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ON THE PROBABILITY THAT A SAMPLE DISTRIBUTION
FUNCTION LIES BELOW A LINE SEGMENT!*?

F. EICKER

Albert-Ludwigs-Universitdt

0. Summary and introduction. The probability is determined that the sample
distribution function (df) of a random sample of any size n, drawn from the uniform
distribution, lies below a given line segment of any slope over some (a, )<[0, 1]
(Section 1, Theorem 1.1 ff.). Probabilities of related events, also under conditioning,
are derived. It is well known that results of this type are equivalent to similar ones
for random samples from any continuous df. A catalogue of equivalent formulae is
given, the various versions being advantageous on certain ranges of the parameters.
These results rest upon and generalize a formula (Theorem 2.1 below) of Dempster
(1959), Dwass (1959), and Pyke (1959) (his Lemma 1), which gives an explicit
expression for any n that the sample df lies below some (straight) line extended
over the entire unit interval. Otherwise the proof uses familiar properties of order
statistics, the whole argument being essentially a combinatorial one. The present
result also generalizes, in particular, results by Wald and Wolfowitz (1939), by
Birnbaum and Tingey (1951) (in both papers sample df below a line segment of
slope 1 over [0, 1]; especially the latter paper, which improves the first, is at the
root of the approach of the present article as well as of the papers by Dempster,
Dwass, Pyke), by Smirnov (1944 and 1961) (sample df below a line segment with
slope 1 over (0, 1) or (a, 1)), by Chang (1955) (line segment of any nonnegative slope
joining the origin with some point in the open unit square 1,%), Cs6rgd (1965)(line
segment of any slope may also end in the point (1, 1)), Birnbaum and Lientz
(1969) (line segment of any nonnegative slope through the origin over any sub-
interval of the unit interval). Apparently the first author who determined explicitly
the probability that the sample df lies below a line segment over an arbitrary
subinterval (a, 8)<[0, 1] was Takacs (1964) (Theorem 3; see also Takacs (1967),
pages 176-178). (The author is indebted to Professor J. Kiefer for reminding him of
this reference.) However, he had the (not very crucial) restriction that the slope y
of the line be = 1. Moreover, his formula contains a double sum, whereas some of
ours contain a single one. This fact proves to be of great advantage in the applica-
tions we have made so far. Theorem 1.2 below gives certain conditional probabilities
that the sample df lies below a line segment over some subinterval of (0, 1). These
probability expressions (as any of those described above), for a suitable sequence
of line segments depending on 7 tend to the probability that the Brownian bridge
(or conditioned Wiener) process lies below a line segment, as n— oo (see [18], in
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particular pages 182-183). This follows from the Doob-Donsker theorem on weak
convergence of probability measures (see also [13]). These asymptotic results
provide a starting point different from and possibly simpler than that of Section 1
to compute approximate probabilities that the sample df lies below some curved
line (for an application and some of the asymptotic formulae compare [7] and
[17]). It is the objective of a later paper to determine the error of the approximation.

Theorem 1.3 gives similar conditional probability expressions that the sample
probability (a generalization of the sample df, defined below) for intervals of vari-
able lengths lies below a line segment. It is these formulae that are needed in a new
version of the proof of the Bahadur-Kiefer representation theorem for sample
quantiles [1].

The formulae derived here are explicit (though involved) in contrast to recursive
ones first considered in [12] and extended, more recently, e.g., in [9] and [25].
They have been used, e.g., to compute explicitly the probability that the sample df
lies below a polygon (compare a forthcoming paper of the author).

Another application is the derivation of asymptotic formulae paralleling and
generalizing, e.g., those of Rényi and Csorgd ([4] and [10]). Implications for
stochastic processes (such as those studied in [19] and for the theory of goodness
of fit tests (compare [1]) are not considered. In [1] also the statistic F,(x)— F(x),
divided by its standard deviation, has been proposed. Certain functionals of this
statistic may be studied by the method of the present paper. On the other hand,
the method is not immediately applicable to the study of probabilities that the
sample df lies, e.g., between two lines (for a recent paper on this compare [16]).

The vast existing literature on Kolmogorov-Smirnov type statistics (for recent
surveys compare [20] and the appendix of [12a]) is not being surveyed for possible
applications other than the few above-mentioned representative examples.

1. Conditional and unconditional probability of a sample df lying below a line
segment.

Notation and abbreviations. R = real line, Rt = (0, ), [x] = largest integer <
x(e R), rv =random variable, i.i.d. = independent identically distributed, df =
distribution function; r.[l.]Jh.s. = right-(left)-hand side, w.l.o.g. = without loss of
generality, /(B) = indicator function of the set B<=Q. Equations between events in
the following sometimes hold only up to sets of probability zero. The binomial df
is denoted by B(- ;n,p). The notation

b(k;n, p): = Qp*(1—-p)\"™, k=0,1,"-,n,

is used also when p is any real number. The uniform df over o, §, —00 <a < f < o0
is denoted by U(a, f). Throughout the paper, x° =1 for all real x. For reals
X,y, XAy: =min(x,y). A sum ) is to be replaced by zero if k > m.

THEOREM 1.1. Let a, B,y, 6 be constants satisfying 0 Sa<f<1,0<y < o0,

(1.1) 0<d+ya<l.
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Let the rv’s Xy, ", X, be i.i.d. ~U(0,1), and let
(1.2) F(x)=n"1Y1_,I(X; <x)
be the sample df of Xy,--+,X,, n=1,2,--. Denoting

(1.3) A=(F(x)=6+yx forall xe(a,p)) =( sup

F(x)—x—6 < y_1>
a<x<p X

then

(1.4) PA=B(k;n,B)+ Y 4ens 1 (AP "(ny) (X' —h)

%o ()(s —ndy (A —s)t =51

where
(1.5)/(1.6) k=[n@+yn], A =n(+yp),
A¥=n if >n,
a7 =1=[4] if A <n and 2 notan integer,
=i-1 if <n and % aninteger.

Since A’ > A* = h, in (1.4) always
(1.8) AM—h>0 and A'—s5>0.

Of course (1.4) remains unchanged if A* is replaced by AAn. We use A* because
of its convenience, in view of later transformations. The proof of Theorem 1.1 is
given in Section 2.

A disadvantage of formula (1.4) is that in the sum over s the sign of s—nd in
general oscillates, which makes approximate evaluations difficult. Corollary 1.1
gives equivalent expressions for (1.4) which do not show this defect.

One notes that for § = 1, +79 < 1, the r.h.s. of (1.4) gives the correct probability
PA=0.If k 2n and B <1, the r.h.s. of (1.4) gives still the correct probability
PA=1.

REeMARK 1. The result of the above theorem, (1.4), may be written in various
other forms. Special attention is drawn to (1.13 b-d) which are particularly simple.
They only have single summations. To begin with, starting from (1.4),

(19 PA=Y3Lo(A—B)Y "ny) ™" = b)Y 5-o (Ns—ndy (A —s)" ",
where the second sum for 4 < k reduces to ZLO; to obtain (1.9) the formula
(1.10 e oM(a+s)y(b—s)'~*"! =(b—h)"Ya+b)

is used (@, be R; b # h) (see e.g. Birnbaum and Pyke (1958)).
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By (1.8), always b > h. The partial sum ) %, in (1.9) is just B(x;n, B). (To see
this note s > h=> (}) = 0; hence if 4 < k, then the second sum in (1.9) satisfies:
Yi=0=Ye=0 = myB/(A’ —h).) Next, by (1.9)

(1.11) PA =35 () s—ndy (X =)™~ YAl G = By ~MA' — )*(A' — h)(my) ™"
=Y e=0(D(s—ndy(X' =) A-Pa* TE ("T)a' (X —s—1),
a = (4'—s)/((1— B)ny). One then obtains with 1 +a = (n(y+6)—s){(1—B)ny} " and
(1.12) p(s): = (A =s)[(n(d+7y)—s) =a/(1 +a)
(1.13a)  PA = (ny)™" 5= o ()(s—nd)*(p(s))(n(y +8) = s)*(X' —s)~*~*
A =9)B(A*—s;n—s, p(s)) — (n—s)p(s) BAL* —s—1;n—s—1, p(s))}

al . s—nd L __n-s
iy = % b{sin b sin-s -

-B(}.*—s-—l;n—s—l,p(s))}

. . s—=né\[n(6+y-1) g
(1.13¢) —s;)b<s,n, ny ){n(é—f—y)—sB(l s—1;n—s—1, p(s))
ny(l-—ﬂ) *_ oo
+ "(5+—)’)—Sb(l s;n—s—1, p(s))}
(L1  =n@+y—1) Y b<s;n,s_;’6)(n(y+5)—s)-l
s=0

x B(}."'-—s—l'n—s—l,p(s))

—nd
+(n—Ai%)b(A*;n, n—s 1b(s l* )
(=" ) 3 (=9 -
where (1.13c) has been obtained using the identity
(1.13e) B(k+1;n+1,p) = B(k;n,p)+qb(k+1;n,p),

(Feller (1957), page 163). One notes that here A* could have been replaced by
AAn. In all of the preceding expressions the sign of (s—nd)* alternates if 6 > 0.
Expressions avoiding this are given below in Corollary 1.1.

REMARK 2. If 2’ > n, B may obviously be replaced by any § = y~ (1 —§) without
changing the r.h.s. of (1.4). (1.4) then equals

P(F,(x) £ 6+yx for xe(a, B))
(1.14) = B(x; 1, B)+ Y i 1 (DA —=P)" " H(ny)""(n—h)

X Y s=0()(s—nd)(n—s)""*"1,
I*=n-1 if 1=n,

=n if I>n, X = n@+yp).
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The independence of (1.14) of f can be checked if one writes P4 in the form (1.17c).
Assuming 1 > n,

(115)  PA=1—(n)""Y5=xs1(s—n0)(n(3+7y)—5)""*"'n(d+y—1)

which does not involve f3; it is the same probability as (1.24) below, since I>n
is the Dempster-Dwass case. If 1 = n, we refer to (1.13b) and the statement at the
end of Remark 1; thus we put 1* = n. Then

(1.16) PA = (ny) "n(y+5—1) Y 5= o ()s—nd)’(n(y+9)—s)"*~*

which again is (1.15) if (1.10) is applied.

ReMARK 3. The familiar transformation of rv’s Y = F(X) yields a formula
corresponding to (1.4) for i.i.d. rv’s X; ~ F where F is continuous. Then under the
assumptions (1.1) the probability
(1.16) P(F,(x) £ +yF(x) for F(x)e(a,p))

is given by (1.4) and its equivalent expressions.
Formula (1.4) can be written in various other forms (particular attention is drawn
to (1.17c—d’)) which are advantageous on different ranges of the parameters.

COROLLARY 1.1. Under the assumptions of Theorem 1.1 (and using the function
b(k;n,p) also for values p <0 and p > 1)

(1.172)  PA = B@A*;n,B)=F4ls 1 G =B~ "(ny) ™" (X' — )
DYIRY () (R G St

(1.17b) =B(A*;n, )= Y22 i1 O)s—ndy (X —s)~*7!
YR GIHA =B THA =) (X —h)(ny)~",
(1.17¢) = B(A*;n, B)— i b(s n, ’;5){3(,1*_3;n-s,p(s))
n— * __ e Qe
n(yTé)—sB(l —1;n-s l,P(S))},
(1.17d) = BG*;n,B)— Az b(s;n, _"6>
s=x+1 ny
-1
x{f%_g:)—_s)B(i*—s—l;n—s—l,p(s))
n‘y(l_ﬂ) ¥ qepy o
sta s;n—s 1,P(S))},
» s—nd
(1.17d") = B(A*;n, ) —n(+y-1) ) b(s;n, - )(n(y+<5)—s)'1

x B(A*—s—1;n—s—1, p(s))—(n—i*)b(A*; n, )

a 1 i* —nd
<Y (n—s)” b(s nyﬂ)

s=x+1
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with
(1.17d") p(s) = 1—4(s) = (A —=s)/(n(d+7)—>5).

The proof is given below.

One notes that all the summands in any of the sums above are nonnegative while
the terms s—nd in (1.4) can be negative. This makes it easier to obtain bounds.

Still other, sometimes more convenient, expressions can be obtained by writing
for the bracket {---} in (1.17¢)

A*t—-s—-1
(1.17e) Z b(t;n—s, p(s))( (13 ﬂ))+ b(A*—s;n—s, p(s))
where the term 1—(n—s—1)(ny(1—p))~"! often becomes relatively small since it
lies between (y—1+6(B—a))(y(1—p))~*! and (y—1+6)(y(1—pB))~!. The terms in
(1.17¢), when (1.17¢) has been applied, can be further simplified using the identity

(1.17f) Z b(s n, s )b().*—s n—s, p(s))

s=x+1

» s—nd
= b(A*;n, B) b(s;l*, )
I
The proof of (1.17a-d’) follows from (1.4) via (1.10), putting a = —nd, b= 1"
Then b # h, since always A’ > A* > h (this guarantees that zero never occurs in the
denominator). The sum over s in (1.4) becomes

(1.17g) (myBY' (& =)= Yk s 1 ()5 — S (A —s)' ™2
which yields (1.17a). (1.17b) is obtained in the same manner as (1.13b). (1.17d’) is
obtained from (1.17d) by observing

b(s; n,s;:a) m(1—f) b(A*—=s;n—s—1, p(s))

n(6+y)—s
_ n! _ e (A=) (s—néY
= S =g n—a "~ D=4 )n(6+y)—s< ny )

= (n=AMEE ) —35) " 'ny(1 = B)(ny) (s — ndY (A —s)**~*
((ny(1=py)r+1
= (n=2A"b@A*; n, B)()n—3)~ ' (nyB)~*(s— nd)(nyB—(s—nd))**
= (n—=2*)b(A*;n, )b (s; i*, = né)(n —s)" L,
nyp

Special case 1. The case a = 6 = 0 has been considered by Chang (1955) (Theorem
4, page 26), and the identity of his results with ours follows after some algebraic
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computations. Since k = 0, one obtains respectively from (1.4), (1.13c), or (1.17b),
with A = [nyBlAn, 2’ = nyB,

A
PA= Y (I—L)b(h;n,ﬁ) = B(A;n,p)—y"'B(A—1;n—1,pB)
h=0 nyp

(1.18) = B(A; 1, )= Y- 1 (s’ La=s G=IA =B '@ =)' 7 1A = )(ny) ™"
=(1-y"HYBA-1;n—1,0)+(1—pPb(A;n—1,p).
In our notation Chang’s formula reads as follows for 0 <y < 1:
(1.19)  PA=B;n,p) Y115 Li=s GZHA =B A =)' ()™
(1.20) = B(A;n, B)—(ny) ™" Y= 1 (V5" (ny—5)""°B(A—s;n—s, p(s))

with p(s) = (nyB—s)(ny—s)~! [same as (1.12) for § = 0]. To show the identity with
(1.18a—e) we need the algebraic identity (see Dwass (1959), page 1027, Lemma d)

(121) YL NA+)B-0)""" = (A+B)=(B+1)N4-1)71, A#1
= n(1+B)y"" !, A=1

where the lower expression follows from the upper by de I’Hospital’s rule. Let us
write (1.19) in the form

PA = B(A;n, B)—=Yi=1 GYA—=B)" Mny) P Yo 1 ()81 (A =)
The sum over s by (1.21) is equal to

(1.22) S (DAY -1 =) = hY
Hence
(1.23) PA=B(;n,f)—y ' Y i1 GIDU =Pt B DAt

= B(A;n,p)—y 'B(A—1;n—1,p),

the same as (1.18 tres) (which again yields immediately PA =1—y"! for A =n,
any fzy-1;7=1).

Special case2. « =0, =1, 056 <1, 6+y>1 (the Dempster-Dwass-Pyke
case; Theorem 2.1 below). Starting from (1.9) of (1.17a), one has with x = [nd],

A¥ =n,
. s s S n=s—1
sgo( )(”7 7)( (”7 7))

which is, of course, (2.20) below (as seen upon substitution ¢t = n—s and observing
(2.10) below). PA remains unchanged (Remark 2) if =1 is replaced by any
B 2 v~*(1-6), implying 1 = n(5+yp) 2 n.

(1.24) PA= ‘S” !
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Special case 3.1f 6 =0,y=1,any0Za< f <1,
(1.252) PA = (n—Ab(A*;n,B) Y50 (n—5)""b(s; A*,5/(np))
(1.25b) = B(2*; n, B)—(n—A)b(A*;n, )Y il s 1 (n—5)"1b(s; 4*,5/(np)),
by (1.13c) and (1.17d); here x = [na], A* defined by (1.6).

The following simple lemma and corollary are often useful:

LEMMA 1.1. Given constants o, B satisfying 0 £ o < B <1 and a non-decreasing
Sfunction h:[a, ] — [0,1). Then

(126)  P(Masxsp(Fu(x) 2 h(x)) = P(N1-pgxs1-a(Falx) = 1=h(1=x))).

PROOF. One substitutes x = 1 —x’ and utilizes the symmetry of the new problem
with the original one: G,(1—x) = 1 —F,(x), 0 < x £ 1, is a (now right-continuous)
sample df and one has

Nesx<p (Fa(x) 2 A(x)) = Nasxzp(Ga(1—%) = 1-h(x)).

Due to continuity of U(0, 1) and since the probability laws of X; and X are identi-
cal, the probability of the event on the right can be written in the form of the right-
hand side of (1.26).

COROLLARY 1.2. Let a,pB,y,0 be constants satisfying 0<a<pB<1, yeR*,
0=1-6—yB < 1. Then

(1.26a) P(F,(x) = 6+yx for all xe(u, B))
=PF, (x)S1-6—y+yx forall xe(l-p,1—a))

(1.26b) = B(R;n, 1—a)+ Y Fors 1 ("~ H(ny) " (n(1—6—ya)—h)
X YEo(B)s—n(1—8—y)y(n(1—6—ya)—s)**71,
(1.27) Kk =[n(1-6-7B)], X = min (n, [n(1 -8 —y%)]).

Next we deal with the event that the sample df lies below a line segment L in the
unit square for all xe(a, f) (or above L for some xe(a, f)) and at the same time
lies below given real numbers at the two endpoints « and . The probabilities of these
events are often useful (compare the introduction).

THEOREM 1.2. Let the assumptions and notations of Theorem 1.1 be valid. Moreover,
let (without loss of generality) 6+yB <1 and let 0 < a < b < n be given integers.
Then the probability

(1.28) P(4,F,(o) < a/n, F,(B) < b/n)
= P(F,(a) < a/n, F(B) < b/n)
_P(Ua<x<ﬂ(Fn(x) > 5"‘7"),1"”(0‘) é a/n’ Fn(p) é b/n)
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equals in case b < k': = n(6+yax)
(1.28a) P(F,(a) < n”'a,F,(B) < n~'b) = B(a;n, )+ k=as1b(k; n, P)B(a; k,a/B).
(Alternative expressions are given in Remark 4 below.) If b>«’, we obtain with
a’:=min(a,x), b':=min(b,A), b*:=min(b,1*),
P(A, F\(a) < a/n, F,(B) < b/n)
(1.29)  =B®b*;n,f)— Y F=s+1b(h;n,B)Y1—B(a'; h,a/B))
=Y hex+1 b(hsn, B){B(e; h,a/f)— B(a; h,a/B)}

g §1b(s n, ya)‘I‘(s,b —s){ [ (k;s,%)

o))
s—nd
(1.292) = B(a';n,B)+Y k=a+1 b(h;n,B)B(a’; h,a/B)
+ D hexs1 b(h;n, ﬂ){l—[B(k"'l «/B)—B(a’; h,a/B)]}

N xZﬂb(s n, s )‘I’(s b* —s){ [ (K;S,%)

_ B(s_v_)]}
s—nd
here (s, x) with p(s) = (A’ —s)/(n(6 +7) —s) is given by

nG+y=1), _ )
ey —s D Lin=s =LA+

The sum over k in (1.30) could have been replaced by the expression (2.29d). One
Surther step of simplification can be done by the transformation that led from (1.17d)
to (1.17d"). (For other expressions equivalent to (1.29) see Remark 5 below.)

For a’ = k, b’ = 4, (1.30) gives the former (1.17d).

The proof of Theorem 1.2 is given in Section 2.

For ease of reference we rephrase Theorem 1.2 as follows:

(1.30) (s, x): = b(x;n—s— 1, p(s))-

COROLLARY 1.3. With the assumption and notations of Theorem 1.2, for x < b,
(1.31)  P(Ua<x<p(Fu(x) > 6+7yx), F(2) < an, F,(B) < b/n)
= B(a;n,p)—B(a’; n, B)+Yh=a+1 b(h; n, B)B(a; h,/B)
—Yh=ar+1b(h;n, )B(a’; h,a/B)
—Yhex+1 blhsn, B{1—[B(x; h,a/B)—B(a’; h,e/p)]}

» —-nd\.,. .« nyo
+ ¥ b(s n, . )‘I’(s,b —s){l—[B(h,s,s—_—;S)

s=x+1
nyo
—Bla';s,—— ) |}
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The sum ) may be rewritten as in (1.17d’) in a form that sometimes circumvents
the bounding of the b-function in ¥. It will then be replaced by (using (1.17h))

®  n@é+y-1) —né g
(1.32) s=§'+1 mb(, >B(b s—1;n—s—1, p(s))

b b 5
+b(b*;n, B) ZH"_S ( b, y’;)

)q’(s,b*—s){B(x;s, e ) —B<a’;s,—flo;>}.
ny s—nd s—no
Special case. The case a<k<b<A—1Z<n is of particular interest. Then

a' = a, b* = b’ = b, and the probability (1.31) simplifies to
(1.33) —Zi’i x+1 0(h;n, B)(1 = B(x; h,a/B))

+ Z b<s r;, os )‘I’(s,b—s){l—[ (x s %)—B(a’;s,%)]}.

s=x+1
PROOF OF COROLLARY 1.3. We use the notations and formulae of the proof of
Theorem 1.2. The probability on the left of (1.31) is by (1.28)

(1.34) P(A°CD) = P(CD)—P(ACD),

utilizing the remark following (2.24). Here P(ACD) may be expressed by (1.29a),
and P(CD) by (1.28a).

Remark 4. Equivalent expressions for the trinomial probability (1.28a) are
P(F (o) < afn, F,(B) < b/n)

(e

s=x+1

(1.35) 2 b(k;n,a)3<b—k;n—k,'f—:—g>

v w
= o

g (k;n,ﬂ—oc)B(a;n—k, ﬁ)

b
+ Y b(k;n,ﬂ—a)B(b—k;n—k,

k=b—a+1

o
1-B+a)’
as will be shown in the proof of Theorem 1.2.

Remark 5. Equivalent expressions for the probability (1.28) in the case b > «’
are given by (2.26) and (2.29) in the proof of Theorem 1.2. A sometimes more
convenient expression is (note A’ > s)

P(A, F\(a) = a/n, F,(B) £ b/n)
(1.36) = B(b*; n, )~ P(F,(a) > a’'/n, F,(B) < x/n)
= 2o+ 1 A=) M my) A = ){Thaes 1 (N —ndP (A =)'
+ X DA =) T Y D(nya)(s—x') 74}
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In the sum over s and k the signs of the terms still oscillate. A version which avoids
this is given in (2.29).

A property of sample probabilities. Let X,,-++, X, be i.i.d. rv’s from the df F
defined on (a,b)= R. We call

F,(B):=n"1Y}_,1(X;eB) for Be(a,b)B,

with (a, b)B the Borel field on (a, b) the sample probability of the sample X, -, X,
since F,(-) is a transition probability (or Markov kernel). If e.g. [c,d)=(a, b) we
write F,([c,d)) = F,[c,d). The preceding results generalize to sample probabilities
in various ways, e.g.:

THEOREM 1.3. Under the assumptions of Theorem 1.1, with a constant p = 1—
q€[0,a], and with the notations (1.5-1.7), (1.12) and

A: = (F[p,x) <d+yxvxe(p), Hy: = (F,(p) = k/n), k=0,1,-"n,

137 A*:=n—k if ¥>n—k[<i>n-k],
=A:=[4] if A<n—k and 1 isnotan integer,
=1-1 if X<n—k and A isaninteger,

there holds for k = 0,1, ,n—x—1
Axc* _
(1.38) P(AHk)=b(k;n,p)[ </1k n— k’il> 5 b<s;n_k,s_.”(5+”l’)>
q s=r+1 nyq

{n(6+y—1)+k

L P I
G +7)—s B(A4*—s—1;n—k—s—1, p(s))

ny(1-p)
n(é+y)—s

P(AH,) = PH, = b(k;n,p), k=n-—x.

For subsets M <{0/n,1/n,---,n[n}, P(A(F,(p)eM)) = sum of corresponding terms
(1.38). In particular,

b(zk*—s;n—k—s—l,p(s))}],

PA=1-B(n—«k;n,p)

+"}_:Kb(k;n,p)[ <4,¢ in— kﬁ—p) 5 b< M)

k=0 s=x+1 nyq
{n(5+y— D+k

n(G17)—s B(4, —1;n—k—s—1,p(s)

n‘)"(l_ﬁ) * R
+mb(lk —s;n—k—s 1,p(s))}:|.

For the proof, some ramifications and an application see [17].
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2. Proofs.

ProoF oF THEOREM 1.1. The assertions for x <0, and x = n are obvious. For
n>k =0 put

2.1 B = (F,(B) £ 6+7a) = (X; < B at most k times),

PB = B(x;n, f). Given B the graph of F, lies below J +yx for all xe(a, ), hence
Bc A. Obviously

22 (Fy(@)>6+)A=0, (F(p)2é+yPA=T as.
Hence given B¢ only the following situation needs to be considered:
2.3) X; <o atmost xk timesand simultaneously,

X;<p atleast x+1 timesandatmost [i]=A times,

and n > x = 0. If [A'] > nit obviously suffices to replace [A'] by nand g by y~(1—6)
(Remark 2). Let Y,, -+, Y, be the order statistics of X, -+, X,. For convenience
put Yo=-1, Y,., = 2. The events

2.9 Ap=Y<a< Yy Yy<B<VYy), k=0,1,--,h;h=0,1,"--,n,

are disjoint and their union is a.s. the entire sample space Q. Due to (2.3) only
index pairs k, h satisfying

2.5) 0Zk<k<h<i<n
need to be considered in partitioning B¢ by the A4;,, and
(2.6) PA =B(x;n,p)+Y k-0 Zl;l'=x+l P(AA, ).
Now on A4, , by Y, <a,f < Y,,, and by
@7 : Fi(x) = n7 0+ Yhoya I(Y; < ), xe(@ B),
AAip = Al((h=R) " Yok 1 I(Y; < %) S (h—k) ™ {(n(6 +yx)— k), x&(a, B)).

Let the second event on the right be denoted by B, ,. The probability of this event
may be determined by using the density function of the vector (Y,,* -, ¥j+1).
For k> 0, h < n, it is given by

‘ n! X
k=—Dlin—h—1)1"*
on 0 <y, <¥rs1 < <yps1 <1, zero otherwise. (Compare Rényi (1953).)
Hence fork >0, h<n

(29a) P(AA,,)

28 A=yt

_ n! f k-1
_(k—l)!(n-h—l)!_[oy" 4y

X Ung’kﬂ ﬁ’m AYrs2': ’If,._, thI(Bk,h)] j}: Ay 1(1=yns 1)"_"—l

M 1= HB—a)H{(h—K)N(B—o) P[]}

(2.99) T ki(n—h) ;(h—k)!
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where [...] is the same expression as in the preceding member of the equation and
where of course in I(B, ;) the Y; are replaced by y;. It can be easily seen that (2.9b)
gives the correct probability also for k = 0 and/or & = 0. Since (h—k)! (B—a)~*~»
is the value of the joint density, where it is not zero, of the order statistics of a size
h—k random sample from the df F = U(a, B), the expression {...} in (2.9b) is
identical with

(2.10) P(F,_y(x) £ §+7F(x) for xe(a, p)),

(2.11) 6:=(h—k) '(n(6+yx)—k), §:=(h—k) ny(f—0),
and where F,_, is the sample df of the new sample. By (2.5),

(2.12) 0g6<1, $>0, b84+5=(h—k) '(n(6+yB)—k)=1.

(In order to simplify the notation the dependence of the numbers 8,7 on 4 and k
is not indicated.) Theorem 2.1 below now yields for (2.10)

(2.13) Yi=k+1C8,5,h—k),

ks =largest integer < (1—48)(h—k) = h—n(6+yx), equivalently kj = largest
integer < h—k, i.e.,

(2.14) ky+1=h—x.

(By (2.5), 1 £ h—x < h—k, thus the sum (2.13) has always at least one summand.)
The double sum in (2.6) now becomes, taking into account (2.9b) and (2.13),

K 2 ]
D N e LA (ki

k=0h=x+1
h—k j i-1 j h—k—j
X & "‘.")(§+:—--> (1 —(5+~— )) ,
L OR G =1

(2.16) & =77 F+5—1) = (m(B—a) " (n(6+yB)— ) [e[0, 1)].
Since $(h—k) = ny(B—a), (2.15) can be rewritten with x’: = n(é +ya) as
(217) Fhoes 1 A= B HA = h) Thimo Do (ny)

XAk CTIE = h+)) M h—j—r 7
Substituting h—j = s [s =k, -+, k] and permuting summations over k and s:
(2.172) Z;:=OZ?;II:—:: = Z::=OZ:=I¢ =Z§=ozz=o,
one obtains for (2.15) or (2.17)
(218)  Yh—kr 1 A=A = )(ny) ™" Yioo (WA —8)" 7!

x T30 (Nnyodf(s— )",

The sum over k equals (s—nd)*, thus yielding for (2.15)
(219)  Therer Q=B M) THE =) Lm0 (N5 —nOP (X' =) 1.
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Inserting this into (2.6) yields (1.4). In the above proof the following result has been
used.

THEOREM 2.1. (Dempster (1959), Dwass (1959), Pyke (1959)). Let X, -, X,
i.i.d. ~F (continuous on R), 6,y constants withy >0, 6+y21,0=<6 < co. Then

(2.20) P(F(z) £ 6+7yF(z) for zeR)=1-Y%,C;=3"_,,+:C;,
k; = largest integer < (1—0)n,
(2.21) C;=Ci(8,7,m): = e(Ye+i/ym)) " (L= (e+j/m))y" ™I, er=y"'(y+0-1).
Even if some assumptions about the parameters are not satisfied, (2.20) still holds.
Proor oF THEOREM 1.2. (1) To prove (1.28a), put
C:=(F(=ajn), D:=(F(B)sb/n), A:=F(f)—Fya).
Then
P(CD) = Y3_o P(F,(B) = k/n,A 2 (k—a)/n)
= Ba;n, ﬁ)+zk zm v-a PU—=F,(B) = (n=K)[n, & = mn)

n! ke _ \m k—m
(2.21a) = B(a; nﬁ)frk ;H,..Z.,(n—k)'m'(k ke By =X p—a)"«

= B(a;n,B)+Y h=ar1 Ym=k—a b(k; n, pb(k—m; k,a/B)
= B(a;n, B)+ Y k=a+1 b(k;n, B)B(a; k,a/p).
The equivalent formulae of Remark 4 are proved by similar decompositions:
(2.21b) P(CD) = Y=o P((F(@) = k[n)(A = (b—k)/n))
=Yt_ob(k;n,a)B(b—k;n—k,(f—a)/(1—a)).
Decomposing according to the values of A yields
=Yh=0(A = kin)Y 0o (F,(®) = m[n) F,
P(CD) = Yi=0Ym= "’“(k)(”m")ot"'(ﬁ —aff (L=
(2.21¢) =Y hi Ym0+ Y h=bat1 Lm0

Z b(k;n,B— oc)B<a n—k, 1 ﬁ+o¢>

+ Z b(knﬂ—a)B(b kin— k1 B-Hx)

k=b-a+1
(2) In order to prove (1.36) of Remark 5 and subsequently (1.29), put
(2.22) C:=(F(®=a'jn), D:=(F(p=b/n)
(2.23) a': = min(a, k), b’: = min(b, 4).
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Obviously,
(2.24) P(A,F,(x) < a/n, F,(B) =< b/n)
is not changed by replacing a by a’ and b by b’. The proof seems quite similar to
that of Theorem 1.1, if one restricts the range of pairs (k,h) in(24)to0 Sk <a' <
Kk <h< b if k < b instead of the range (2.5). Correspondingly, the summation
ranges in (2.6), (2.15) and (2.17) are altered. If b < k, then B°D =¥ and (2.24)
equals P(CD). Instead of (2.17a) one has, always for x < b now,
Yoy = kot smwrr) = Y0 i=0t Y a=at1 D=0 -
Analogously to (2.18) one obtains, denoting B: = (nF,(f) < ),
(2.25) P(ACD) = P(BCD)+Y —x+1 ()1 —B)" ™" = h)(ny) ™"
x {Xa o A =)'~ Vim0 Dmye)(s—x'y*~*
+ Yt O —8)" T YR o () (mya) (s — K'Y 74}

The first sum over k equals (s —nd)".
The second sum over k cannot be expressed in terms of a cumulative binomial

since s— k' is mostly negative. But since in interesting cases a’ is near k, the number
of summands is then reduced by replacing the sum by

(s—nd) = Y-+ 1 Dmy)(s—x')* "
Hence (2.25) equals, observing BD = B because of k < b,
(2.26) P(ACD) = P(BC)+Y 3= 41 G)1—B)"~"(ny) "X —h)
X {Y =0 () (s—ndy(A —s)' =71
=Yt (A =) T Yt Dy (s~ T

We now derive equivalent expressions for this, always under x < b. In order to
apply (1.17h), the case A’ = h has to be ruled out. This can be done, as is easily

checked, by replacing b’ in (2.26) by
b*: =min(b,1*), A* given by (1.7).
Application of (1.10) to the first sum over s in (2.26) (since always A’ # h after
replacing b’ by b*) results in an additive term
(2.27) B(b*;n, B)— B(x;n, ).

By P(BC) = PB— P(BC®) = B(x;n, B)— P(BC®), (1.36) of Remark 5 follows.

In order to get rid of the oscillation of signs in the sums over k and s in (1.36)
we apply again (1.17h), which is allowed since A'—k > h—k. First we introduce
t: = s—k [=0] as a new summation variable. Then

Y1 O =) e 1 D1y (s~
(228) =Y T YR ()t TI(— (k= R)+ 1 (A — k=TT
= Yhea 1 D[ =)@ = h)]
e G G SR A ) R
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where now in the sum over ¢ all terms are positive. (2.28) equals, summing in the
double sum over k and over the new variable

T:=1t+Kk,

h
OO (Bix; gD~ Bla's o)

h
_ VS TPRY Lt £ VR 6t B i T, ’rya _B ’, nya
r=gjﬂ(r)(zt ) e—n ){ (K s @'t ——

_( nvﬁ)"

7, (Bles h,a/B)—B(a’; h, o/B))

" 1 T—nd nya nyo
_ h % . . _ ’,
(nypB) ,=%‘+,)t'—tb(1’h’ o ){B(K,T,——T_né) B(a ’t’r—né)}'

To summarize, we have by now for (1.36)

(2.29) P(ACD)
= B(b*;n, B)— P(BC)
Vo1 Lhes(NA =P H(ny) A =) (s—nd)* (X' —s)" !

—Yhzer1 b(hsn, ﬁ){B(K; h,«/B)—B(a'; h,a/B)

b A —h T—nd nya nyo
- ——b| t;h,—— )| B| k; —Bla';t,—— .
iy (= L CEA R =]

Using Lemma 2.1 below, the first summation over 4 may be performed, since s < 4
resulting in

(2.29a) P(ACD) = B(b*;n, §)— P(BC®)

- 3 ofsin

s=x+1

=Y he+1 bl n, BY{B(k; h,a/B)— B(a’; h,a/B)}
b . mya ,._ mya
+,=§‘+1|:B<K’T’—1:—n6)_B<a ’t’r—né)]

(’ "‘5> ! z @1 = B H(ny) ™M — (X — ).

)‘P(s, b*—s)
ny

AI
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The expression in the last row equals b(t; n,(t —nd/(ny)))¥(z, b* — 7) again by Lemma
2.1. This yields (1.29), if the probability of BC* is determined analogously to (2.21a):
P(BC) = Y3y 41 P(F,(B) = k/n,(k—a’)/n > A)
(2.29b) = Ykewr1 X525 PEL(B) = kin, A = m/n)
= Y s Y54 b(k; n, Bb(k—m; K, a/B)
= Yk=a+1b(k; n, B)(1—B(a’; k, o/B)).
This proves Theorem 1.2.

LEMMA 2.1. For any integer Ke[x+1,2), and se[nd,K], with s < A’, K < n, and
with p(s) given by (1.12),

—no\* 1 K
(3*'-:) 7= L GEA=F )T~ kY& —5)"
A—s

n s—na ° 1 S n—s n—s—(h—s " ’
(230) =(,>( - ) p N (i >(n—y) (¥ =s—=(h-5)

_ o mf S=nON(n(y+8)—s\" K 3 K
_(s)( n‘y > n'}’ > hgob(h sn S,p(S))(l AI_S>

= b(s;n,s—na)‘P(s,K—s)
hy

where for y=0,1,---,n—s ¥(s,x): = Y%_ob(h;n—s,p(s))(1 —h/(A' —s5)). Using
(1.13e), ¥ can be brought into the form (1.30).
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