DISTRIBUTIONS OF Z^{γ} AND Z^* FOR COMPLEX Z WITH RESULTS APPLIED TO THE COMPLEX NORMAL DISTRIBUTION¹ By Archie D. Brock² and Richard G. Krutchkoff Virginia Polytechnic Institute 1. Introduction. Let $Z = Re^{i\Theta}$ be a complex random variable such that the density of (R, Θ) is given by (1.1) $$f(r,\theta) = \frac{\left|bc_4\right| c_2^{c_1} (1-a^2)^{\frac{1}{2}}}{2\pi m \Gamma(c_1)} r^{c_1 c_4 - 1} \lambda^{c_1 c_3 - 1} \exp(-c_2 \lambda^{c_3} r^{c_4})$$ where all parameters are real, r > 0, $m\pi/|b| < \theta < m\pi/|b|$, $\lambda = 1 - a\sin{(b\theta + \alpha)}$, |a| < 1, $b \ne 0$, $c_1 > 0$, $c_2 > 0$, $c_4 \ne 0$, m a natural number, and $0 \le \alpha < 2\pi$ and where $f(r, \theta)$ is zero otherwise. The generalized Mellin transform (GMT) (see [2]) will be used in order to obtain the distribution of Z^{γ} and Z^{*} when γ is a nonzero real number and Z^{*} is the complex conjugate of Z. The density function (1.1) is of special interest due to the importance of certain special cases of the family. In particular: (i) Weibull-uniform, (ii) chi-uniform, (iii) gamma-uniform, (iv) complex normal. ## 2. The distributions of Z^{γ} and Z^* . THEOREM 2.1. The GMT of the complex random variable $Z = Re^{i\Theta}$, with density of (R, Θ) given by (1.1), is (2.1) $$h(s,t) = \frac{-(1-a^2)^{\frac{1}{2}}\Gamma(s/c_4+c_1)\sin(mt\pi/b)}{4\pi mc_2^{s/c_4}\Gamma(c_1)\Gamma(c_3s/c_4+1)}$$ $$\cdot \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} H_{jl} [(t/b) \sin^{j} \alpha + ij \sin^{j-1} \alpha \cos \alpha]$$ where (2.2) $$H_{jl} = \frac{(-1)^{mj} \Gamma(2l+j+c_3 s/c_4+1) \Gamma(j/2+t/2b) \Gamma(j/2-t/2b) a^{2l+j}}{2^{2l} \Gamma(j+1) \Gamma(j/2+t/2+l+1) \Gamma(j/2-t/2+l+1)}$$ and $t \neq 0, \pm b, \pm 2b, \dots$, and $s/c_4 + c > 0$. [for any integer k, h(s, kb) is evaluated by taking the limit of h(s, t) as $t \rightarrow kb$.] PROOF. By definition, the GMT of Z is (2.3) $$h(s,t) = \frac{\left|bc_4\right| c_2^{c_1} (1-a^2)^{\frac{1}{2}}}{2\pi m \Gamma(c_1)} \int_{-m\pi/|b|}^{m\pi/|b|} \int_0^{\infty} r^{s+c_1c_4-1} \lambda^{c_1c_3-1}$$ $$\cdot \left[\exp \left(it\theta - c_2 \lambda^{c_3} r^{c_4} \right) \right] dr d\theta.$$ Received August 5, 1968; revised March 18, 1970. ¹ Research sponsored by the U.S. Army Research Office, Durham, North Carolina, grant number DA-ARO (D)-31-124-G410. ² Now at East Texas State University. The transformation $w = c_2 \lambda^{c_3} r^{c_4}$, $\phi = b\theta + \alpha$ changes (2.3) into (2.4) $$h(s,t) = \frac{(1-a^2)^{\frac{1}{2}}\Gamma(s/c_4+c_1)e^{-it\alpha/b}}{2m\pi c_2^{s/c_4}\Gamma(c_1)} \int_{\alpha-m\pi}^{\alpha+m\pi} \frac{e^{it\phi/b}d\phi}{(1-a\sin\phi)^{1+c_3s/c_4}},$$ provided $s/c_4 + c_1 > 0$. An application of the binomial theorem yields (2.5) $$h(s,t) = \frac{(1-a^2)^{\frac{1}{2}}\Gamma(s/c_4+c_1)e^{-it\alpha/b}}{2m\pi c_2^{s/c_4}\Gamma(c_1)} \int_{\alpha-m\pi}^{\alpha+m\pi} e^{it\phi/b} \cdot \left[\sum_{i=0}^{\infty} \frac{\Gamma(c_3 s/c_4+j+1)a^j \sin^j \phi}{\Gamma(c_3 s/c_4+1)\Gamma(j+1)} \right] d\phi.$$ Since the series in (2.5) converges uniformly for all ϕ (see [1]) we obtain (2.6) $$h(s,t) = \frac{(1-a^2)\Gamma(s/c_4+c_1)e^{-it\alpha/b}}{2\pi mc_2^{s/c_4}\Gamma(c_1)} \sum_{j=0}^{\infty} \frac{\Gamma(\dot{c}_3 s/c_4+j+1)a^j}{\Gamma(c_3 s/c_4+1)\Gamma(j+1)} \cdot \int_{a-m\pi}^{a+m\pi} e^{it\phi/b} \sin^j \phi \, d\phi.$$ Repeated application of the reduction formula (2.7) $$\int e^{ax} \sin^n bx \, dx = \frac{(a \sin bx - nb \cos bx) e^{ax} \sin bx}{n^2 b^2 + a^2} + \frac{n(n-1)}{n^2 b^2 + a^2} \int e^{ax} \sin^{n-2} bx \, dx, \qquad n = 0, 1, 2, \dots$$ yields (2.8) $$h(s,t) = \frac{(1-a^2)^{\frac{1}{2}}\Gamma(s/c_4+c_1)\sin(mt\pi/b)}{4\pi m c_2^{s/c_4}\Gamma(c_1)\Gamma(c_3s/c_4+1)}$$ $$\cdot \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} \frac{(-1)^{mj}\Gamma(c_3s/c_4+j+1)\Gamma(j/2+t/2b-l)\Gamma(j/2-t/2b-l)}{2^{2l}\Gamma(j-2l+1)\Gamma(j/2+t/2b+1)\Gamma(j/2-t/2b+1)}$$ $$\cdot a^j \sin^{j-2l-1}\alpha[(t/b)\sin\alpha+i(j-2l)\cos\alpha]$$ where $$\sum_{l=0}^{\infty} a_l = \sum_{l=0}^{j/2} a_l \quad \text{if} \quad j \quad \text{is even;}$$ = $\sum_{l=0}^{(j-1)/2} a_l \quad \text{if} \quad j \quad \text{is odd.}$ Since the series in (2.8) is uniformly convergent for all α , we may rearrange terms. Observe (2.9) $$\sum_{j=0}^{\infty} \sum_{l=0}^{\infty} a_{jl} x^{j-2l} = \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} a_{2l+j,l} x^{j}.$$ Consequently (2.8) may also be represented as $$(2.10) h(s, t) = \frac{-(1-a^2)^{\frac{1}{2}}\Gamma(s/c_4+c_1)\sin(mt\pi/b)}{4\pi mc_2^{s/c_4}\Gamma(c_1)\Gamma(c_3 s/c_4+1)} \cdot \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} h_{il} \lceil (t/b)\sin^j \alpha + ij\sin^{j-1} \alpha \cos \alpha \rceil$$ where $s/c_4 + c_1 > 0$ and where $$(2.11) H_{jl} = \frac{(-1)^{mj} \Gamma(c_3 s/c_4 + j + 2l + 1) \Gamma(j/2 + t/2b) \Gamma(j/2 - t/2b) a^{2l+j}}{2^{2l} \Gamma(j+1) \Gamma(j/2 + t/2b + l + 1) \Gamma(j/2 - t/2b + l + 1)}.$$ THEOREM 2.2. If $Z = Re^{i\Theta}$ is a complex random variable such that the density of (R, Θ) is given by (1.1) then the density of (Ω, Φ) , where $W = Z^* = \Omega e^{i\Phi}$, is (2.12) $$f(\omega,\phi) = \frac{\left|bc_4\right| c_2^{c_1} (1-a^2)^{\frac{1}{2}}}{2m\pi\Gamma(c_1)} \omega^{c_1c_2-1} \eta^{c_1c_3-1} \exp\left(-c_2 \eta^{c_3} \omega^{c_4}\right)$$ where $\eta = 1 + a\sin(b\phi - \alpha)$, $\omega > 0$, $-m|b|^{-1}\pi < \phi < m|b|^{-1}\pi$, and the remaining parameters satisfy the restrictions below (1.1). The function $f(\omega, \phi)$ is zero elsewhere. PROOF. The GMT of $W = Z^*$ is (2.13) $$h_{W}(s, t) = h_{Z}(s, -t)$$ $$= \frac{-(1 - a^{2})^{\frac{1}{2}}\Gamma(s/c_{4} + c_{1})\sin(mt\pi/b)}{4m\pi c_{2}^{s/c_{4}}\Gamma(c_{1})\Gamma(c_{3}s/c_{4} + 1)}$$ $$\cdot \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} H_{il}[(t/b)\sin^{j}\alpha - ij\sin^{j-1}\alpha\cos\alpha]$$ where H_{jl} is defined by (2.11). Observe that (2.13) is the GMT of the complex random variable $W = \Omega e^{i\Phi}$ where the density of (Ω, Φ) is (1.1) with α replaced by $\pi - \alpha$. THEOREM 2.3. If $Z = Re^{i\Theta}$ is a complex random variable such that the density of (R, Θ) is (1.1) then the density of (Ω, Φ) , where $W = Z^{\gamma} = \Omega e^{i\Phi}$, is (2.14) $$f(\omega,\phi) = \frac{\left|bc_4\right| c_2^{c_1} (1-a^2)^{\frac{1}{2}}}{2m\pi\gamma^2 \Gamma(c_1)} \omega^{c_1 c_4/\gamma - 1} \lambda^{c_1 c_3 - 1} \exp\left(-c_2 \lambda^{c_3} \omega^{c_4/\gamma}\right)$$ where $\gamma \neq 0$, $\omega > 0$, $-m\pi |\gamma|/|b| < \phi < m\pi |\gamma|/|b|$, $\lambda = 1 - a\sin(b\phi/\gamma + \alpha)$ and the remaining parameters satisfy the restrictions given after (1.1). The function $f(\omega, \phi)$ is zero elsewhere. PROOF. The GMT of W is (2.15) $$h_{W}(s, t) = h_{Z}(\gamma s, \gamma t)$$ $$= \frac{-(1 - a^{2})^{\frac{1}{2}} \Gamma(s \gamma / c_{4} + c_{1}) \sin(mt \gamma \pi / b)}{4m\pi c_{2}^{\gamma s / c_{4}} \Gamma(c_{1}) \Gamma(c_{3} \gamma s / c_{4} + 1)}$$ $$\cdot \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} G_{jl} [(t \gamma / b) \sin^{j} \alpha + i j \sin^{j-1} \alpha \cos \alpha]$$ where $sy/c_4 + c_1 > 0$ and $$(2.16) \quad G_{jl} = \frac{(-1)^{mj}\Gamma(j+2l+c_3\,\gamma s/c_4+1)\Gamma(j/2+t\gamma/2b)\Gamma(j/2-t\gamma/2b)a^{2l+j}}{2^{2l}\Gamma(j+1)\Gamma(j/2+t\gamma/2b+l+1)\Gamma(j/2-t\gamma/2b+l+1)}.$$ If we replace c_4 by c_4/γ and b by b/γ in (2.1) and (2.2) then we obtain (2.15) and (2.16). Consequently the density of (Ω, Φ) is given by (2.14). Observe that the family is closed under power and conjugation. That is, if $Z = Re^{i\Theta}$ is a complex random variable such that the density of (R, Θ) is given by (1.1) then the density of (Ω, Φ) , where $W = Z^{\gamma} = \Omega e^{i\Phi}$ or $W = Z^* = \Omega e^{i\Phi}$, is also given by (1.1). 3. Special cases. There are four density functions which are interesting special cases of (1.1). For the first three of these we set $a = \alpha = 0$ in (1.1). The density function is then (3.1) $$f(r,\theta) = \frac{\left|bc_4\right|c_2^{c_1}}{2\pi m\Gamma(c_1)} r^{c_1c_4-1} \exp\left(-c_2 r^{c_4}\right)$$ where r > 0, $-m\pi/|b| < \theta < m\pi/|b|$, $c_1 > 0$, $c_2 > 0$, $c_4 \ne 0$, $b \ne 0$ and m is a natural number. Let $f(r, \theta)$ be zero elsewhere. Observe that r and θ are independent random variables and the density of θ is uniform over $-m\pi/|b| < \theta < m\pi/|b|$. By taking $c_1 = 1$, $c_2 = \alpha$ and $c_4 = \beta$ in (3.1) we have the product of a Weibull-density function and a uniform density function. We refer to this as a Weibull-uniform density function. By taking $c_1 = n/2$, $c_2 = n/2\sigma^2$ and $c_4 = 2$ in (3.1) where $\sigma > 0$ we obtain a chiuniform density function. If we set $c_1 = \alpha + 1$, $c_2 = 1/\beta$ and $c_4 = 1$ in (3.1) we obtain a gamma-uniform density function. Observe that each of the above density functions is closed under conjugation while only the Weibull-uniform is closed under powers. The remaining density function is obtained by setting $c_2 = (\sigma_1^2 + \sigma_2^2)/4\sigma_1^2\sigma_2^2(1-\delta^2)$, a $\sin\alpha = (\sigma_1^2 - \sigma_2^2)/(\sigma_1^2 + \sigma_2^2)$, a $\cos\alpha = 2\delta\sigma_1\sigma_2/(\sigma_1^2 + \sigma_2^2)$, $b=c_4=m=2$ and $c_1=c_3=1$ in (1.1). The new parameters satisfy the restrictions $\sigma_1>0$, $\sigma^2>0$ and $|\delta|<1$. The reparameterized density function is now transformed to the (x,y) plane by means of the inverse of the transformation $X=R\cos\Theta$, $Y=R\sin\Theta$. We then obtain the bivariate normal density function with zero means, correlation δ and variances σ_1^2 and σ_2^2 . Consequently Z=X=iY is a complex normal random variable with zero means, correlation δ and variances σ_1^2 and σ_2^2 . Observe that the complex normal density function is closed under conjugation. **4. Some applications.** Let Z be a complex normal random variable. The density of (Ω, Φ) , where $W = Z^{\gamma} = \Omega e^{i\Phi}$, is (4.1) $$f(\omega, \phi)$$ $$=\frac{\omega^{2/\gamma-1}}{2\pi\sigma_1\sigma_2(1-\delta^2)^{\frac{1}{2}}\gamma^2}\exp\left\{\frac{-\omega^{2/\gamma}}{2(1-\delta^2)}\left[\frac{\cos^2\left(\phi/\gamma\right)}{\sigma_1^2}-\frac{\delta\sin\left(2\phi/\gamma\right)}{\sigma_1\sigma_2}+\frac{\sin^2\left(\phi/\gamma\right)}{\sigma_2^2}\right]\right\}$$ where $\omega > 0$, $\gamma \neq 0$ and $-|\gamma|\pi < \phi < |\gamma|\pi$. This is obtained from Theorem 2.3. For $\gamma = -1$ we obtain $$(4.2) \quad f(\omega, \phi) = \frac{\omega^{-3}}{2\pi\sigma_1 \,\sigma_2 (1 - \delta^2)^{\frac{1}{2}}} \exp\left[\frac{-\omega^{-2}}{2(1 - \delta^2)} \left(\frac{\cos^2 \phi}{\sigma_1^2} + \frac{\delta \sin 2\phi}{\sigma_1 \sigma_2} + \frac{\sin^2 \phi}{\sigma_2^2}\right)\right]$$ where $\omega > 0$ and $-\pi < \phi < \pi$. In the (u, v) plane we have (4.3) $$g(u, v) = \frac{\exp\left[-(u^2/\sigma_1^2 + 2\delta uv/\sigma_1\sigma_2 + v^2/\sigma_2^2)/2(1 - \delta^2)(u^2 + v^2)^2\right]}{2\pi\sigma_1\sigma_2(1 - \delta^2)^{\frac{1}{2}}(u^2 + v^2)^2}$$ where $-\infty < u < \infty$ and $-\infty < v < \infty$. Since $W = Z^{-1} = (X - iY)/(X^2 + Y^2)$ we have $U = X/(X^2 + Y^2)$ and $V = -Y/(X^2 + Y^2)$. Consequently (4.3) is the joint density of $\{X/(X^2 + Y^2), -Y/(X^2 + Y^2)\}$ where the density of (X, Y) is the bivariate normal density with zero means. If in (4.1) we set $\delta = 0$, $\sigma_1 = \sigma_2 = \sigma$ then we obtain (4.4) $$f(\omega, \phi) = \frac{\omega^{2/\gamma - 1} \exp\left(-\frac{1}{2}\omega^{2/\gamma}/\sigma^2\right)}{2\pi\sigma^2\gamma^2}$$ where $\omega > 0$, $-|\gamma|\pi < \phi < |\gamma|\pi$ and $\gamma \neq 0$. Observe that this is a Weibull-uniform density function. Consequently, if Z = X + iY is a complex normal random variable with zero means, zero correlation and equal variances then the density of (Ω, Φ) , where $W = Z^{\gamma} = \Omega e^{i\Phi}$, is a Weibull-uniform density function. The GMT of (4.1) with $\gamma = 1$, $\delta = 0$ and $\sigma_1 = \sigma_2 = \sigma$ is (4.5) $$h(s, t) = 2^{s/2} \sigma^s \Gamma(s/2 + 1) (\sin t\pi) / t$$ where s > -2. (It can be seen by putting s = t = k in (4.5) that a complex normal random variable with zero means, zero correlation and equal variances is a complex random variable such that all its moments are zero.) ## **REFERENCES** - [1] Hyslop, J. M. (1959). Infinite Series. Interscience, New York. - [2] KOTLARSKI, I. (1965). On the generalized Mellin transform of a complex random variable and its application. *Ann. Math. Statist.* 36 1459–1467.