)a.e. in Q—Q

(see e.g. Munroe [5] 42.4.1).
If fis bounded, so is its local average f and so are flogf and flogf. By (5.8) and
(5.9) f—> fa.e. in Q, and thus flogf — flogf a.e. there. So

(5.10) limyes oo JaflogfdA = [oflogfdi

for bounded f, by the Lebesgue dominated convergence theorem. Since the Q,, are
rectangular and equiprobable, equality is attained in (2.5) and in the first inequality
in (5.1). Using the definition (5.3) of fin (5.1) gives

(5.11) K,'""My(Q,) = exp{—N""[oflogfdA}

and taking the limit m — oo, using (5.10), proves (II) of the theorem for bounded f.
If fis not bounded, note from the argument in (5.1) that

(5.12) faflogfdi < [oflogfda
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so that only a converse inequality is needed to prove (5.10). Decomposing f into
two nonnegative components f = f, +f,, gives

faSlogfdA = [ofilog(fi +12) dA+[of; log (fi +/2) dA
(5.13) %jnﬂ logf dl+jﬂf210gf2dﬂ,
2 [of logf; d/l‘*‘(jnfz dz)(log jnfz di)

where the monotonicity of the logarithm is used in the second line and the con-
vexity u of zlogz in the third. Next define f; = min(f, /o), > =f—/f1, f=f1+/as
and their local averages, the step functions f; and f:

Jix) = (A(R)) fr f1d2 2 O, X€R;
(5.14) J2(x) = (1/AR)) f,f>d4 2 0, X€eR;
f=Fi+F2
where f;, is set so that, given a positive ¢ < 1/e,
(5.15) e> [of2dd = [of,da.

Now taking limits as m — oo in (5.13) and (5.14), and substituting from (5.15),
gives
(5.16) faflogfdA = lim,,., ., [oflogfdA 2 lim,,.,, [of; logf, di+eloge.
And fi, and thus f;, is bounded by f;,. Thus precisely the argument of (5.6) to (5.9),

with equalities replaced by < in (5.6) and (5.7) and fand f replaced by f;( < f) and
Fi(Zf), proves the analog of (5.10): i.e.

(5.17) lim,,_, ., [ofy logf, dA = [qofi logf, da.

Substituting (5.17) in (5.16) and letting ¢ — 0, the integral on the right in (5.17)
approaches the integral of flogf, by definition of the Lebesgue integral of an un-
bounded integrand, in the sense that either it converges or both diverge to + oo
(both integrands are bounded below). Substituting the result in (5.11) proves (I1I)
of the theorem for r = 0 for an arbitrary f, and thus an arbitrary absolutely con-
tinuous u.

6. Proof. r = 00. To prove (2.12), let Q be any K-region quantizer for a dis-
tribution u of compact support Q.. Let {R;} be the quantizing regions of Q, and
let U be the union of those R; which have

(6.1) max, A(x,) £ M ,(Q)
and thus also have
(6.2) MR) £ M (V.

Now the closure U of U includes Q,. For if not there would be a neighborhood
in Q, not covered by U, and thus a positive probability of choosing an x not in any
of the R; defined by (6.1), and thus a positive probability of a quantizing error
greater than M (Q), which contradicts the definition (2.3) of M_(Q). The total
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number K of quantizing regions must be at least as large as the number in U. Thus
by (6.2)

(6.3) KM ()" z A(U) = XQ),

which proves (2.12) by taking Nth roots.

To prove (II) of the theorem in this case, note that the open set Q—Q, can be
approximated for each positive integer m by the union U,, of half-open disjoint
cubes of side 27™ and volume 2~™¥, each of which has its closure contained in
Q—Q,.. Thus given & > 0 it is possible to find m, so large that m > m, implies that
the Lebesgue measure A(Q—Q.— U,,) < &. Then the remainder of the 2™ cubes of
side 27™ in Q cover Q. and have Lebesgue measure bounded by

(6.4) AQ-U,) =4Q)+i1Q-Q.—U,) £ Q) +e.
Thus their number is bounded above by

AQ)+e
6.5 e — (i) +5).

Now let the quantizing regions of Q,, consist of those cubes of side 2™ which are
not in U, together with the region U, itself. Then Q,, has M_(Q,,), the essential
supremum of its quantizing interval widths, given by 27", since the one possibly
larger interval U, is included in the set Q—Q, which has u-measure zero. The total
number of quantizing intervals K,, in Q,, is then, from (6.5), just

(6.6) K, < 2"{A(Q) +2} +1.

Thus for any £ and any m > my(e), substituting M (Q,,) for 2™ and taking Nth
roots in (6.6) gives

K, "M (Q,) S {A(Q) +e+27mN N,
so that
(6.7) lim,, o, K,,''"M _(Q,) £ X(Q,)"'",

which proves (II) of the theorem, completing the proof of all four cases.
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