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ESTIMATION OF THE LAST MEAN OF A MONOTONE SEQUENCE

By ARTHUR COHEN! AND HAROLD B. SACKROWITZ?

Rutgers University

1. Introduction and summary. The problem of estimating the larger of two
translation parameters, when it is not known which population has the larger
parameter, was studied by Blumenthal and Cohen (1968a). Blumenthal and Cohen
(1968b) have also investigated various estimators for the larger of two means of
two independent normal populations. Problems of estimating the largest of a set
of ordered parameters, when it is known which populations correspond to each
ordered parameter, have been studied in the discrete case by Sackrowitz (1969).
Some questions for the continuous case where one does not know which popu-
lations correspond to each ordered parameter have been studied by Dudewicz
(1969). In this paper we study various problems of estimating the largest of a set
of ordered parameters, when it is known which populations correspond to each
ordered parameter. The observed random variables are either normally distributed
or are continuous and characterized by a translation parameter. The main portion
of the study is devoted to estimating the larger of two normal means when we
know which population has the larger mean. Note that in one result below, an
example of an estimator which is admissible with respect to a convex loss function,
but which is not generalized Bayes is given. We proceed to state the models and
list the results.

Let X,, i = 1, 2, be independent normal random variables with means 6;, and
known variances. Without loss of generality we let the variance of X, be 7 and the
variance of X, be 1. Assume 0, = 6,, and consider the problem of estimating 6,
with respect to a squared error loss function. Let 6(X,) be any estimator based on
X, alone. Consider only those 8(X,) which are admissible for estimating 6, when
X, is not observed. The following results are obtained.

(1) If the risk of 8(X,) is bounded, then §(X,) is inadmissible. This result can be
generalized in a few directions. In fact if ; are translation parameters of identical
symmetric densities, then for any nonnegative strictly convex loss function W (),
with a minimum at 0, X, is an inadmissible estimator. Suitable generalizations for
arbitrary sample sizes are given. Another generalization is that if C is any positive
constant, then X, + C is inadmissible as a confidence interval of 0,.

(2) Let U, be the positive solution to the equation @*+(r+1)a—1 =0. The
quantity U, will be such that, 0 £ U, < 1. Then the estimators aX,,for0 < a < U,
are admissible.

It will be shown that no §(X,), such that §(X,) is unbounded below, can be
generalized Bayes. Thus this result provides an example of an estimator which is
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not generalized Bayes, but which is admissible for the squared error loss function.
The results above are also true for estimating the largest of k ordered means with
known order, in the case of equal variances. It is interesting that for some a > 0,
aX, is admissible, regardless of the size of k. The proof of admissibility of aX. , uses
the methods of Blyth (1951) and Farrel' (1968).

(3) Consider the analogue of the Pitman estimator. That is, the estimator which
is generalized Bayes with respect to the uniform prior on the space 6, > 0,. We
prove that this estimator is admissible and minimax.

In the next section the inadmissibility of 6(X,), given that the risk of 8(X,) is
bounded, is proved. In Section 3 we prove aX, admissible for 0 < a < U,. We also
extend the result here to the case of estimating the largest of k ordered means with
known order, in the case of equal variances. In Section 4 we show that if 6(X,) is
unbounded below then it cannot be generalized Bayes. Generalizations to the
symmetric translation case and arbitrary but equal sample sizes are given in
Section 5. The confidence interval result is in Section 6 and the final results on the
admissible and minimax property of the analogue to the Pitman estimator are
given in Section 7.

Throughout, the letters C, K, and M with or without subscripts are used to
denote positive constants, not necessarily the same in all cases. Also the symbols
¢ and @ are used to denote the probability density function and cumulative distri-
bution function respectively, of the standard normal.

2. Inadmissibility of 6(X,) when its risk is bounded. Let X;, i = 1, 2, be indepen-
dent normal random variables with means 0, and known variances. Without loss of
generality let the variance of X, be 7 and the variance of X, be 1. Assume 6, < 0,.
The problem is to estimate 6, when the loss function is squared error. Let 6(X,)
be an estimator such that §(X,) is admissible for estimating 6, when X, is not
observed. We will prove that if the risk, p(6(X,); 0,), is bounded then it is in-
admissible. We start by stating a lemma due to L. Brown.

LemMA 2.1. Let 6(X,) be admissible for 0, when X, is not observed. Write
0(X3) = X, +a(X,). Then p(8(X,); 0,) is bounded if and only if a(X,) is bounded.

Proor. See Brown (1970), Theorem 3.3.1.
Next we prove

LeMMA 2.2. Let X, X, be independent normal variables with means 0,, 0, and
variances t and one respectively. Let 0, < 0, and0 < © < 1. If 8(X,) is an inadmissible
estimator for 0, when t = 1, then it remains inadmissible when t < 1.

Proor. By hypothesis there exists an estimator A(X,, X. ») such that
(2'1) p(h(XbXZ)s 01’ 02a 1, 1) g P(‘S(Xz)§ 019 029 1, 1)’

for every (6,, 0,) with strict inequality for at least one (6, 0,). (The last two
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components in p(-; 0y, 0,,, ) represent the variances of X;, X, respectively.)
Now let Y be a normal random variable with mean zero, variance 1—1, and

p(h(X1+7,X,);0,,0,,7,1) = p(h(X,, X,);0,,0,,1,1)
(2:2) < p(6(X,);0,,0,,1,1)
= p(6(X);0,,0,,7,1).

In (2.2) the next to last step follows from (2.1), while the last step follows since the
risk of 6(X,) does not depend on the distribution of X,. Finally if we let

h*(X 1, X5) = [2 WX 1 +y, X,)(1 /(A= De(y/(1—7)P) dy,
it is well known that
(2.3) p(h*(X1,X,);01,0,5,7,1) < p(W(X,+Y,X,);0,,0,,1,1).
(See for example Ferguson (1967), Section 2.8.) Thus from (2.2) and (2.3) and the
strict inequality in (2.1) we find that A* is better than 6(X,), when the variance of

X, is 7. This completes the proof of the lemma.
Now we are ready to prove

THEOREM 2.1. Let 8(X,) be admissible for 6, when X, is not observed. Write
0(X;) = X, +o(X5). If (X5) is bounded above, then 6(X,) is inadmissible.

Proor. By virtue of Lemma 2.2 it suffices to prove the theorem for all T > 1.
Hence, for the remainder of this theorem, T > 1. Let
Q4 Z,=[1/c+D]X,+[r/(z+1]X,, Z, = —[1/(z+1D)]X,+[1/z+ 1D]X,,
ny = [1/(z+1)10, +[7/(z+1)]0,, ny = —[1/(x+1)]0; +[1/(z+ 1)]6,.

It is easy to verify that (Z,, Z,) are independent, normal variables with means
(111, n2) and variances [t/(t+1), 1/(z+1)]. In terms of (Z,, Z,) the problem is to
estimate 7, +#,, where 1, 2 0. Write 8(X,) = X,+a(X,) =Z,+Z,+(Z,+Z,).
By hypothesis there is some K such that a«(Z; +Z,) < K. We claim that the esti-
mator 6%(Z,, Z,) = Z, + max(— K, Z,)+a(Z, + Z,), beats 5(X,). For note that

p(S;511,m2)—p(6* 311,12)
(2.5) =E[Z,+Z,+a—n,—n,]*— E[Z, + max (— K, Z,)+a—n, —1,]?
= E[Z,—n,]*+2En(Z, —n;)—E[max(—K, Z;)—n,]*
—2Ea[max(—K,Z,)—n,]
= E[Z,—n,]* — E[max(—K, Z,)—n,]*—2Ea[max (- K, Z,)—Z,].
Since [max (—K, Z,)—Z,] 2 0 and « £ K, it follows from (2.5) that
p(S;11,12)— p(8*311,15)
(2.6) 2 E[Z,—n,]* —E[max(—K, Z,)—n,]*> —2KE[max (- K, Z,)— Z,]
= E[Z,—(n,—K)]*—E[max(—K, Z;)—(n, -K)]?
= E[Z,+K—n,]*—E[max(0,Z, +K)—n,]*
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Now the right-hand side of (2.6) is greater than O for every n, = O since it is easily
shown that max (0, Z, + K) is a better estimator for 5, than Z,+ K, when n, = 0.
This completes the proof of the theorem.

COROLLARY 2.1. If §(X,) is admissible for 0, when X, is not observed and 6(X,)
has bounded risk, then 6(X,) is inadmissible.

Proor. This corollary is an immediate consequence of Lemma 2.1 and Theorem
2.1.

3. Admissibility of aX,. In this section we prove that a X, is admissible for all a
such that, 0 < a < U,. Here U, is the positive solution to a®>+(t+1)a—1 = 0. The
value U, satisfies 0 < U, < 1. For values of a such that, U, < a < 1, the admissibility
or inadmissibility of aX, is not yet resolved. The number U, increases monotoni-
cally as 7 increases and has limits of one and zero as 7 tends to infinity and zero
respectively.

After proving aX, is admissible (0 < a < U,), we finish the section by showing
the following: Suppose X, i=1, 2, - -+, k, are independent normal variables with
means 0;, and equal known variances. Then aX,, for all 0 <a < Uj;4-1), is
admissible for 6,, where we assume 0; <0, < --- < 6,.

We now proceed to prove aX, admissible. The method of proof is by means of
Blyth’s ratio, which is defined as follows: Let £(6) be a two-dimensional proper
prior distribution defined on the space Q= {8 =(6,,0,)|0, <0,}. For any
procedure d, let (&, 6) be its expected risk. That is, r(¢, 6) = E;p(d; 04, 0,, 7, 1).
Denote by d,, the Bayes procedure when the prior distribution is {(0). Clearly then
the Bayes risk for the prior £ is r(&, d,). If we wish to prove § is admissible, Blyth’s
method is to use the contrapositive. That is, suppose & is inadmissible and *
is better. Then Blyth’s ratio

(31) R = [r(éa 5)—7’(6, 5*)]/[7’(&, 5)_"(éa 6{)]a

must always satisfy, 0 < R < 1. If we exhibit some ¢ for which R exceeds 1 we have
a contradiction.
Now we are ready to prove

THEOREM 3.1. The estimator aX,, 0 £ a < U,, is admissible.
Proor. The case a = 0 is trivial. For 0 < a < U,, let A = (1 —a)/a. Also let
(32) d¢,(04,0,) = (K, q/2n)(c"*exp [ — (0, +n)*/26])(4* exp [ - 40,%/2])
for 0,580,,
=0 for 0,>0,,
be a sequence of proper prior densities. Here
K, . = (2m)/Ja(exp [— (0, +1)*/26])(1/c*)A* exp (—26,%(2) dO, dO,,

and so K, , is monotone decreasing in n for each fixed ¢, 1 £K, , <2, and

lim,., . K, , = 1. Now suppose 6* is a better estimator than aX,. Then by analytic
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’properties of the risk functions of aX, and 6* there exists a rectangle oo <a; <
0,<0,0<a,=<0,=<b, <,inQ, such that
(3'3) p(aX2;01a02,19 1)_p(5;01,02313 1)28,
for some ¢ > 0 and for every 6 in the rectangle. Hence for the numerator of Blyth’s
ratio we have,
(3'4) r(én,a, aXZ)_ r(én.a’ 6*) \é (8/27'() t?l :;A"% exp(_1022/2)
‘(6" *exp[—(0,+n)*/20]) db, db,
= £C, [0 %0, +m 9(1) d1
2 (Cy/a*)exp (—n?|20),
for alln > —a,.
We will demonstrate that the denominator of Blyth’s ratio goes to zero faster,

as n — o0, than the last expression on the r.h.s. of (3.4), thus giving us the desired
contradiction. If we set 4, , = J,, _, then the denominator is

n,o >

(Enas X 2) = 1(En,05 On,0)
= E[aX,—0,]*~E[é,,—0,]?
(3.5) = E[aX;—6,,]1*+2E[aX;,~ 0, ,][6,,.—0,]
= E[aX,—6,,]"+2E{E{(aX;—0,,)(5,,—0,)| X1, X,}}
= E[aXZ - 6}1,0]2’
as ,,=E{0,|X,, X,} by definition. Furthermore E[aX,—§,,]* = E[E*{0,—
aX,| Xy, X,}] so that (3.5) becomes
(3.6) 1(Cn0raX3) —1(Ch0 0n)
= [[dx, dx; {[[a (02— ax,)(1/7*) @((x; — 0,)/*) @(x, = 02) d&, L(0)]*/
Ja@((x1=0)/t)(1/7*) @(x, = 6,) d¢,, ()}
Hence we must show that the r.h.s. of (3.6) goes to zero faster than the last
expression in (3.4).
The r.h.s. of (3.6) can be written as
CKy,o | [ dxy dx; {[(A/(A+ Do+ ) o([x1 +n]/(0+ 1)) (A2, /(A+ D))
(20 %20 (02— ax,)(A+ 1(o +1)/07)* - @([0, — x2/(1+ HJ(A+ 1))
([0, +(nt—0x /(e +1)]((6 +1)/o)*) d0, d6,)T* (2 [(A+ 1) + 1))
“@([x, +n]/(0+ 1)) e(A¥x2 /(A + D2 [24 (A+ 10+ 7)/07)?
(3.7 ([0, = x,/(1+ DA+ 1D o([6, + (n—0x,) /(0 +1)]((0 +7)/07)*)
-d0,do,)}.
= CK,,, | [ dx, dx; (A(A+ 1)+ ) o([x, +n] /(6 + 7)1 o(Atx, (A + 1))
A[f 2w (6, — ax,) O(((6 +1)/01) [0, + (nt— 0x,) /(e + DDA+ 1)*
“@((A+1)2[0, = x2/(1+2)]) 6,12, D((0 +7)/o7)*
[0, +(nt—ox)/(6 +D)A+ D} o((A+ D0, —x,/(1 +2)]) dO,}.
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Note the identities
(3.8) (1/d%) [, o(z/d?) p(z —v) dz = (1/(1 +d)*) (v/(1 + d)?)
[® o ®(z/d¥) (z—v)dz = D(v/(1 +d)?).

Now for the term to be squared in the numerator on the r.h.s. of (3.7), let
t =(A+1*0,—x,/(1+2)] and then start to integrate by parts. To complete
the integration in the numerator and to integrate the denominator, let w=
[(2/(1+ D) +x,/(1 + )+ (nt—0x,)/(6+7)], and then use the identities in (3.8) to
find that (3.7) becomes

(3.9) CK,,[[dx,dx;((A(A+ 1Yo+t o([x1 +n]/(0+1)}) o(A¥x, /(2 +1)*))
“(A+ 1)) A+ +1)/[(6+1)+ (1 + oT]}
@Y (L + (e +1)/[(c+1)+ (L +Dat D[ x,/(1 + ) +(nt—ax,)/(c+1)])/
- ®((L+ A (e +1)/[(0+7)+(1 +Dat]) [x,/(1 + ) +(nt—0x,)/(6 +1)]).

Let

(3.10) kit = ((A+ Do +1)/[(c+7)+(1+ot])*

and make the change of variables ¢ =k ¥[x,/(1+A)+(nt—0x))/(c+1)], w=
x,(A/(A+ 1)), Then (3.9) becomes

CK,,, [ dt[o*(0/@()](1/(A+ 1))’ [k, (o +1) /o] [ o(w).
o([(a+ e WA+ 1))~ (t/k F) +n}) dw
(.11) = CK,, [ o*(®)/®0)](1/(A+ D)) (ki A4+ 1))(o+1)/AA+1)*(1/0)
- J o) o(((0+7)/A(A+ 1))*(1/o)[w— t(AA+ 1)k )*
+n(A(A+1))¥]) dw
= CK,,. [ di[o*()/@()](1/(A+ 1))*(k, A(A+1))*
(@ +1)/[6%(A+ D+ (e + D] o(((0 +1)/[02AA+ 1)+ +7])*
[—=tAA+ D)/k ) +n(AA+ 1))
= CK, . [ dt[o*(1)/O()](1/(A+ 1))*(k, A4+ 1))*
| ‘(0 +)/[*4A+ D+ (e +DDF ok} [ —t+n (kH)]),

where
(3.12) ky, = (e +1)+(A+Dat]/[6*MA+ D) +(a+7)].
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Now let #* < 0, be such that 2t* = ¢(#*)/®(r*). It is easy to verify that such a ¢*
exists and furthermore for every ¢ < t*, [p(#)/®(r)] < —2¢. Hence we have that
(3.11) is less than or equal to

CK, ,(1/(A+D){[Z  —2ky(k2)*10(2) @(k, [ —t+n(k)*]) dt
+ LA 2 ky(k2)t 02(1) @(k [ — t+n(k,)*]) dt}
< CK,  (1/(A+ D)2 {e~mhikal2C+ka) (0~ ok (kY t((1+ k,)?
[t=n(k)¥ko /(1 +ky)]) i+ e ™%/ QI 1(1)] 2 ky (k)
(2 + ko)t —n(k ) ¥k, /(2 + k)] dt)
(3.13) = CK, (1/(A+1))* (e k20 0k (k)41 + ky)F]
- JIRRORIUHRD% _ o2 )1+ ka)E + (k) ko /(L + k)] 0(z) dz
+e kI CHIT @] [k, (k2)¥(2+ k)]
: j(oto*—n(kl)l/zkz/(Z +ia)(2 +ka) % ?(2) dz}

< CK (1 GA DY ki (k) H{1/(L+ kep) €742 L [1/@(£¥)(2 + k)]
. e—nzk;k2/(2 +k2)}.

From (3.4) (which is the numerator of Blyth’s ratio), (3.7) (which defines the
denominator of Blyth’s ratio), and the r.h.s. of (3.13), we recognize that the desired
contradiction is established if

(Cafo*) e 27 - [(A+ 1)*/CK, o ky1(ky)H]
“{exp (n*k1k2/2)/(1+ k;) + exp (n*k k(2 + k) [ D *) 2+ k,)*),

tends to infinity as » tends to infinity. Noting the definitions of k, and k, in (3.10)
and (3.12) respectively, and also noting that (n%k, k,/2) > 2n%k, k, 122+ k), it
follows that (3.14) tends to infinity provided

(3.15) 2kk,/2+k,) > 1/0.
Now from (3.10) and (3.12), (3.15) becomes
(3.16) 24(A+1)(o +1)/[2(6+7)+20%4(A+ 1)+ Mo+ 1)+ A4+ 1)ot] > 1/0.

(3.14)

If we multiply both sides of (3.16) by o, and rewrite, we arrive at the desired
contradiction provided

(3.17) 244+ Do+ A(A+ Dr+AA+1)1] > RAA+ Do+ AA + D+ (A+2)(o+ 7)/c].
Clearly (3.17).is true when (3.18) is true, where
(3.18) atMA+1) > (6 +1)(A+2).

From (3.18) it is clear that for any 7 > 0, there exists a A*(¢) such that for all
A > A*(0), (3.18) holds. Since a = 1/(1+ 2), the number U, is determined by letting
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o tend to infinity and solving the quadratic equation tA(A+1) = (A+2) which in
terms of a is @>+(t+1)a—1 = 0. Equivalently U, is determined from

(3.19) a*/(z+D+a—1/(z+1)=0.

From (3.19) it is clear that U, tends to 0 and 1 as 7 tends to 0 and infinity respec-
tively. Furthermore it is easy to verify that U, tends to these limits monotonically.
This completes the proof of Theorem 3.1.

Now let X;,i=1,2, -+, k be independent normal variables with means 6; and
common known variance taken, without loss of generality, to be 1. Assume
0, <0, =<-- <0, We wish to estimate 0,. We show that no matter how large k
is, there always exists a set, 0 < a < U, 0 < U < 1, such that aX, is admissible. In
order to prove this we will consider a sequence of two-dimensional prior distri-
butions on the subspace where 8, =0, =--- =6,_, = 0, and 6,. The sequence of
priors will be proportional to the sequence given in (3.2). Since these priors only
put mass on a proper subspace of Q = {(6,,0,,,0):0, <0, < <6}, we
cannot use Blyth’s ratio. However we can apply a theorem of Farrell (1968), which
is a variation of Blyth’s method that overcomes the difficulty mentioned above.
We remark that Farrell’s theorem would also serve to prove Theorem 3.1. Now we
are ready to state

THEOREM 3.2. The estimator aX,, 0 £ a < Uy;4—1), is admissible.

PRrROOF. Let 4 = (1 —a)/a, and consider the sequence of priors d&,(0, 6,) defined
in (3.2), with 6 replacing 6,, and 0, replacing 8,. Now define

(3.20) dn,(0,,0,,",0) =K e"/>°d¢0,0,) when 6, =0,=-=6,_,=0
=0 otherwise.
Let J, be Bayes with respect to n, and also let E, be the set in Q defined as follows :
Eg={0,=0,=""=06,_,=0,0,|-1<56<0,0=6, <1}.

Now we are ready to apply Farrell’s theorem (1968), page 23. To show aX,
admissible we need to show that all the properties in (vii) of Farrell’s theorem hold.
Obviously a sequence of sets {F,, n = 1} of Q, F,1Q exists. The sequences J, and
n, are defined above, as is a set E, which satisfies condition (viia). Condition (viib)
is obvious. To verify condition (viic), note that when 8, =0, =---=0,_, =0,
the joint density of X, X,, -+, X, is

(B:21) (1)) exp —(P) Li=1 (X;—0)?
= (1/2m))*2 exp — (X — 00 exp —(3) LiZ{ (X;— X)?
~exp —[(k—1)/2](X - 0)?,
where X =Y ¥! X,/(k—1). Hence 6, depends only on X, and X which are
independent normal variables with means 6, and 6 and variances 1 and 1/(k—1)

respectively. Clearly 6, = 6. Now consider the transformation Z, =X, Z,=
X;-X,i=2, -, k=1, Z, = X,. From this transformation and (3.21) it is clear
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that to compute the risks for §, and aX, we may ignore Z,, i=2, -, k—1. In
light of this fact and the definition of #,, we see that the problem reduces to veri-
fying (viic) for a two-dimensional problem in which Z, and Z, are observed. Now
we may refer to the proof of Theorem 3.1 with t = 1/(k—1), to establish (viic).
Finally note that with 7 = 1/(k—1),

6, = aX;+k Yok [ X, /(1 + )+ (nt—0X) /(e +1)]/(A+1)
(3.22) Ok (X /(1 + D))+ (nt—0X)/(0+17)])
= aX,+ [k} A+ D]k X /(L + ) +(n1—6X)/(0+17)]),
where w(z) = ¢(z)/®(z). Hence the risk of §, is
(3.23) E(aX,—0,)*
+2E(aX,—0)[k Y/ (A+ D] vk X /(1L +4) +(nt—0X) /(6 +7)])
+E[ky/(A+ D]k X /(1L +A) +(nt—06X)/(6 +7)]).

If we apply the Schwarz inequality to the cross product term in the r.h.s. of (3.23),
we see that (viid) will be verified if we can show that for each parameter point in Q,

(3.29) lim, o, Ev*(k ¥ [x,/(1+ A)+(nt—06X)/(c +7)]) = 0.

Now ¥(z) is positive, monotone decreasing, and v(z) < C, |z|+C,. See Katz
(1961). Therefore for every fixed (X,, X), v in (3.24) decreases as n increases. Hence

Vi(k ¥ [x,/(1+ ) +(nt—06X)/(c+7)])
(3.25) < Vi x/(1+ D)+ (t—0X)/(0+7)])
< {C[x/A+ D+ —0X)/(c+7)|]+C,}

Since the last term in (3.25) is integrable we may apply the dominated convergence
theorem to establish (3.24). This verifies (viid) of Farrell’s theorem and completes
the proof of Theorem 3.2.

We conclude this section with the following remarks. For the two-dimensional
problem some unresolved questions are (1) Is aX, admissible for all a such that
0 < a < 1?If this were so when X, had an arbitrary variance 7, then it would
imply that for the k-dimensional problem, there exists estimators based on X,
alone, which are unbounded below, for which no “substantial” improvement can
be made, regardless of how big k is. This follows since the k-dimensional model
with equal variances can always be reduced (as in Theorem 3.2) to a two-
dimensional model with unequal variances.

(2) Can we characterize all those §(X,) which remain admissible for the two-
dimensional problem? In light of Theorem 2.1 and Theorem 3.1, are there any
estimators 6(X,) = X, +a(X,), where a(X,) is unbounded above, that were
admissible for the problem of estimating 6, alone, but now are inadmissible ?

4. Non-generalized Bayes character of aX,. In this section the set up is as in
Sections 2 and 3. That is X}, i = 1, 2 are independent normal random variables
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with means 6; and known variances. Assume 6, < 6,, and d(X,) is an estimate of
0, which is admissible for 6, if X, is not observed. We show that when X, and X,
. are observed, if 6(X,) is unbounded below then it cannot be a generalized Bayes
estimator of 0,. We start with the definition of a generalized Bayes procedure as
given in Sacks (1963).

DEerFINITION. A decision function § is a generalized Bayes solution (GBS) with
respect to a measure ¢ on Q which gives finite measure to bounded subsets of Q if,
for almost all (x,, x,) (1 = Lebesgue measure), é selects (perhaps in a randomized
way) a decision among those #’s which minimize the (generalized) a posteriori loss

@ fo(t—0,)? 0((X, —0,)/eH)(1/7*) o(X , — 6,) dE(B)/
' Ja (X1 —0))/th)(1/7%) o(X , — 0,) dE(6).

Furthermore only &s for which (4.1) is finite for some ¢ and a.e. (x,, x,), are
considered.

The requirement that (4.1) be finite for some ¢, a.e. (x;, x,), implies that for this
problem, any GBS is the nonrandomized estimator

0d X1, X5) = In 0, o((X1—0))/t) o(X,—0,) ag(0)/
In o((X 1 —0,/7%) (X, —0,) dX(6),
where 6,(X;, X,) < o0, a.e., and also implies that the function
4.2) 9(X,,X,) = In o((X,— 01)/7%) O(X,—0,)d«(0) < o,

a.e. It is well known that g is an analytic function and that derivatives of all orders
can be computed under the integral signs. (See for example, Ferguson (1967),
Section 3.5.) Now we are ready to state

THEOREM 4.1. If 8(X,) is an estimator which is unbounded below then §(X,) cannot
be generalized Bayes.

ProOoOF. Suppose 6(X,) is a GBS for some measure ¢ and §(X,) is unbounded
below. Then

(4.3) 0(X3) = fa 0> p((X = 01)/t*) (X, —0,) d&(0)/g9(X 1, X 1),
and lim,,., _, 6(X;) = —oo. Let

4.4 01(X4,X,) = In 0; o((X,— 01)/‘5%) O(X,—0,)de0)/g(X,, X ,).

Note that 0 = 06(X,)/0X; = (1/t)dé,(X;, X,)/éX,. This implies that §,(X,, X,) is
a function of X, only. Furthermore, for any £(0) defined on Q, we must get
6(X,) = 6,(X,) for every pair (X,, X,). This fact implies that §,(X;) = — oo, since
d(X3) is unbounded below. But this contradicts the properties of g(X;, X,) and so
6(X,) cannot be generalized Bayes.

REMARK. Suppose the problem was to estimate both 0; and 0, where 0; < 6,,
and the loss was the sum of squared errors. Theorem 4.1 shows that no estimator
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(6, 6,), where ; depends on X; alone, and J, is unbounded below, can be
generalized Bayes. Hence by virtue of Sacks’ theorem, which applies to the problem
of estimating both 8, and 6,, no such (6, §,) could be admissible. Yet in Section 3,
for estimating 8, only, we have seen admissible estimators of 8, based on X, alone,
which are unbounded below.

5. Inadmissibility of X, for symmetric translation parameter case. In this section
we let X;, i = 1, 2 be independent with identical symmetric densities, each charac-
terized by a translation parameter 0,. That is, we let the density of X; be f(X;—6,)
(with respect to Lebesgue measure), with f symmetric. Assume again that 8, <6,
and we wish to estimate 6,. The loss function is any nonnegative strictly convex
function W(z, 0,) = W(|t—02|) with a minimum at zero. We prove

THEOREM 5.1. If f is such that P(X,—X, > 0) > 0 for some (0, 0,), and if there
exists some estimator of 0, with finite risk, then X, is an inadmissible estimator.

PRrOOF. Assume X, has finite risk, otherwise the hypotheses provide an immediate
proof. We will show that d*(X,, X,) = max ((X; + X,/2), X;) beats X,. To see this
we examine the difference in risks. It is

P(X2,05)—p(6*,0,) = [ fix,<xy W(X2,0)f (X, —0,)f(X,—0,)dX, dX,
_II(X2<X1) W(a*’ Oz)f(Xl _ol)f(XZ —62) Xm dXz,

as X, and 6* differ only on the set where X', < X;. Making the transformation

s.1) Z,=(X;+X,)2, Z,=(X,—X)2
and letting ‘

5.2) ny = (0, +0,)/2, n, =(0,—0,)/2
we find that

P(X 2, 0,)—p(5%,6,)
= 20 2 [W(Zy+Zosni +02) = W(Z 10 +0) 1S (22— Z =12 +7y)
fZy+Zy—ny—n,)dZ,dZ,
=2 J2R2 [W(ty + 1)) = W(t, —n2D1f (2 — 1) (12 +1,) dt, dt,.

Now consider the following sets: S; = {(t;, &,):|t;| S1my 1, S -1}, S, =
{(, 1):t, £ —mpt S =15}, and Sy = {(t,, ) : t; 2 My, 8, £ —1,}. We remark
thatn, =0as 6, <0,.
Finally, fori =1, 2, 3, let
4;= IS.I[W(IH +t2|)— W(ltl —’721)]f(t2_tl)f(t2+tl)dt2 dt,.
Clearly
(5.3) p(X3,0,)—p(6%,0,) = A+ A, +A;.
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Since |1, +1,| 2 |t —n,| for (t,, 1,)€S,, it follows from the properties of W(-)
that 4, 2 0. If we make a change of variable from ¢, to —¢, in 4;, and use the
symmetry property of f (i.e. f(v) = f(—v)) we note that

A +A4; = IIL':IIL'é [W(|t1 +t2|)_ W(|t1 _’hl)_ W(Itz _tll)
+W(|ty+nD1f @ +12) St =t dty dt,,

which is an integration over S,. ,
Let hty, t, ) = W(|ty +1,))= W (|t —ns)— W(|t,—t;])+ W (|t +n2)). On S,, if
t, > ty, then

ti+ms| = —ti—n 2 —t,+1, = |t,— 1y and
[ti+ts| = —t,—t, 2 —t+n, = |t —n,.

Hence W (|t;+n,)) 2 W(|t,—1,|) and W(|t,+1,)) = W(|t,—n,|), which implies
h(ty, t2,1,) 2 0.
Say ¢, > t,, then, on §,, the following are true.

(54 @)  h(ty,t5,m5) = W(|ta—n,|)— W(|t,—na))— W(|t,—t,))+ W(0)
S ) |t 0= —tytmy =ty —ty—ty 4y = [ty =ty |t — 1.

For any convex function W(d), if d; £d, <dy <d, and d,+d, = d,+d,, then
W(dy)+ W (d,) 2 W(d,)+ W (d;). Applying this to (5.4) we find that A(t,, 1, ) =0
on S, if t; >1,.

Hence A(t,, t,,1,) 2 0 on all of S,. Thus 4, +4,+A4; = 0 for all 6, < 0, with
strict inequality for some 6, < 0,, by the nature of the integrals, and hence by (5.3)
the proof of the theorem is complete.

REMARK 1. Theorem 5.1 would hold with suitable revisions for the case where
samples of equal size are taken from each of the two populations. The revisions
would be in accordance with the notation and transformations given in Blumenthal
and Cohen (1968a) page 504. The symmetry condition on f becomes a condition
on p(x, y) defined in that reference and discussed further on page 510.

REMARK 2. All of the results in Sections 2, 3, 4, 6, 7 generalize to the case of
arbitrary, not necessarily equal, sample sizes in each population.

6. Inadmissibility of the confidence interval X. ,+ C. In this section we return to
the model of Section 2. We say that a confidence interval I(X,, X,) for 0, is inad-
missible if there exists a confidence interval 7 *(X,, X,), whose length is less than or
equal to the length of I for all X,; and X,, and whose probability of coverage is
greater than or equal to the probability of coverage for the 7 interval for all ,, 0,).
Strict inequality for coverage probability for at least one (6,, 6,) point, or strict
inequality for length for some set of positive measure is also required.

Now we prove

THEOREM 6.1. The confidence interval 1(X,, X,) = X, + C is inadmissible.
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Proor. Consider the transformation of X’s to Z’s as given in (2.5). We claim
that the interval I1*(Z,,Z,)=1if Z, 20, (i.e. I(X}, X;)=X,+C, if X, = X,),
and I*Z,,Z,)=Z,+C if Z, <0, (i.e. (X;+7X,)/(1+7)xC if X, < X)), is
better than I. Clearly we need only show

(6.1) P{I*=6,}—P{I>0,} 2 0,

for all (6,, 0,) with strict inequality for at least one (8, 6,). In terms of Z’s and #’s
the condition (6.1) reduces to

(6.2) P{Z,—C=(n,+n) £ Z1+Clzz <0;
—P{(Z,+2,)-C=(n,+n2) £ (Z, +Zz)+clzz <0} =0.

Noting that the conditional distribution of (Z, +Z,—n, —n,) given Z, is normal
with mean (Z,—17,) and variance (z/t+ 1), we see that (6.2) is equivalent to

(63) P+ D/ (=C+n3) S ((+DHZ,—ny) < (4 DjHC+n,)
P{Z, S 0} [, P{|U| S C} oz + 1)*[Z,—1,])dZ, 2 0,

where U is normal with mean (Z,—n,) and variance (z/t+1). Now the Lh.s. of
(6.3) becomes

(6.4) {O(((r+ D/D[C+n,]) = @(((e+ D/ [~ C+n2])} O((z + 1)¥ny)
— 2 {Q(((z + D/ [C = Z, +1,]) = (2 + D)/ - C=Z, +1,])}
(e + 1) Z,—n,]) dZ,
= {O(((e+ D/ C+n D) = O((z + D)/H[ = C+ 1D} &= (z+ *np)
= JZETVER{O(((e+ D/ C -tz + 1))
—O(((z+ 1)/1:)*[— C—tj(z+1)H} (1) dt.

Using the fact that #, = 0 and using a simple property of the normal distribution
we see that the r.h.s. of (6.4) is positive for all n,. Hence (6.2) > 0, and this proves
the theorem.

REMARK. Expression (6.3), and hence the last expression in (6.4), represents the
difference in the coverage probabilities between the confidence intervals 7 and 7*.
Note that as n, — oo the r.h.s. of (6.4) tends to zero implying that the infima of the
coverage probabilities for both intervals are the same.

7. Minimax and admissible property of analogue of Pitman estimator. In this
section we consider the estimator which is generalized Bayes with respect to the
uniform prior on the space 0, = 0,. If we call this estimator J,, it is easily shown
that

(7.1) 0, = X, + (" + 1) o([x, —x, /(1 +1)H)/@([x, — x,]/(1 +7)¥).
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We prove
THEOREM 7.1. The estimator 6, is minimax.

Proor. The estimator X, is minimax. The proof of this fact would follow essen-
tially the same steps as in Blumenthal and Cohen (1968c), Theorem 3.1, page 519.
Hence to prove that J, is minimax, it suffices to show that J, is better than X,.
Therefore consider again the transformation in (2.5) to Z’s and #’s. From (7.1) we
get 8, = Z+Z,+(1/(t + 1)o((1 +1)*Z,)/®((1 +1)*Z,). Since Z, and Z, are inde-
pendent we note that §, beats X, = Z; +Z,, because Z,+(1/(z+1))o((1 +1)*Z,)/
®((1+7)%Z,) is a better estimator for #,, 7, = 0, than is Z,. This latter fact appears
in Katz (1961), page 139. Since 6, beats X, it follows that 6, is minimax and the
theorem is proved.

We conclude this section with

THEOREM 7.2. The estimator §, is admissible.

Proor. Consider the problem of estimating both 8, and 0,, where 6, < 0,, and
the loss function is the sum of squared errors. For such a problem let § = (J,, 6,)
be the generalized Bayes estimator for the uniform prior on 6, < 6,. Clearly
0, = 6,. Blumenthal and Cohen {1968c), page 528 have proven that ¢ is admissible
for (64, 0,), 0, =< 0,, when the variance of X equals the variance of X,. However
it can be shown that their proof suffices to prove 6 admissible when X, has variance
7 and X, has variance 1. Now if 6* beats 6, for 0,, then (,, 6*) would beat 6 =
(64, 6,,) for (64, 6,). But this would contradict the admissibility of 6. Hence we
conclude that 6, is admissible and the proof of the theorem is complete.
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