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THE APPLICATION OF INVARIANCE TO
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By MORRIs L. EATON AND CARL N. MORRIS

University of Chicago and The RAND Corporation

1. Introduction and Summary. A number of articles concerned with the problem
of finding minimum variance unbiased estimates (MVUE) of certain ‘“non-standard”
parametric functions have appeared in the statistical literature. When a complete
sufficient statistic (c.s.s.) exists, the Rao-Blackwell Theorem gives a method of
constructing the MVUE of an estimable parametric function based on any un-
biased estimate. A parametric function ¢(6) is called estimable if there exists an
unbiased estimate.

As an example, let X, - - -, X, be independent and identically distributed (i.i.d.),
X, being distributed according to a p-dimensional multivariate normal distribution
with mean pe R? (R? = p-dimensional Euclidean space) and covariance matrix
Z:p x p. This is denoted by L(X;) = A (1, L), L(X) reading “the law of X.” All
vectors in this paper are column vectors. For p = 1, Kolmogorov (1950) solved the
problem of finding the MVUE for the parametric function

‘P:Ol, 62) = Pu,dz(Xl g t),

u and ¢? both unknown. Kolmogorov’s method, which was to calculate the con-
ditional distribution of X given the c.s.s. and apply the Rao-Blackwell Theorem to
the indicator function 1, .,,(X;), was sufficiently general to be applicable to other
estimable parametric functions for this family of distributions. Later Lieberman
and Resnikoff (1955) gave an independent solution to this problem using the same
method. Barton (1961) and A. P. Basu (1964) solved this and other problems using
the same approach.

An alternative method for finding MVUE’s when the distribution of the c.s.s. is
given, is the transform (LaPlace, Mellin, etc.) method. When applicable, this method
does not require having an initial unbiased estimate. The transform method was
used by Tate (1959) for distributions involving location and scale parameters and
by Washio, Morimoto and Ikeda (1956) for the one-parameter Koopman-Darmois
family. Olkin and Pratt (1958) also determined MVUE’s of certain correlation
coefficients using the LaPlace Transform.

Neyman and Scott (1960) developed a third method, which they term ‘“‘the
expansion method,” for producing the MVUE of certain parametric functions.
Their applications were restricted to univariate normal distributions.

An obvious alternative to the above methods is to exhibit a function of the c.s.s.
and verify that it is unbiased. This method was used by Ghurye and Olkin (1969)
to estimate density functions of the multivariate normal and the Wishart distribu-
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tion with various parametric assumptions. As it is not constructive, this method
may be hard to apply.

E. Lehmann (unpublished lecture notes prior to 1964) and Sathe and Varde (1969)
used a theorem due to D. Basu (1955) to greatly simplify the application of the
Rao-Blackwell Theorem. Our Theorem 2.1, which permits other (including multi-
variate) applications, is a generalization of their approach. Theorem 2.1 is appli-
cable when a given unbiased estimate may be written as a function of the c.s.s. and
an ancillary statistic. An ancillary statistic is one whose distribution does not depend
on the parameter.

The preponderance of applications of all the above references have been to
families of distributions which are invariant under a group of transformations.
These applications are in the domain of our Theorem 2.2 which gives conditions
under which a group of transformations may be used to construct the data as a
function of a c.s.s. and an ancillary statistic determined by the group structure and
the c.s.s. In most cases, this ancillary statistic will be a maximal invariant statistic.
The group structure essentially provides an easy method for representing the con-
ditional distribution of the data given the c.s.s. in terms of the marginal distribution
of the ancillary statistic. This greatly simplifies the application of the Rao-Blackwell
Theorem to a given unbiased estimate.

Section 3 illustrates the application of Theorem 2.2. In Example 1, the A4 ,(u, X)
distribution is considered, u and X both unknown. The distribution of a maximal
invariant is characterized and used to represent in integral form the MVUE of any
estimable parametric function. Application is given to set probabilities and to
estimating the /", (u, ) density. Example 2 is concerned with an application to
U-statistics.

2. The Main Theorem. Let X be a random variable taking values in an abstract
sample space (%, #) and suppose the distribution of X belongs to a specified
family 2 = {P, | 6e©} of probability distributions on (%, %). A real-valued func-
tion f(X) is given. The problem is to determine the MVUE of ¢(0) defined by

2.1 @(0) = E,f(X).
Assume that T = T(X)is a c.s.s. for 2. The following result is due to D. Basu (1955).

THEOREM (Basu). Suppose Y, a function on & to a space %, is an ancillary statistic.
Then T(X) and Y(X) are stochastically independent for each 6 € ©.

THEOREM 2.1. Suppose there exists a function Z on (¥, ) such that

(i) Z(X)is ancillary, and
(ii) there exists a function W = W(Z, T) such that f(X) = W(Z(X), T(X)).

Then the MVUE for ¢(0) is
2.2) M) =EWZ, T)

where E, denotes expectation with respect to the marginal distribution of Z.
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Proor. From the Rao-Blackwell Theorem,

(2.3) ¥ =EfX)|T(X)=1)

is the MVUE for ¢(6). Therefore,

(2.4) f*1) = EW(Z, T(X))| T(X) = 1)
=E(W(Z,1)| T(X)=1)
=E,W(Z,1)

since Z and T are independent by Basu’s Theorem. This completes the proof.

The main problem in applying Theorem 2.1 is that of finding the functions Z and
W. In many applications, one also has a group of transformations G which acts
on the sample space Z and preserves the family 2. That is, each geGisa 1—1
bimeasurable function on (%, %) onto %, with the group operation o satisfying
(91°92)(x) = g1(g2(x)). G preserves the family 2 means that for each geG, the
probability measure g o Py, defined by (g o Pe)(B) = Py(g~'(B)), is in 2. G then
induces a group G of transformations on © in a natural way, g0 being defined by
the relation g o Py = Pgy. For further discussion, the reader is referred to Lehmann
(1959).

The next theorem uses the group structure to determine the functions Z and W
of Theorem 2.1. As above, let X take values in (%, #) with a distribution in
P = {P, | 6e®} and suppose the group G acts on & and preserves 2. Assume that
T:% — G is a c.s.s. which takes values in G. The value in G of T at X will be written
Ty. The notation Ty is used, instead of T(X), because Ty is an element of G and is
thus a function on & to & in addition to being a c.s.s. If ye %, the value of Ty €G
is then denoted by Tx(¥).

THEOREM 2.2. Let Z(X) = Ty~ '(X) where Ty~ is the group inverse of TxeG.
If Z(X) is an ancillary statistic, then the MVUE for ¢(0) is given by
(2.5) F*(Tx) = Ezf(Tx(Z))
= [f(Tx(2))i(dz)
where { is the marginal distribution of Z.

PROOF. f(X) = f(Tx(Z)) and therefore (ii) of Theorem 2.1 is satisfied. Since Z is
ancillary and Ty is a c.s.s., the conclusion follows.

REMARK 1. A sufficient condition that Z(X) of Theorem 2.2 be ancillary is that
G be transitive on ® and Z(X) be invariant (Lehmann (1959)). G is transitive on ©
means for each 0,, 0, € ©, there exists e G such that 6, = g(0,). Z(X) is invariant
means Z(g(x)) = Z(x) for all g € G, x e Z. The condition

(2.6) Tg(x) = g o Tx
for all g € G, x € Z implies that Z(X) is invariant, since
Z(g(x)) = Tyy(9(¥)) = (g2 T~ '(g(x))
=T, tog log(x) = Z(x).
In many applications, one can choose 7 so that (2.6) holds.
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REMARK 2. Theorem 2.2 essentially gives a constructive method for determining,
a version of the conditional distribution of the data given the c.s.s., and then straight-
forwardly applies the Rao-Blackwell Theorem. Formally, this conditional proba-
bility is given for Be & by

P(XeB|Ty =1t) = P(TyTy " \(X)eB| Ty = 1)
=P({(Z)eB|Tx =1)
=P(Zet™'(B)|Tx=1)
= P(Zet™'(B)) since Z and Ty are independent

= (' B).

Also, Theorem 2.2 shows that if Z(X) is ancillary, then E(F(X)| TX)=1t)=
E,F(t(Z)) where F is any integrable function of X. This result can be used to
“Blackwell-Rao” any estimator and for convex loss functions, this gives an im-
proved estimator.

If Z(X) is invariant, then the assumptions of Theorem 2.2 imply that Z(X) is a
maximal invariant in Z under G. (See Lehmann (1959) for the definition of a maximal
invariant.) In this case, the distribution of Z can sometimes be obtained by averag-
ing the distribution of X over G with respect to Haar measure on G (Schwartz
(1966) and Wijsman (1965)).

One can also apply the arguments of this section to the problem of unbiasedly
estimating a vector-valued parametric function. Theorems 2.1 and 2.2 are simply
applied coordinatewise, and the only unbiased estimate based on a c.s.s. is still given
formally by (2.2) or (2.5).

In many cases the groups G and G will be isomorphic rather than simply homo-
morphic. The following example illustrates that the choice of G may be important
in verifying (2.6).

Define e = (1, -+, 1)’ as the n-vector of units and let £(X) = A", (e, I) with
0e® = R. It is required to find the MVUE of ¢(0) = Eyf(X). This family of
distributions is invariant under the additive group G = {g,: R" > R" by g,(x) =
X+ae}, the group operation being g,0g, = g,+, A c.s.8. T: R" - G is given by
T, = g5 X = Y x;/n. Clearly T, (x) = gz, = g, T so that (2.6) holds.

G = {g,: §,(0) = 0+a} is induced by G on © and is isomorphic to G. Since G
acts transitively on ©, Z(X) = Ty (X) = X—Xe is ancillary and Theorem 2.2
applies. From (2.5), the desired estimate is | f(Xe+z) d{(z), { being the distribution
of Z which is singular, A" ,(0, I—ee’[n).

Define 0(n) to be the group of n x n orthogonal matrices and 0,(n) = {I" e O(n):
Te = e}. The family of distributions of X is also invariant under the group

G* = {gr.:Te0,(n), aeR, gf ,(x) =Tx+ae},
with group operation

* * .
gl‘z,a2°gr1,al - grzrl,az+a1'
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G* induced on ® by G* is G and hence G* and G* are not isomorphic. The statistic
Ty* = (I, Xe) is again a c.s.s. and Tx*~*(X) is ancillary, so Theorem 2.2 is appli-
cable. However, (2.6) does not hold for Tx* and the group G* since T;f.(x)(y) =
y+(E+a)eand g*o T, *(y) =y+ (X +a)e.

3. Examples. In this section, two examples are given which illustrate the use of
Theorem 2.2.

ExaMPLE 1. The following example typifies the application of Theorem 2.2.
Let X=(X,, -, X,) be a p x n(n=p+1) random matrix whose columns X; are
iid., £(X;) = A ,(u, X), pe RP, X > 0 both unknown.

Denote Gy, as the group of p x p lower triangular matrices with positive
diagonal elements. Consider the group G = {(4, b): AeG7 ,, be R’} with the
group operation (A4,, b,)o(4,, b,) = (4,4, A,b; +b,). The action of the group
G on & is given by (4, b)(X) = AX+ be’, e being n-dimensional.

A positive definite matrix S has many square roots B satisfying S = BB’. Define
the function sqrt (S) to be the unique square root of S in G7.,. Then sqrt (4S4’) =
A sqrt (S)if 4 € Gf,. Some square roots do not have this property.

LetX =n"'Xeand S = (X—Xe')(X—Xe')' so that (S, X) is a c.s.s. for the family
of distributions of X. Then
3.1 Ty =(B,X)eG
is a c.s.s. where B = sqrt(S). A discussion and further references concerning the
matrix Bare given in Wijsman (1959).

(3.2) Ty '=(B"', -—B7'X), so that
(3.3) Z(X) = Ty~ {(X) = B~ Y(X—Xe).

If X is transformed to AX for Ae Gy ,, then B = sqrt(S) is transformed to A4B.
Hence, Ty satisfies (2.6). G(= G), with group operation on the parameter space
given by (4, b)(u, L) = (Au+b, AXA’), acts transitively on the parameter space.
Thus Z(X)is ancillary and by Theorem 2.2, the MVUE for Ef(X) s

34 fX(Tx) =f*(B,X) = [ f(Bz+Xe')d((z)

where ( is the distribution of Z.

We now consider the distribution of Z given in (3.3). Setting P, =n"lee’,
X—Xe' =X(I—-P,) and S = BB =X(I—P)X'. Let T'e0(n) be represented as
I' = (T, e/n*) where I': n x (n—1) satisfies I'T" = I,—P,, 'l =I,_, and e = 0.
Then

, _ I,_, 0O
(3.5 f(I—Pe)f"_( ” 0).

Setting ¥= XT: p x n and letting ¥: p x (n—1) be the first n—1 columns of ¥
gives

(3.6) BB =S=YY' and
3.7 X(I-P,) = (Y, 0)f" = YT".
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Thus
(3.8) Z=B'YI"

where Y =(Y,, -, ¥Y,_,)isa p x (n—1) random matrix whose columns are i.i.d.,
and Z(Y;) = 40, ).

Now, let ¥(Y) = B~'Y with B = sqrt(YY’), and note that V(4YA) = V(Y)A if
AeGr, and AeO(n—1). Since G7, acts transitively on the space of covariance
matrices, the distribution of ¥ does not depend on X. The relation £(YA) = £(Y)
for all Ae O(n— 1), implies _ )

3.9) LV)y=L(VA)

for all AeO(n—1). Define F(p, n—1) as the space of row-orthogonal matrices
M:p x (n—1) satisfying MM’ =1, Then V= V(Y)eZ#(p,n—1). The group
0O(n—1) acts transitively on &#(p, n—1) under the action M - MA, AeO(n—1), so
the distribution of ¥V is uniquely characterized by (3.9) (Nachbin (1965)). This
distribution is the ‘““‘uniform distribution” on Z(p, n—1) under the action of
O(n-1).

Define &F(p,n) = {MeF(p,n): Me =0}. O n) acts transitively on F(p, n)
under the action M — M. From (3.8), Ze & (p, n) and if { € 0 (n), then

ZYy =VI'Yy =VI'y(I—P,)
= VI'YIT = VAT’
where A =I""YI"e O(n—1). Therefore,
L(Zy) = L(VATY)
=2L(VT") from (3.9)
=%L(2Z)

so that Z has the “uniform distribution” over & (p, n) under the action of 0 (n).
The preliminary result showing ¥ is uniform on & (p, n—1) under the action of
0(n—1) is useful for application to problems where p is known.
In many cases of interest, the function f(X) depends on X, only, i.e., (X) = h(X,).
It is then possible to give a more expiicit expression for f* defined in (3.4). Using
the relation X, = Xeq, ¢, =(1,0, -+, 0): 1 x n, then

f(Bz+Xe') = h[(Bz+Xe')e ]
— W(Bz, +X)

with z,; the first column of z. The distribution of Z, is therefore needed. But, Z; =
Ze, = VI'e, = V¢, & being the first column of I so that [|&||* =1-n""
Thus,

(3.10) H(Z,) = L(VE) = L(VAL,)
= L([(n—1)/nIEVy)
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by choosing Ae@(n—1) so that A¢; = [(n—1)/n]*e, € R""'. V eR? is the first
column of V. From the derivation of the distribution of ¥, ¥, has the same distribu-
tion as the first p components of a random vector which is distributed uniformly on
{x|xeR" ", ||x|| = 1}. Hence, £(V;) =2((Uy," -, U,)/||U|) where £(U)=
N0, 1,_1),and U’ = (U, -+, U,_,). Consequently, [TV1[|2 has a beta distribu-
tion with parameters {p and 4(rn—p—1). Using this and the relation £ (V) =
L(AV,) for all Ae O(p), the density of V| is given by

(3.11) k(vy) = c(1—v,'v,)}" 73 for v,'v; £1;
=0 otherwise

where ¢ =T'(d(n—1))[n*T((m—p—1))]1""'. This expression for k(v,) is easily
verified by using a transformation to polar coordinates (see Tamhankar (1967)).
From (3.10) and (3.11), Z, has density function

n 3(n—p-3)
(3.12) k*(z) = c*(l —n———le'zl) 1(zy)
+p
where c* = <L> c,
n—1
and
(3.13) I(z) =1 if z,/z; £ (m—1)/n:

=0 otherwise.

Then, the expression for / * is, after a change of variable, given by

_ n _ _)Ee-pmd)
(3.14) f*B,X)= J c*h(z)lsl-%{l—m(z—X)'s-l(z—X)}

R
x I((z=X)S Y (z—X))dz
where B = sqrt(S).

As a particular case, let D be a set in R?, suppose £(X) = A ,(u, Z), and consider
the problem of findinga MVUE for the parametric function @,(u, £) =P, (X, € D).
Then f* in (3.14) is the MVUE of ¢,(u, Z) if 4 in (3.14) is taken to be the indicator
function of the set D. For p = 1, this estimate was derived independently by
Kolmogorov (1950), Lieberman and Resnikoff (1955), Barton (1961), and Sathe

and Varde (1969).
With the result of the foregoing paragraph, the MVUE of the multivariate normal

density

(3.15) (@m) H[E|F exp {— $(x— Y E'(x— )}

at x can be had by differentiating f* above (i.e., a set derivative with respect to D).
The resulting MVUE is

n _ _)ie-p-3) _ _
(3.16) c*|S|"*{1—’;—;—i(x'—X)’S‘l(x—X)} I((x—X)S"{(x—X)).
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Here, n = p+2 is required. The estimate (3.16) has been given previously by
Ghurye and Olkin (1969). There, Ghurye and Olkin derive MVUE’s of many
nonstandard parametric functions for the multivariate normal and the Wishart
distributions by methods different from ours. Many of their results can be derived
by application of Theorem 2.2 and the discussion of this section.

Example 2. As another illustration of Theorem 2.2, an application to U-
statistics (Fraser (1957)) is considered. Let 2 = {F: F is a continuous distribution
function} and let ® = 2. Let X = (X, ', X,)’ be a sample from some FeZ.
We are to find the MVUE of an estimable parametric function ¢(F) with unbiased
estimate f(X).

Let H be the group of transformations under the composition operation defined
by H = {h: R > R such that 4 is one-to-one, onto, continuous and strictly increas-
ing}. The family £ is invariant under the group G = {g,: R" - R" by g,(x) =
(h(xy),*++, h(x,)) and he H}. As is well known (Halmos (1946)), the MVUE of

o(F) is
1
f*(X) = ;i ZI] f(xn(l)’ T xn(n))

where IT is the set of permutations on {1, 2, -+, n}. This result is easily derived
without Theorem 2.2. However, this result provides an interesting example
where the group G = {g,: 2 — £ such that g,(F) = Foh™*, he H} does not act
transitively on the parameter space £.
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