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1. Introduction. A question of general interest in the theory of probability is that
concerning the asymptotic behavior of a stochastic process. The purpose of the
present paper is to investigate the ergodic properties of a class of stochastic pro-
cesses characterized by the fact that the Markov property holds at an increasing
sequence of stopping times {S, } called regeneration points.

In [9], [10] D. G. Kendall developed the analysis of such stochastic processes,
which frequently occur in the theory of queues, by the method of the embedded
Markov chain (MC). Replacing the continuous time parameter by the discrete para-
meter of an MC, he obtains results about the ergodic properties of these processes.
In general, however, the limiting distribution of the embedded MC is not the limit-
ing distribution of the original process. Therefore, the question of the relationship
between these limiting distributions arises. After being solved in some special
cases, this problem is now examined from a general point of view. An application
of the present theory to the theory of queues will be given in a separate paper
[15], where the system M/G/1 with state-dependent service times and the system
GI/M|/1 with state-dependent input will be dealt with.

A simple example for a stochastic process with regeneration points is a semi-
Markov process (SMP) including as special cases Markov chains in discrete and
continuous-time. It is a fundamental structure of the class of stochastic processes
studied in this paper that they are associated with an SMP. Therefore, results for
SMP’s by Pyke and Schaufele ([12]) turn out to be very useful.

By the same authors the concept of a Markov renewal process with auxiliary
paths (MRPAP) was introduced, which is likely to include all stochastic processes
with regeneration points arising from any practical situation. The name MRPAP
is also used for the class of stochastic processes (X,, = 0) studied in the present
paper although a slightly different definition is given. Pyke and Schaufele allow the
sequence of regeneration points to have several accumulation points. This case
will be excluded. On the other hand, for the most part of this paper we only require
a weakened Markov property: If the value of the embedded SMP at a regeneration
point is known, a statement of the past history of the SMP loses all its predictive
value for the subsequent development of the MRPAP. However, for some purposes
this class of processes is too large and a stronger Markov property is needed, which
insures that the whole history of the MRPAP up to time S, becomes irrelevant to
its future development. MRPAP’s enjoying this property are called MRPAP’s in
the strict sense.

2. Summary. Section 3 contains the definition of an MRPAP and some important
remarks. In Section 4, a system of shift operators {6,} is introduced characterized
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by the property 6,{X,eI'} = {Xj,.,€I'}. In Section 5, some notation concerning
the embedded SMP is listed and a solidarity theorem for the SMP is proved.
Section 7 and Section 8 contain preliminaries of the main limit theorem. This
theorem evaluates the limit of P{X,eI'} as t— oo and is the subject of Section 9
where the SMP is assumed to be recurrent-positive. Section 10 contains some
results in the recurrent-null and transient case. The results in Section 9 interrelate
the limiting distribution of an MRPAP and that of the embedded MC. In a sequel
[14] to this paper, the rate of convergence of the solution of a renewal equation will
be investigated. The results are applied to P{X,eI'} where (X,, ¢ = 0) is an MRPAP.
Section 11 contains two ratio limit theorems. In Section 12, the concept of an
MRPAP in the strict sense is introduced. For functionals of these processes, a
strong law of large numbers and a central limit theorem is given in the last two
sections.

3. Definition of an MRPAP and notations. Suppose we are given:

(a) a probability space (Q, U, P);
(b) a sequence of random variables {S,, ne N} defined on (Q, ¥, P) such that

0=5,=85,<85,<<§, <8< "<00=8,;

(c) a family of random variables Y, Y, (neN), Y, defined on (Q, 9, P) with
countable state spaces I, 1,1, respectively, such that P(Ug << { Y, =i}) >0(i€l);

(d) for each ie I a probability measure P; defined on (Q, ¥);

(e) a stochastic process (Z,, ¢ = 0) defined on (Q, ¥, P) with a state space (Z, €).
Let & be a metric space and € the Borel-field on & and let (Z,, ¢ = 0) have right-
continuous trajectories.

The random variables S,(ne N) will be the regeneration points of the MRPAP
and (Y,, neN) will be the embedded MC. Y,, Y, S, and S,, are introduced for
technical reasons. (Z,, t = 0) will be called the auxiliary path process. The value of
P;(A) can be interpreted as the probability of the event 4 under the condition that
t = 0is a regeneration point and the embedded MC starts in i.

Let n(z) count the number of regeneration points in [0, 7], i.e. n(t) = sup {n = 0;
S, < t}.

Suppose that a strictly positive and finite random variable Uy’ on (Q, 9%, P) is
given and define, for every ¢ = 0,

U=Uy+t if n(t)=0;
= t— S if 0<n(t)<oo;
=t—1im S, if n(t) = .
Set Xt = (Zta Uta Yn(t))(t g O)a (%’ SB) = (Q’X Rl X I’ €®$1® SB(I)),Z QI =
o(X,,s=0)3andao, =a(Y;, Sy, ", Yo Sy)-

1 Let N denote the set of the positive integers.

2 We write R, for the set of real numbers and B, for the set of all Borel sets on Ry. P (-+ )
denotes the set of all subsetson - - -

3 Let o (- +) be the o-algebra generated by -« - -
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DEFINITION 3.1. X = (X,, t = 0) is said to be an MRPAP, if

(El) P{Xs,.+h1 EBls‘ T XS,.+hMEBm| 0',,}=Py”{Xh1€B1,' ) XhmeBm}[amP] for
allh;20,B;eB,1<i<m,m,neN,

(E2) for each weQ and each ne N, an w’'eQ can be found such that X (w')=
sy +u(@)(u 2 0).
REMARKS.
(i) (cf. Dynkin [6] page 79) (E2) only has a technical character. If (E2) does not

already hold, it can be satisfied by enlarging the space Q. Indeed, to each pair
ne N, w e, there corresponds a function ¢, ,, with valuesin X, given by the formula

O, o) = X5, () +u(®) (20).

Let Q, denote the set of all such functions and put @ = QUQ,. Extend the function
X (o) to Q by setting

Xu(¢n,w) = ¢n,w(u) (u g 0)
Set A = {4<=B; AQc N} and define P, Pi(iel) by the equality P(4) = P(AQ),
P(A) = P(AQ) (AeMN). It is easy to see that (X,, ¢ = 0) now defines an MRPAP.
(E2) ensures the existence of the operators 6, introduced in the next section.

(ii) S,(ne N)is a stopping time relative to X, i.e.
{S,Sule¥W, =0(X,, 0 s =L u), (u = 0).
The proof is straightforward and therefore omitted.

(iii) X has right-continuous trajectories and is, therefore, strongly measurable
(cf. Dynkin [6] page 98, [5] page 18). Hence, X, .,(h = 0, ne N), especially Y,, is
A-measurable (cf. Dynkin [5] page 89). Since I is countable, Py (4) (4e) is
o,-measurable. Later on we will be concerned with sets of the form {Xg_,,eB},
where 7 is an UA-measurable function with values in NU{co}. Until now Xg_,, is
only defined on Q, = {tr < w}. To define X;_,, everywhere, let X, be a constant
not contained in X. (Note that X, is excluded from the stochastic process X.)
This convention implies

{Xs.+n€B}<=Q, and {X5 ,,eB}eq (h=0, Be B).

(iv) (E1) still holds if P is replaced by P; (i€ I). The condition P(Uo<n<o{¥n =
i}) > 0 (iel) will only be used to prove this fact. Therefore, the theorems proved for
P also hold for P; instead of P (i€ ). The probability measures P; have the charac-
teristic properties:

P{S;=0}=1 and P{Y,=i}=1 (iel).

(v) Upon setting Z,' = (Z,, Yyiy+1> Snry+1—1) one obtains an MRPAP
((Z/, Uy, Yyu1y), t = 0) with the same given probability measures P;. Hence, there
is no loss of generality in assuming Z, to contain (Y,sy+ 15 Speey+1—1)-

The proofs of (4) and (5) are given in Section 5.
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(vi) For any fixed /eN, h; 20,1 S i<, set Z," = (X,1p,5 '+ * 5 Xyyp,) It is clear
that ((Z,”, U,, Y,)), t 2 0)is an MRPAP with the same probability measures P;.

4. The operators 6,. Most considerations collected in this section parallel those
of Dynkin in [6] page 81, where a stronger property than (E2) is required.

In the formulation of (E1) a transition takes place from {Xj,,,€ B} to {X,eB}.
Condition (E2) allows us to introduce a system of operators describing this transi-
tion. Set ® = X®+* and A* = X ~1(P(Q) ). One immediately sees that A* is the mini-
mal system of subsets of Q that contains all the sets {X,eI'}(# 2 0, ' ¥) and is
closed under the union and intersection of any number of sets, and under the opera-
tion of taking complements. Clearly, A* is a s-algebra containing . Put 6°'4 =
X-lc,7'X(A4) (Ae A*), where c, is the shift of the functions ¢e® defined by
(c,p)W) = ¢p(t+u) (u=0). 6" is a mapping of AU* in A* satisfying the following
conditions.

4.1 F(A—A)=0A4-6'4"; 0U.4, = U.0'4,,
0'Ned. = N4,
(4, A’, A, e A*, A’ = A; a runs through an arbitrary set of values).
4.2) {S, =t}n0{X,eT} = {S, = t}n{X,;,eT} TcX)
4.3) {S, =5}n00'4 = {S, =s}n6°"*'4 (A euA*).

(4.1) is a consequence of the fact that for each 4 € A* some D < X(Q) can be found
such that 4 = X~!(D) and that D= X(X~!D)) (D<=X(Q)). (4.2 and (4.3) follow
by means of (E2).

Let 0, be defined by 0,4 = U,»0{S, =t}n0'4 (4 A¥). 6, can not only be
defined for any fixed ne N but also for any function 7 on Q that takes values in
Nu{ow}: 0,4 = U,n{t =n}6,4. From (4.1) and (4.2), the following properties
of the operator 0, are easily derived, where Q, = {t < ©}.

4.4 0Q=0Q, 0(A—A)=6,4—-0.A4
0(Uedr) = UdbeA4,,  0.(N.4) = Nub.A,
(4, A’, A,eW*, A’ = A; aruns through an arbitrary set of values.)
(4.5) 0.{X,el'} = {Xs_ . €T} TeX

It is not difficult to see that (4.5) implies

(4.6) OnSp=Sn+p—1_Sm ean= Yn+p—1
When (4.6) is combined with (4.3), one obtains

(47) 0n°0p = 0n+p—1

4 Let R, denote the set of the nonnegative real numbers.
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Let f(w) be an A*-measurable function. We define 6,1 by {0.f=a} = 0.{f = a}.
Thus, to every A*-measurable function f, there corresponds a function 6_f defined
on Q,, where the operator 0, satisfies the following conditions.

(4.8) 0.0, =1, (A4 eA*)
(4.9) 0.4,10.4 if A4 (A4,, AeA*)
(4.10) 0.f=1 if f=1;
0.(cf+dg) =cO.f+db.g
0.f=0.f if f<g;
0. fu—0.S if fu—2f

(c, d are constants; f, g, f,, are A*-measurable functions.)

5. Characteristic properties of an MRPAP. Throughout this paper, it is assumed
that we are working with an MRPAP X = (X,, ¢t = 0).

LEMMA 5.1. Let t be a stopping time relative to ((Y,, S,),n =1) such that

P(Q,) > 0, where Q, = {t <0}.
Then, forallh; = 0, B;eB,1 <i<m,m,neN,

P{Xsr+h1€B1, cry Xsr_'.hmEBm' Q,O'r} = PY,{XhleBl’ ttty, XhmEBm} [Q,O‘,, P]
whereo, = {A; Aeo((Y,,, S,,), m 21), A{r =n}eo, (neN)}.
ProOOF. On making use of the fact that Q. eo, and {X_.,€B}<Q, one obtains
by (E1) forevery Ae Q.0
P(A{XS,+h1€Bl’ Tt Xs,+h,,.€Bm}) = ZpP(A{T =P}{Xs,,+h,€B1a a0
=Y ac=nPr, (X €By, -} dP
=Y Jaqe=nPr.(X€B,, -} dP=[,Py {X) €By, -} dP
and the proof is complete.

In the following theorem, the concept of the post-g-algebra g 2 of S, defined by
s A=0(Xs ., t20) is needed.

THEOREM 5.1. Under the assumptions of Lemma 5.1, for every W-measurable
Sunction f, 0. f is Q.ng A-measurable and E(0_f | Q.0,) = Ey_f=[fdPy[Q0, Plif,
in addition, f is P-integrable.

The proof of this theorem by means of (4.5) and Lemma 5.1 is standard and
therefore omitted.

Now, the proofs of Remark 4 and Remark 5 can be given. To prove Remark 4,
we need the following relationship which is a consequence of Theorem 5.1 and (4.6).
0,Des A N0, , if Deo,.

We now show that
P(6,4|0,) = Py, (4o, P} (Aew).
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Choose a fixed n such that P{Y, =i} > 0; then, for every Deg,, using (4.6) and
4.7,

P(DO,A)P(Y, = i} |
= [(yo=1 Py,(D0,4)dP = [y, - P(0,(D0,4)| 5, dP
= P(on({yl = i}D)0n+p—lA) = fo,.m:;')b PY,.+,,..1(A)dP
= I{Y,.=i) L p Po,.r,,(A) dpP = I(Y,.=i) E(On(IDPAP(A)) | c,)dP
= [(v,=4 [ IpPy,(A)dPy,dP = P{Y, = i} [p Py (A)dP;

which completes the proof. The remaining statements P{Y, =i}=1
and P;{S, =0} =1 are proved by a similar argument. Choosing n such that
P{Y,=i}>0, we have P{Y,=i}P{S,=0,Y,=i}=P{Y,=i}P{U,=0,
Yy =i} = [y,=4 P6,{Us =0, Y, = i}|0,)dP = P{Y, =i, Us, =0} = P{Y, = i}.

To prove Remark 5, it will be enough to prove (E1) with respect to (X, =
(Xt Yugry+1> Sury+1—1), t 2 0). On making use of the following relationship, which
is easily verified, (0,(Sumy+1—5)s ©,Yagy+1) = (Sues,+m+1—Suth, Yusn+my+1)
we haveforall #; 2 0, B,e B x B(I) x P, (1 i< m, m,neN)

{X5,+1€By, ", X5,44,€B,} = 0,{X;,€By, -, X; €B,)}.

Now (E1) follows from Theorem 5.1.

The next theorem shows an important structure of an MRPAP, namely that
Y, is an SMP. Contrary to the definition of Pyke in [11], we allow S; to be
positive on a set having positive measure.

THEOREM 5.2. Y, is an SMP and, for allne N,kel,u =z 0,
P{Y,e1=k, 81— 8, < ulo'n} =Py {Y, =k, S, S u} = Qy ) [0, P].

The proof immediately follows from (4.6) and Theorem 5.1. A siniple, but
important consequence of Theorem 5.2 is the following

COROLLARY. (Y,,n = 1) is a Markov chain with the stationary transition prob-
abilities p;; = Q,;i(+ ). (Y,, n = 1) is said to be an embedded MC.

6. Notations and a theorem on SMP’s. The notation used here is similar to Pyke
and Schaufele’s in [11] and [12] to whose papers we refer the reader for a more
detailed treatment of the quantities defined below.

For every i, jel, C<l, set 1¢, =inf{m = 1; Y,,€ C}, tc,4, = inf {m; m > 1¢,,
Y,,eC} where inf @ = o0, T¢,= S, Tco =0, Gi(t) = P,{T;; <t} (note that
P{T;y =0} = 1) K1) = P{T¢, £ t}, K;(t) = Pi{T¢, < t}, (if C = {i}, Cistobe
replaced by i), G;; = Kj; (i #j), (note that K;;(t) = 1 (¢ = 0)). Thus, G;; is the dis-
tribution function of the first return time to i of the SMP and Gj; (i# j) is the
distribution function of the first entrance time fromj to i of the SMP.

Further, set n(f)=sup{n=0,7T,,<t}, M()=En(t), M;(t)=Epn(1),
KGi)=Pi{Ti1 45 St Tir48,)<Ti1+s.)- Consequently ,G;(¢) is the dis-
tribution function of the first entrance (or return time, if i = j) under the taboo k.
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Finally set
M) = Yoo PATyw S t, Ty < Tt o}
F)=P{S,st|V,=j} if p;>0;
= Iy, o)D) otherwise.
H{t) = P{S, <t} = ¥, p;; Fii(1)
Qi) = pi; Fi()
b= [tdF, (), m=[tdH(t)
pij=JtdGy(1) if Gi(+o0)=1
=00 otherwise. ‘

The notations concerning the embedded MC are those of Chung in [4]. A state
iel is said to enjoy some property if it does so with respect to the embedded MC.
The following relationships are obvious:

-fli‘; = Gij(+ oo), qu - jGit(+ OO) and lflj iGu( + w)

If P{Y,=i infinitely often} =1, {T;,—T;,—y, neN} forms a general renewal
process (cf. Pyke [11] page 1240). For the definition of a general renewal process
we refer the reader to [16] page 20). The property P{Y,=i infinitely often} =1
is equivalent to P(N,{Ti, < 0})=1. If P{T;,,=c0}>0 for some meN,
{T;,—T;,_,, ne N} no longer forms a sequence of independent random variables,
since {T;, = 0} {T,+,=00}. However, the following statements are always
valid.

LEMMA 6.1. For arbitrary ne N, B,,€ [0, 0)B, (1=m=n),iel,

(6'1) P(nm I{T;m Ttm IeBm}) l—[m IP{ m IEBm}
(6.2) P{T, <t} =K;*G{™ (), M) =Y Ki*Gii™ (),
(6.3) M) <o (t=0), sup(M{t+1)—M(1)) < .

Let * denote the convolution symbol and let G be the n-fold convolution of G
with itself. As usual, G' is defined as the atomic distribution concentrated at the
origin.

PrOOF OF LEMMA 6.1. The following relationship is easily verified.

64 8, Tip = Tinsp-1—Tin on {T;, <}
Since {T;,— Ty 1€ By} =0,,,_ {TineB,yand Np2 {Tin— Tim-1€Bu}€ Qe Oryp s

" Theorem 5.1 entails (6.1). (6.2) is a consequence of (6 l) and (6.3) follows by (6.2)
from the Renewal theory.

Now we want to prove a solidarity theorem for the SMP, which is an extension of
Theorem 2 in [4] page 13). For that purpose, we need the concept of an arithmetic
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distribution function with span A, which is used here in the sense of Feller [8]
page 136. Feller’s definition is extended to arbitrary mass functions (i.e. non-
decreasing right-continuous functions) in an obvious way. For any function G, let
G* be its Laplace-Stieltjes transform, whenever G* is well defined. If G is a mass
function inducing a finite measure, G*(—i-2n/1)=G*(0) (A#0) is equivalent to
the property that all points of increase of G are among 0, +4, 424, - - - (cf. Feller [8]
page 475). The span of a non-arithmetic mass function is defined to be zero.

THEOREM 6.1. For two states i, jel in the same class, G;; and G;; have the same
span. Especially, if G;; is non-arithmetic, then this is true for all states in the class of i.

PRrOOF. Suppose that G;; has span A (0 < 4 <o0). We shall show that, for every
state j#1i in the class of i, G;; has the same span 1. Since G;;(0) <1 and G;(+ 00)>0,
there exist only two possibilities: either G;; is non-arithmetic or G;; is arithmetic
with a finite span. The following identities are used (cf. Cheong [3] page 123, Pyke,
Schaufele [12] page 1752)

(6.5) Gii(s) = ;Gii(s)+G(5)G(s)
(6.6) G};(s) = J-G}'}(s) + iG}}(s)Gﬁ(s).
Now suppose that G;(s) = G;:(0), where s= —i-2n/A. (6.5) implies that
Gi(0) = ;G{(0)+,G(0)G}(0)
= ;G () +,GH()G}(s).

Since for every mass function G inducing a finite measure the inequality |G*(s) | <
G*(0) on Re (s)=01is valid, we have ;Gji(s) = ;G;(0) and ;Gi(s)Gi(s) = ;G;(0)G7(0)

hence
Gi(s) =G0 e™™,  Gj(s) = G}(0) €° for some 6¢€(0, 2n).

(6.6) implies that ‘
G(0) = ;G}(s) e +,G}(s)G}(0).

The same sort of argument as was used above will show that
1Gi(s) = ;G}(0)e® and ,GJ(s) = ,G}}0).
An interchange of i and j in (6.6) yields
iG;’(i) — 165(0) :’_w - G;,(O) e,
1—-,Gz(s) 1-—;G;(0)
because ;,G5(0) = ,f;f <1. Finally, by (6.5),
G}i(s) = G}{(0)+ ;G}(0) €°G(s) e = G}{(0).

Therefore, the span of G;; is an integral multiple of 1. An interchange of i and j in
the above argument completes the demonstration.

Gi(s) =
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7. Preliminaries of the main limit theorem. We introduce the following notations.
P{B,u)=P{X,eB, T, >u}, Y B,u)=P{X,eB,S,>u},
n{B) = Ei(j Iix, B, 05s<s,) 45)-

By the following Lemma 7.1, I x,c 5, 0<s<s,) is an A x [0, 00)B-measurable function
of (w, s). Hence, (I x, .5 0<s<s,ds is an A-measurable random-variable. #n,(B)
is the expected amount of time spent in B by X from time S, until time S, given
S 1= O, Yl =i.

LEMMA 7.1. ForeveryneN,iecl, Be B

(71) P{XtEB’ T;n-f-l > tIQn,.an,.} = iPi(B’ t— 'I}")[Qn"tfnn, P]
on the set where T;, <t and ’ )
(72) P{XtEB’ Sn+1 > tlan} = '//Y,.(B, t—S")[U',,, P]

on the set where S,<t. Iy wyen o> M4 Ixwyen,s,>n are AX[0, o0)B,-
measurable functions of (w, t).

Since the stochastic processes (X Iir,,,,>4)> ¢ 2 0) and ((X,, I(s,,,>n), 1 2 0)
are right-continuous, (7.1) and (7.2) can be verified by the same sort of argument
as is used in the proof of Theorem 5.7 from Dynkin in [S] page 107. The measur-
ability of the functions specified above can be proved simultaneously with no

additional labor.
If i is a recurrent state, {T,4, — T, n€N} is a Renewal process under the prob-

ability measure P;. Therefore, Pi{Y (Tiysy— Ti) = 00} =P;{lim S, = oo} =1 (cf.
Pyke [11] page 1240). This result can be slightly generalized.
LeMMA 7.2. For every recurrent class C,
P{T, < ®,limS, < 00} = 0.

PROOF. Because of {T¢; < 00} = {1¢; < o} it suffices to show P{r¢; < o0,
limS, = 00} =P{1c; < 0}. Now ¢, is a stopping time relative to (Y,, neN).
Hence, on making use of Theorem 5.1,

P{t¢, < 0, lim,,, S, = o}
= P{TCI < oo, limn-*oo(sn-i-rm—l _Stc = w}
= P({t¢; < ®0}0,,,{limS, = ©0}) = [(r, <c0) Prec, {lim S, = o0} dP
= j(fc1<°°) 1dP.

Now we want to summarize some relationships used for the proof of the main
limit theorem.

7.4 M) =Y P{S, St Y, =), Y, =i(l<vs n)}.
(7.5) (B, u)du = n{(B).

(7.6) PiB, ) =Y [6W,(B, t—u)d; M;j(w).
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If P{lim S, = o} = 1 then
7.7 JiP{B, w)du =Y ; ;M;;(+ o)y (B).
If iis a recurrent state then
(7.8) Mi(+0)=pli=e;
For every state je 1
(7.9) P{X,eB} = P{X,eB, T}, >t} + [, ;P/(B, t—u) dM(u).
If Cis a recurrent class then
(7.10)  P{X,eB} =P{X,eB, T, > t}+Y jcc)o¥;(B.t—u) dM(u).
(7.3) follows from
M) = 2% ELyg, o(Tin) = EY 21 Lo, oS (5(Y)
=Y, P(S,s1, Y, =i},

A similar argument proves (7.4), which implies (7.8). (7.5) can be deduced from
Lemma 7.1 and Fubini’s theorem.
Now suppose that P;{lim S, = oo} =1. By (7.2) and (7.4) we have

iPi(B’ t) = Pi{X,GB, 'I‘i2 > t}

=2at12;P{X,€B, 8,2t <841, Y, =), Ty > 1}
= ZanPi{XteB’ Sn é t< Sn+1, Yn =j’ Yv # l(l <v é n)}
=Y a2 szt vumi, vo#it <veny P{X:€B, t < S, |0,} dP
= Zan.f:)'//j(B’ t_u)duPi{Sn é u, Yn =j9 Yv # l(l <v é n)}
= Zjﬁ) Y (B, t—u)d; M;(u).

(7.7) is a consequence of (7.6). Making use of (7.1), we obtain

P{X'EB, Tjil é t} = Z:o=lP{XtEB, T}n é t< 7}n+l}
=2afitnsn P{X€B, Tjpiy > t|Q,, 0, } dP
this is (7.9). Finally suppose that C is a recurrent class. Then, by (7.2) and (7.3),

P{X,€B,Tcy St} =Y,cc Y%y P{X,€B, S, £t < 8,4y, Y,=j}. The rest of the
proof of (7.10) goes through as in the proof of (7.6).

8. The Key Renewal theorem. In this section, the known results about the Key
Renewal theorem are summarized. The version of this theorem quoted here is
obtained by an application of the extension of Wiener’s Tauberian theorem for
positive measures due to Benes [1] to the Renewal functions M(¢). By use of (6.5)
and

@®.1) Ki(t) = o (1 -Gyt —u)) dM(u)
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it is easily shown that M,(¢) (iel) satisfies the hypothesis of Wiener’s theorem
([1] page 4) if G;; is non-arithmetic and u;; < oo. Assume throughout this section
that these conditions are satisfied for some fixed ie . We shall need the concept of
strong regularity ([1] pages 13, 17).

A Borel set B< [0, 00) is said to be strongly regular with respect to M; if for every
& > 0 there exist a compact C<= B and an open U>B such that for all sufficiently
large #[oIy_c(t—u)dM(u) < e. Let Ky, denote the set of all Borel measurable
functions f such that, for every k > 0 and ¢ > 0, there exist /¥ and /'~ defined on
[0, k], with the properties

W f-sfsf*
(i) fo(f* —f)du<e
(iii) /* and /- are of the form )}, b1, » Where the B; are strongly regular
with respect to M. There exist two simple criterions for strong regularity.

LeMmMA 8.1. Every bounded Borel set whose frontier has Lebesgue measure zero is
strongly regular with respect to M, Hence, every Riemann integrable function
defined on [0, ) is an element of Ky,. If G;; possesses an absolutely continuous
component, every Borel set Bc [0, 00) is strongly regular withrespect to M ;. Therefore,
every Borel measurable function bounded in each finite interval is an element of Ky,

The first part of Lemma 8.1 is proved in [1] by Benes and the second part is a
consequence of Theorem 1 in [16] of Smith.

The definition of K),, is justified by the following theorem of Benes ([1] page 18).

THEOREM 8.1. If fe€ Ky, satisfies the condition Y, Sup, <, <n+1| /()| < 0o then
K(+ )

9. The main limit theorem. Define P(B, t) = P{X,e B}, P(B, t) = P,{X,e B} and
(B) = lim,_, , P(B, 1) (Be B, iI).

THEOREM 9.1. If /
(i) Cclisarecurrent class,
(ii) p;; < oo for somejeC,
(iii) G;; is non-arithmetic for some je C,
(@iv) lim,, , P{X,eB, T, = o} = 0 for some fixed Be B, and if either
(v.a) Y«(B, )€Ky, foralljeCor
(v.b) ;P{B," )€ Ky, for some je C, then n(B) exists and

Zjecekj’?j(B)
Yjeceul;
where Yjecet < © (keC).

Evidently, the form of the limit #n(B) is that of limits of functionals of the em-
bedded MC (cf. Chung [4] 1 Section 15). In applications of this theorem, it is much
easier to compute Y ;(B,-) than to compute ;P,(B, +). Hence, in most cases, one

lim,., o, [of(t—u)dM(u) = [81(u)du.

n(B) = K(+ o0)
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will appeal to condition (v.a). But in certain processes, it may be known that
G;; has an absolutely continuous component and, therefore, the alternative condi-
tion (v.b) is always satisfied.

Pyke and Schaufele prove in [12] page 1459 under different conditions that
n(B) is the unique positive stationary measure for X. On the one hand Pyke and
Schaufele assume (Y, ne N) to be an irreducible MC (that implies K (+ o0) = 1)
and require a more restrictive condition than (E1). On the other hand no regularity
condition has to be imposed and the arithmetic case and the non-arithmetic case
need not to be distinguished.

Theorem 9.1 yields as special case the result of Fabens [7] in an example of
queuing theory.

It is easily seen that an MRPAP is an equilibrium process in the sense of Smith
([16] page 14). Hence, the proof of the existence of n(B) under condition (v.b) is
similar to that given by Smith [16] and Benes [1] when dealing with the analogous
problem of equilibrium processes.

Proor or THEOREM 9.1. By (7.7) and (7.8), where B = X, we have

9.1 Mk = Zjecekjﬂj = € ln (, keO)
(cf. Pyke, Schaufele [12] page 1756), since ¢,; = 0if je C, ke C,
(9.2) O<ekl< Q0 and ekj=ek,e,j (J, k, IGC)

(cf. Chung [4] pages 47, 51). For that reason and with reference to Theorem 6.1,
conditions (ii) and (iii) are satisfied for all je C.
(a) At first suppose that (v.a) is valid. By assumption, it suffices to consider
P{X,eB, T¢, < t}. Now
(7.10) P{X,€B, Tcy St} =) jecfoV (B, t—u)dM(u)
especially
P{Yn(t) =Jj, Tey S t} = If) ‘Pj(x, t—“)de(“) = If)(l —Hj(t—"))de(“)’

From (9.1) and condition (ii), it follows that

ny= {5 (1—Hyu))du (jeO).

Considering that
K (+ ) = Kc(+0) (jeC)
l//j(‘Ba t) é lPj(xa t) (t g 0)

and making use of Lemma 8.1 and Theorem 8.1 of Benes, we have lim, ., , P{Y,,) =
jo Tey < 1} = Ke(+ co)n,s;; (cf. [16] page 20) and lim,., , 5 ¥(B, t—u) dM(u) =

Kc(+ o) i(B)/u;j.
Then, by use of (9.1) and (9.2),

lim, Y jcc P{Yoey =J, Ty £ 1} = Kc(+ )
=Kc(+0)' Y ettty = Djeclime g, P{Y, =Jj, Tey St}
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Hence, letting ¢ — co in (7.10), the limit may be passed over the summation sign,
and the proof is complete.
(b) Secondly suppose that condition (v.b) is satisfied. Since P{T¢, < o0,

T;, = oo} = 0, it is again sufficient to consider P{X,e B, T;; < t}. Now we recall

(1.9) P{X,eB, Tj; < t} = [ ;P{B, t—u) dM(u).

On collecting the statements of Lemma 8.1, Theorem 8.1, (7.7), (7.8) and using the
fact that ,Py(B, u) < (1—G (1)) (u = 0), we obtain for every ke C

lim,, , P{X,eB, T;; St} = Kc("'oo)Ziecejiﬂi(B)/ﬂjj-
The relationships (9.1) and (9.2) complete the demonstration.

If class C is recurrent-positive, the taboo probabilities e;; can be replaced by the
stationary probabilities n; = 1/m;;. If in addition sup;.c#; < oo, one has u;; < oo
(jeC). Suppose {B,} to be a set of disjoint elements of B satisfying ) B, = X.
Then Y n,(B,) = n; (je C). The following corollary summarizes these considerations.

COROLLARY 9.1. If

(i) Cc<lIisarecurrent-positive class,

(ii) sup;cch; < oo or p;; < oo for some jeC,
(iii) G;; is non-arithmetic for some je C,
(iv) Ke(+0) =1,

and if {B,} is a countable set of disjoint elements of B such that ). B, = X and for
each n either

(v.a) Y«(B,, )€ Ky, foralljeC,or
(v.b) ;P/(B,, ") € Ky, for some je C, then

— stcnjr’j(Bn)

n(B,) = forevery n
YiecT;n;

and Y n(B,)=1.

There is a result for the arithmetic case which is analogous to Theorem 9.1. The
proof runs on very similar lines and will be omitted. If G;; is arithmetic with span
X', so is G; for all states j of the class of i, as has been proved in Theorem 6.1. This
case is likely to arise in any application of the theory only if the values of the re-
generation points are restricted to integral multiples of a positive number A. For
convenience, only this case will be considered. Therefore, if C is a class, there exists
an integer v such that G;; has span vA (ie C). In order to formulate the theorem, we

set
Kj(W,P)EZ»?:oP{Tn = (mv+p)i} O=sp=sv-1),

n{(B, &) =E; Zq=§ mod vi (X, e B,0sq<s2) (¢e[0, vA)).
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THEOREM 9.2. Suppose there exists a positive A such that P(, Y., {S, = mA}) = 1.
If
(i) C<lisarecurrent class,
(i) p;; < oo for somejeC,
(iii) G;; is arithmetic with span vA for some je C,
(iv) lim,., o, P{X,,1+:€B, Tc; = 0} =0 for some E€[0,vA), then n(B,¢) =
lim,., o, P{X,,1+:€ B} exists and

jeC eka;’;;(l) Kj(OO, P)’?j(B, E—ph)

>
B, &) =vA
(B, )= Yieceuim;

where) ;. cen; < o (keC).
An additional corollary can be formulated without difficulty as in the non-
arithmetic case.

10. The recurrent-null and the transient case. In this section some results are
obtained in case that y;; = oo for some jeI. The following lemma is easily derived
from renewal theory and probably very well known.

LemMA 10.1. Suppose that yi;; = oo.

@) If G, is non-arithmetic, then lim,. [6k(t—u)dM(u) =0 provided that
Zn supn§u§n+ llk(u)l < 00.

(b) If M (1) is a step-function such that all the jumps of M {(t) occur on the sequence
{nd,neN} for some A>0, then lim,,, W k(t—u)dM(u) =0 provided that
Yalk(nd)| < 0.

On making use of (7.9), (8.1), and Lemma 10.1 we have

THEOREM 10.1. Suppose that
(i) p;; = oo for some fixedjel,
(i) lim,.,, P{X,€B, T;; = o0} =0.If
(iii.a) Gj; is non-arithmetic,
(iv.a) Y, SUP,cugn+1 |;P1(B, w)—p(1 —G;w)| < o for some Be B and some
p€l0, 1], thenlim,_, , P{X,e B} = pK;(+ ). If
(iti.b) P{N, Y {S, = mA}) = 1 for some A > 0,
(iv.b) Y, |ij(B, ni+&—p(l— ij(nl))| < o0 for some Be B and some pe|0, 1],
thenlim,_, , P{X,,;+:€ B} = pK(+ ).
Generally, it will be difficult to verify condition (iv) of Theorem 10.1. Therefore,
a simple but useful criterion is given, the proof of which is trivial.

LemMa 10.2. Suppose that, for a fixed Be B, a finite subset Jy of I exists such that
either

(i.a) {X,eB,n(t) >0} = {Y,eJp 0 <n(t) < oo}

(ii.a) lim,_,, P{Y, =k, n(t) < co} = 0 for each ke Jyor

(ib) {X,eB,n(t) >0} = {Y,+1€J5 0 <n(t) < o}

(ii.b) lim,., , P{Y,y+1 =k, n(t) < oo} = 0 for each ke Jy thenlim,, P{X,eB}
=0.



1618 MANFRED SCHAL

This lemma has many applications in queuing theory. We will now enumerate
some conditions implying (ii.a) or (ii.b).

THeoREM 10.2 (1) If j is a transient state, then lim,_, , P{Y, =j, n(t) < ©} =
lim, ., o, P{Y,+1 =J» n(t) < 0} = 0. Suppose that (i) j is a recurrent state, p;; = oo,
and either (ii.a) G;; is non-arithmetic or (ii.b) P((,Y.m {S, =mA}) =1 for some
A>0.

(2) (cf. Smith [16]page 20). If (iii) #; < co thenlim,_,,, P{Y, = j, n(t) < 0} = 0.

(3) If (iii) Y4 ejxprjbr; < oo (especially if sup, by; < 00), then lim,., o, P{Y,)+1 =
Jyn(t)<oo}=0.

PrROOF. (1) Since P{Y,y+1)=J, n(t) < 0} £ P{Y, =j for some nz m}+
P{S,, > t}, this term can be made arbitrarily small by choosing m large enough and
by letting ¢t — co.

(2) is proved in [16] by Smith under condition (ii.a). If (ii.b) holds, then an
analogous argument will show that lim,,., o, P{ Y, =/, n(m;) < o} =0. The
relationship Y,ini146 = Yomay (a.8.) (£€[0, 1)) completes the demonstration of (2).

(3) Since {Y )41 =J, Tjy > t,n(t) < w}c{t < T;; < o} and, by Lemma 7.2,
P{T;; £t,n(t) < 0} = P{ < t}, it suffices to cons1der P{Yyn+1=J, TSt} =
fo Pj{Y,,(, w1 =) Tjp>t— u} M (u) This identity is a consequence of 7.9).
Since, by use of (7.6), Py{Yuiy+1 =J» Tjz > t} = Y fo (1 = Fiy(t— 1)) d; My (),
an appeal to Lemma 10.1 and the same sort of argument used in the proof of (2)
will prove statement (3).

11. Ratio limit theorems. In this section, we consider the expected amount of time
which an MRPAP spends in certain sets. We will use the convention that a bar
over a function of ¢ will denote the integral over [0, ¢] of the same function without
bar. For example, P(B, t) = j{, P(B, u)du. The methods of proof used in this paper
are similar to those used by Pyke and Schaufele when dealing with the analogous
problems of MRP’s. At first we quote here a lemma of Pyke and Schaufele ([12]
page 1752).

LeMMA 11.1. Let K be a mass function for which K(t)=0 if t<O0 and
sup(K(2+1) — K(t)) < 0. Then for any mass function F satisfying F(t) =0 if t <0
one has lim,., ,, [K * F(¢)]/K(t) = F(+ o0).

THeOREM 11.1. (1) If C is a recurrent class such that p;; < oo (jeC) and
lim,., , P{X,€B, T¢, = 0} =0, then

lim,_,, P(B, )t = Ke(+ )%"i@ (keC)
jecCrj

whereY ;. cem; < 0.
() Ifu;; = oo, lim,, , P{X,eB, T;; =0} =0 and [§|P{(B, u)—p(1—Gyu))|
<o for some p€|0, 1], then lim,_, , P(B, t)/t = pK;(+ 00).




MARKOV RENEWAL PROCESSES WITH AUXILIARY PATHS 1619

Proor. We recall from renewal theory that lim,_,00 M{1)/t = Ki(+ o0)/u;;. By
assumption, it suffices to consider P{X,€ B, T;; < t}. Making use of (7.9) we have

§5P{X,eB, Ty, < u}du = [M;*;P(B, )(1)].
By Lemma 11.1,
1im, o, [ M, Pi(B, YONM () = Y s e n(B)

and the proof is complete, if u;; < co. If u;; = oo the assertion is proved by a

similar argument and by (8.1).
We extend now the definition of e;; including the case of nonrecurrence:

e '—1 U(+W)/K”(+OO) lf Kij(+oo)>09
=0 otherwise,
especially e;; = 1. If i, k are elements of the same class, we have
(11.1) e,'j=e,‘kekj (JEI).
This identity is an immediate consequence of the following relationship
(11.2)  lim,, o M;(O)/M(1) = ;M (+ ©0)/K;j(+ ) if K (+00) >0, (i, jel),
which has been proved by Pyke and Schaufele in [12] page 1754.

THEOREM 11.2. If P{S,— o0} =1 for some a of the class C, P(B, + ) >0,

P{A, + o) >0, for somei, jeC, B, Ae B, and

QM y(+ 0)ny(B), Yy ;M j(+ o), (4)) # (+ 00, + 0),
then lim Pi(B’ t) = Zl €k Kil('l' OO)"I(B) (kGC)
>0 Pi(A, 1) 1€ K (+o)n,(4)

PRrOOF. It can be easily verified that P{S,— o0} =1 for all keC. We
can, therefore, show exactly as in the proof of (7.10) that P(B, 1) =
Y1 Sow(B, t—u) dM,,(u) and hence Pi(B, +o0) =Y, M,,(+ ©)n(B) (k€ C, B B).
P(B,+00) > 0 implies that Y, ,M;,(+ 0o)n,(B) > 0 where i and B can be replaced
with j and 4. By (7.9) Py(B,t) = M*.Py(B, -)(t) (keC, BeB) and by (7.7)

«PuB, +0) =Y M (+00)n,(B) (keC,BeB). Now, Theorem11.2 is a
consequence of Lemma 11.1, (11.1) and (11.2) applied to the identity

P(B,1) _ MyP(B, )1) Mu(t) M;,(1)
Pi4,1) M) M) My P i(A, )()
12. MRPAP’s in the strict sense. The class of processes defined in Section 3 is
too large to yield a strong law of large numbers and a central limit theorem.
Throughout the remainder of this paper we shall work with a subclass of the class

of MRPAP’s. For every stopping time T relative to X, let us put Ae Wy if 4eA
and, forany ¢t 2 0, A{T < t} e U,. U is clearly a g-algebra on Q.
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DEerINITION 12.1. If in Definition 3.1 (E1) is replaced with
(E3) P{XS,.+’I1 EBI’ ey, Xsn"'hmeBml QIS"} = PY"{X}HGBI’ trty, XhmeBm}[QIS”’ P]
(h; 20, B,eB,1 <i<m,mneN),

Xis said to be an MRPAP in the strict sense.

REMARKS. (1). Since X is strongly measurable, X5, and hence Y, = Y,s, is
s, -measurable (cf. Dynkin [5] Section 69). Therefore, we have g, s, (neN).
Thus (E3) implies (E1).

(2). Again, (E2) has only a technical character and can be satisfied by enlarging
the space Q.

(3). (E3) is satisfied if supplementary variables W, (¢ = 0) and a measurable
function f can be found such that ((X,, W,), t = 0) is a strong Markov process and
(Xs,, Ws,) =f(Y,) (ne N). Assume throughout the remainder of this paper that X
is an MRPAP in the strict sense.

THEOREM 12.1. Let 1 be a stopping time relative to ((Y,, S,), n =1) such that
P(Q,) > 0 where Q, = {t < 0}. Then S, is a stopping time relative to X and for
every -measurable, P-integrable function f

E(6.f| Q. Us) =Ey f = [fdPy [Q. Us,, P].

Proor. The proof of the second part is analogous to the proof of Lemma 5.1
and Theorem 5.1. Since {t = p} e, = U5, we have

(.S} =Y, r=p}S, S e,
which completes the proof.

13. Strong law of large numbers. Throughout Section 13 and Section 14 of this
paper, we will be concerned with sums of a functional of an MRPAP satisfying
hypothesis (E3). It is assumed that the embedded MC enters a.s. some fixed
recurrent class C, i.e. K/(+o) = 1. Let {f,, ne N} be a sequence of 5 ANUs , -
measurable functions with values in R;u {+ o0} such that f, = 6, f where f'is U-
measurable and finite almost everywhere with respect to P. For all ¢ = 0, define

144 ( t) Zn(t) 1

We shall study limit theorems for W, (¢) in these two sections. Most of the results
and the methods of proof are analogous to those given by Chung [4] and, in the
main, by Pyke and Schaufele [12] when dealing with the corresponding problems
of MC’s and MRP’s, respectively. Therefore, the proofs of the following statements
will for the most part be omitted. We will focus on some fixed state je C, say j = 0,
and we put

Wou(f) = W(Ton+ 1) — Wi(To,) = Z:O":ol,.

(Set Wo,(f) = o on the null set {T,, = 0 }u{T,,.; = ©}). It is not difficult to
deduce from Theorem 12.1 the following
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LemMa 13.1. Wy, (f) is 1, ANy, , -measurable (ne N) where 1, W = o(X 1, 1,
t 2 0). Hence, {W,,(f),ne N} forms a sequence of independent, identically distributed
random variables.

At first we shall give explicit formulas for the first two moments of W, (f) (cf.
[4] pages 87, 88; [12] page 1756). We write

L) = E(fu| Yo =iy Yorq =)
(N = kaikCik(f) = E(fnl Y, =1)
if P{Y,=1i}>0andp;; > 0.
LemMa 13.2. Iff 2 0 or EW,,(|f]) < oo then

(13.1) EW,,(f) = ZkeceOka(f)~
If g satisfies the same conditions as fand if f Z 0, g = 0 or EWo,(|f|)Wou(|g]) < o0,
then
(13.2) EW,o,(f)Wou(9) = Zi eOi[Ci(fg)
+ 3140 k0 P iMi(+ ) Cu(NC(9) + (@) (MN)]-

On making use of (9.1) and (9.2) we have

COROLLARY 13.1. If(13.1) is valid and (|EW,,(f)|, too) # (o0, 00) then EWo,(f)/
Uoo does not depend on the choice j = 0.

The following lemma may be proved by paralleling the analogous result for
MC’s in [4] page 84.

LeMMA 13.3. If E|W.,(f)| is finite for any i€ C, then it is finite for every ieC
(g>0).
Set

W(t) = Wf(t)a WOn = WOn(f)’ m(O) = EWOn’ Too = 09 fo = 0’

Rl(t) = I{Tm st} Z;DQ'I lf;n V(t) = Z:ti'l)_ ! WOna Rz(t) Zn(t)to.,lo(,)

which yields the decomposition W(¢) = R,(¢)+ V(¢)+ R,(2).
Compare the following results with Lemma 5.1, Theorem 5.1 and Theorem 5.2 in
[12].

LeMMA 13.4. Ry(1)/t* - 0 (a.s.). If E|Wo,| < 0 or if W, 2 0 and pigo < o, then
V(H)[t - m(0)/poo (a-s.)

THEOREM 13.1. If EW,(|f]) < 00 orif f Z 0 and poo < o0, then W(t)[t = m(0)/poo
(a.s)

The next theorem gives a much weaker condition for the strong law of large
numbers as well as a necessary and sufficient condition. Define for each je C

Dj = Squgo |Z;j=l-:j:”—lfv I(‘!Jz"‘fj|>m)| .
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THEOREM 13.2. (a) If EDy < 00, E|Wy,(f)| < o then W(t)[t - m(0)/poo (a:s.)
(b) IfE|Wo,| < o0, oo < o0 then the following statements are equivalent:

(1). W(@®)[t > m(0)/poo (a.s.).

2). R,(1)/t—0(a.s.).

(3). EDy < 0.

14. Central limit theorem.

LEMMA 14.1. Ifmyy < 00, fioo < 00 and if Gy, is non-arithmetic or P((,Y . {Sn =
mA}) = 1 for some ). > 0, then R,(t)/t* - ,0.

Proor. In the non-arithmetic case, R,(¢) even converges in distribution. The
proof parallels that of Theorem 6.1 in [12]. The arithmetic assumption implies that
the span of G, is an integer multiple of 4, say vA. The same sort of argument as is
used in the non-arithmetic case will show that R,((nv+p)4) (0 < p < v) converges
in distribution as n — co. The statement of Lemma 14.1 is now a consequence of
the fact that

R,((nv+p)A+&) = Ry((nv+p)A)(as.) if ¢e[o0, A).

Throughout the remainder of this section it is assumed that the assumptions of
Lemma 14.1 are satisfied. By Lemma 13.3 and Lemma 14.1 it suffices to consider
the asymptotic behavior of V(¢)/t* when studying that of W(r)/t*. Define
g = f—m(0)/moo, g, = 0,9 =f,—m(0)mqo, h=f—(S,—S)m(0)/1oo, hy=0sh =
So—(Sys1—Sm(0)/poo, By = Var Wy (f)/1eo Where f can be replaced by g or A,
and suppose that B;<oo. Then Var(ty,—1;) < co implies that B, < oo and
Var(T,,—Ty,) < oo implies that B, < co.

THEOREM 14.1. Under the assumptions of Lemma 14.1 and the assumption that
B; < o0,

(a) (W(1)—no()m(0))/t* -, aN(0, B) rv,

(b) (W(2)—n(2)m(0)/mqo)[t* —1aN(0, By tv, if Var (tg2 — To1) < 0,

(©) (W(2)—1m(0)/po0)/t* =1 aN(0, By) 1v, if Var (To, — Toy) < 0.

The proof is analogous to the proof of Lemma 7.1 and Theorem 7.1 in [12]. In
the proof of Theorem 14.1(c) the following fact is needed. (t—S,))/t* > 0(a.s.).
This is a consequence of the inequality t— S,y = Tonoy+1 — Tonery and of the fact
that (Top4 1 — Ton)/n* - 0(a.s.). If moreover E(W,,(|f r) < o0, it is easily verified,
by use of the results in Section 13, that neither the left hands in Theorem 14.1 nor
the assumptions used depend on the choice j = 0. Thus neither do the quantities
B;,B,, B,

Suppose that ¢ is a measurable and, for convenience, bounded function defined
on X. In defining f, = [§**' ¢(X,) du = 6, [§? #(X,) du the above results apply to
Wi(t) = [§:© ¢(X,) du. If one is interested in

W() = o $(X,) du
= jgl ¢(Xu) du + Wf(t) +j.'9n(¢) ¢(Xu) du,

the analogous results for W(¢) may be derived by combining the above results and
those of Smith for cumulative processes ([16]).
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