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ESTIMATION AND TESTING HYPOTHESES FOR ONE, TWO,
OR SEVERAL SAMPLES FROM GENERAL MULTIVARIATE
DISTRIBUTIONS

By Masao TANAKA

Nara Medical University, Japan

0. Introduction and summary. Multivariate statistical analysis has been centered
around normal theory thus far. Most papers dealing with this topic are based either
directly on the assumption of normality of underlying distributions or indirectly
on asymptotic normality of statistics induced by some limiting theorem such as the
central limit theorem when sample sizes are sufficiently large.

In many if not all fields of application, however, the assumption of normality is
not guaranteed even approximately and also the sample sizes are not so large com-
pared with the dimension of the variates in question as to provide a good approxi-
mation by normal distributions. Thus, it is required to develop a theory applicable
to general multivariate distributions and there are some papers in literature
approaching this problem from the standpoint of a distance: [1], [4], [10] and [11]
among others.

The purpose of this paper is to formulate statistical inference, point and interval
estimation as well as testing hypotheses, in terms of a distance or a pseudo distance
defined in the family of all probability distributions over a multidimensional
Euclidean space. Three specific cases, one of which does not actually give a pseudo
distance but which may be useful in some situations, are discussed.

The paper consists of four sections; in Section 1 we treat inference with a random
sample from one distribution; in Section 2 and Section 3 we treat inference with
independent random samples from two and several distributions, respectively, and
in the Appendix we present some mathematical results which are used in the
preceding sections as tools more practical than [3], [5] and [9] and which may be
interesting in themselves.

1. One sample case.

DEerINITION 1.1. A function p of two elements of a space S is called a pseudo
distance if
(1.1 p(P,R) = p(P,0)+p(Q, R) forany P,Q,ReS.
Let Q be the s-dimensional Euclidean space and S the set of all possible distribution
functions over Q with a pseudo distance p. Let F*(x) be the empirical distribution
function of a random sample of size » from a distribution function F,(x) defined
over Q and Fy,(x) be a given distribution function.

LEMMA 1.2. _
(1.2) —p(F,, F*) £ p(Fo, F)— p(Fo, F*) £ p(F*, F),
—p(F*,F,) é p(Fn FO)_p(F*9 FO) é p(Ft’F*)-
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AssuMPTION 1.3. Let fi(») =f,(») (i=1,2) be real continuous decreasing
functions satisfying the following inequalities
(1.3) P[p(F*,F)z y]</fi(y)  forany F,eS,
P[p(F,F*)Z y]</f,(y)  forany F,es,

for any y > 0.
Such functions f; and f, will be called (a pair of) majorants with respect to the
pseudo distance p.

THEOREM 1.4.

(i) If lim,,, . f;.(e) =0 for any € > 0 (i = 1,2), then p(F,, F*) and p(F*, F,) are
consistent estimates of p(Fy, F,) and p(F,, F,) respectively.

(ii) A joint confidence interval of p(Fy, F,) and p(F,, F,) with at least 100(1 —a) %
confidence coefficient, where o = o, +a,, is given by

(1.4) [o(Fo, F*)—f2™ (), p(F o, F*)+£, ™ (21)],
[p(F*, Fo)—fi (@), p(F*, Fo) +f> ™ '(a2)].
Proor. By Lemma 1.2 and Assumption 1.3, we have
(1.5) P[IP(FO’Fz)—P(Fo,F*)I <e and |P(F1,Fo)—P(F*,F0)| <e]
2 P[p(F*,F)) <& and p(F,, F*) <] 2 1—f,(e)=f2(8),
which implies part (i). Next, we obtain
(1.6) P[—f,7 Y (2) < p(Fo, F)— p(Fo, F*) < f; (1)
and  —f,™!(0) < p(F,, Fo)—p(F*, Fo) < f,71(22)]
2 P[p(F*,F) <f1"'(ay) and p(F,, F*) < f,7 ()]
z2l—a;—a,=1-aq,
which implies (ii).
THEOREM 1.5. For the testing problem
(1.7) H:p(Fo, F,) < po, A:p(Fo, F) > po
with a fixed constant p,, the test procedure given by
(1.8) When p(Fo,F*) < po+f,~ (@), we make no decision,
When p(Fo, F*) = po+f," (), we reject H,
has level not greater than « and power not less than 1—f,(y) for F, such that

p(Fo, F) = po+f>~ (@) +y with y > 0.

! Our test procedure is different from the standard notion in that it never accepts the null
hypothesis, but this formulation seems more realistic to the present author.



GENERAL MULTIVARIATE DISTRIBUTIONS 2001

Similarly, for the testing problem

(1.9 H: p(Fy, Fo) < pos A: p(Fy, Fo) > po,
the procedure:
(1.10) When p(F*,F,) < po+fi~ '(«), we make no decision,

When p(F*,Fo) = po+fi~'(2), we reject H,
has level not greater than o and power not less than 1—f,(y) when p(F,, F,) =
Po+fi7 (W) +y.
ProoF. The level of the test is given by
P[p(Fo, F*) 2 Po+f2_1(°‘)lH]
(1.11) < P[p(Fo, F*)=p(Fo, F)) Z f27 (9]
S Plp(F, F) 2,7 (@] S

in view of (1.2) and (1.3).
When p(F,, F,) = po+/f>~ '(¢)+y, the power of the test is

(1.12) P[p(Fo, F*) 2 po+£2~'(@)]
= P[p(Fo,F))—p(Fo,F*) £ y]
2 P[p(F*,F) £ y] 2 1-£1(»),
which proves the former half of the theorem. The latter half can be proved similarly.

DEerINITION 1.6. If a pseudo distance p is symmetric i.e. p(F,,F,) = p(F,, Fy),
then it is called a distance and denoted by d.

LemMA 1.7.

(1.13) |d(Fo, F)—d(Fo, F*)| £ d(F,, F*).

AssuMPTION 1.8. Let f(y) =f,(») be a real continuous decreasing function
satisfying _
(1.19) P[A(F*,F)2 y] < f(») for any F,eS and any y > 0.
Such a function f will be called # majorant with respect to d.

The following two theorems follow from this Assumption similarly as Theorem
1.4 and Theorem 1.5 followed from Assumption 1.3.

THEOREM 1.9.

() If lim,_ f,(¢) =0 for any ¢ >0, then d(Fy, F*) is a consistent estimate of
d(F,, F,).

(ii) A confidence interval of d(F,, F,) with at least 100(1 —a) %, confidence coefficient
is given by

(L.15) [d(Fo, F*)—f~!(@),d(Fo, F*)+f ™' (@)]-
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THEOREM 1.10. For the testing problem
(1.16) H: d(Fy, F) £ dy, A: d(Fy,F,) > dy,
with a fixed constant d,, the test procedure:
(1.17) When d(Fo, F*) <do+f~'(«), we make no decision.
When d(Fo,F*)=do+f""(«), we reject H,

has level not greater than o« and power not less than 1—f(y) for Fy such that
d(F,, Fo) = do+f~'(0)+y.

Now we shall introduce two examples of pseudo distance and another specific
pseudo-distance-like quantity, for which more extensive results than in general
formulation can be obtained.

CasE 1.
(1.18) px(F1, F2) = Ja(F1(x) = F;(x)) dK(x)
and
(1.19) d(F1,Fy) = |q |F1(x)—F2(x)| dK(x),

where K is a probability distribution over Q, i.e. [odK(x) = 1. Then, we have the
following theorem which can be proved by Theorem A.4.

THEOREM 1.11. Define
(1.20) [i) =f(p) = e (y >0),
(1.21) fyy=2e""" (y>0).

Then, for any probability distribution K over Q, f, and f, are majorants with respect to
px defined by (1.18), while f is a majorant with respect to dy defined by (1.19).

CasE 2. For the pseudo distance and the distance defined by

(1.22) p(Fy, F,) = supg px(Fy, F;) = sup (F(x)—F 2(X),
X

- (1.23) d(Fy, F,) = supg dg(F,, F,) = sup |F1(x)—F2(x)|,
X

we obtain the following two theorems, of which the former is obtained from
Corollary A.7.

THEOREM 1.12. If F, is a discrete probability distribution over Q, and if

(1.24) L) =fy) = e,
where y is the function of z satisfying y = z+log(t—1)/4nz,

(1.25) fy)=e 7,
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where y is the function of z satisfying y = z+log2(t—1)/4nz, t = [Ti=1 s t; is the
number of mass points of the component x; with respect to F,, then f, and f, are
majorants with respect to p defined by (1.22) while f is a majorant with respect to the
distance d defined by (1.23).

THEOREM 1.13. For the testing problem

(126) H: p(FO’Ft)épO’ A:p(FOaFt)>p0
with p defined in (1.22) and a fixed constant p,,, the test procedure:
1.27) When p(Fo,F*) < po+f,~'(«), we make no decision,

When p(Fo,F*) = po+f,~ (), we reject H,

has level not greater than o and power not less than 1 —exp(—2ny*) when
p(Fo, F,) = po+fo~'(a)+y. For the dual test problem with F, and F, interchanged, a
similar result obtains. For the problem

(1.28) H:d(Fo,F)<do, A:d(Fo,F)>d,
with d defined in (1.23), the procedure:
(1.29) When d(F*,Fy) <do+f~'(o), we make no decision,

When d(F*,Fy)=dy+f"'(a), we reject H,
has level not greater than o and power not less than 1—exp(—2ny?), when
d(F,, Fo) = do+f (o) +y.

Proor. The level of the test is given by the same method as (1.11). From (1.22)
it follows that there exists a sequence of points {x,} such that p(F,, F,) =
lim,,, o, [Fo(X,,) — F«(X,,)]. Let K, denote the distribution concentrated on the single
point x,,. Then p(F,, F,) = lim,,_, , px,(Fo, F;), which implies by the triangular
inequality that

(1.30) o(Fo, F)— p(Fo, F*) < liminf, .., px (F*, F)).
When p(Fo, F,) = po+/>~ '(¢) +y, we have
P[p(Fo, F*) Z po+12"'(®)]
(1.31) = P[p(Fo,F)—p(Fo,F*) £ y]
> P[liminf,_, , px, (F* F) < y] = 1—e™ 2™

because of Theorem A.S.
Next, from (1.22) and (1.23) it follows that d(Fy, F,) = p(Fo, F,) or d(Fy, F,) =
p(F,, F,). These two cases can be treated similarly. If the former relation holds and

if d(F,, F,) = dy+f~*(«) +y, then
P[d(F*,Fo) Z do+f ™ '(®)]
(1.32) = P[p(Fo, F*) 2 do+f"'(2) or p(F*,Fo)Z do+f™"(®)]
Z P[p(F,, F¥)2do+f™ (@]
which is bounded by 1—exp(—2ny?) from below similarly as in (1.31).
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CaSE 3. We introduce

(1.33) pi(F 1, F2) = log[[4 Jaexp {ra(F,(x)— F,(x))} dK(x) dL(a)] ™'

where r > 0 and K and L are probability distributions over Qand 4 = {a|a = +1}
respectively. '

This p, is not actually a pseudo distance but has similar properties as a pseudo
distance, (1.37) below. If Lebesgue measure over Q is absolutely continuous with
respect to K, then p, is a generalization of p and d defined in (1.22), (1.23). In fact,

(134) poo(FlaFZ) = sup (Fl(x)_FZ(x))9 if j‘a=l dL(a) = 1’
X

(1.35) Pu(F1, F3) =sup(Fy(x)=Fy(x)),  if J,=_ydL(a)=1,
X

(136) poo(FlaFZ) = SUplFl(X)—Fz(X)l,
X

if f,=ydL(@)>0 and [,-_,dL(a)>0.
Now, from Holder’s inequality, we have

(1.37) Pr(Fo, F*)—poo(Fo, F)) < p,(F,, F¥),

Pr;2(Fo, F)—p,(Fo, F*) < p,(F*, F)).
For any positive ¢, there exists a real number R = R(F,, F,, K, L, €) such that
(1.38) —p(F*,F)—¢e < p(Fo,F*)—p,(F,,F,) forany r>R.
In the sequel throughout Section 1, put
(1.39) f(y) = exp(=2ny?).

For the function p, we have the following three theorems, of which the first is the
same as Theorem A.6.

THEOREM 1.14. For any y > 0, any F,e S and any probability distributions K and L,
it holds that

(1.40) Plpan(F*,F) 2 Y1 = f(y),
P[p4ny(Ft’F*) g )’] éf(y)

THEOREM 1.15.

(i) If'y is a function of n such that ny - o0, and y - 0 as n — oo, then p,,(Fo, F*)
is a consistent estimate of p . (Fy, F,).

(ii) For y = f~Y(), the interval (1.41)

(141) (p4ny(F0’ F*) '—f_l(a)a OO)

is a confidence interval of p.,(Fo, F,) with at least 100(1 —a) % confidence coefficient.
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- PROOF. From the first equation of (1.37) together with (1.38) it follows that for
4ny > R,
P[|pany(Fo, F*) = poo(Fo, Fy)| < 2]
(1.42) 2 P[p4n(F,,F*) <& and p,,(F* F,) <¢€]
2 1-2exp{—4ny(e—y/2)}

in view of Lemma A.3. This proves part (i), since ny — co and y —» 0 as n — 0.
Part (ii) holds true, since the first equation of (1.37) implies

(1.43) P{peo(Fos Fy) > pany(Fo, F*)—f ()]
g P[p4ny(Ft’F*) <.f_l(a)] g 1-a.

THEOREM 1.16. For the problem

(1.44) CH:po(Fo,F) S po,  A: po(Fo, Fy) > po,
the procedure:
(1.45) When  pan,o(Fo, F*) < po+f~ (), we make no decision.

When  pany(Fo, F*) 2 po+f~'(«), we reject H,

where yo = f “Y(a), has level not greater than o« and power not less than
) 1 _exp(_znyz)’ When p2nyo(FO’ Ft) = Po +f- l(a)'}'y With y g Yo-

Proor. The level of the test is given by
P[panys(Fo, F*) 2 po+f 1 (2)]
(1.46) S P[pany(Fo, F*)—po(Fo, F) 2 f ()]
< P{PamoFu F*) 2 f (@] S o
When p,,,,(Fo, Fy) = po+f~ () +y, (¥ = y,) the power of the test is
PLPany(Fos F*) Z po+f~1(@)]
(1.47) = P[PZnyo(FOa Fr)_p4nyo(F0’ F*) <vy]
2 P[panyo(F*, F) £ y] Z P[pany(F*, F) S y] 21—,
REMARK 1.17. The fact that
(1.48) lim, ., , p,(F*, F,) = sup, |[F*(x)— F(x)|

together with the following table which was prepared from Massey’s table [6]
suggests that the inequality

(1.49) Pllog[f, faexp {4n*da(F*(x)— F(x))} dK(x) dL(a)]*/*"%* < A/5*]
21—

which is equivalent to the first equation of (1.40) provides actually a fairly good
approximation.
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TABLE 1
A 9 1.0 1.2 1.4
P[sup |F*(x)— F(x)| = A/n*},n=30 .65 .76 .90 96
limy » Plsupy |F*(x)— F(x)| < A/n*] 607 .730 .888 .960
1—exp(—242) .80210 .86466 94387 .98016

2. Two sample case.

DEFRINITION 2.1. Let S be the set of all possible F,
FY(x)
(2.1 F(x) = [ F(z)(x):l >

where FU(x) (j = 1,2) denote probability distributions over Q. We assume that a
pseudo distance p is defined in the space S. We define

2.2) S, = {F(x) = [f: Z:g;] FO = Fm}
and

(2.3) p(F, So) = infg, 5, (F, Fy),

(2.4) p(So, F) = infg, .5, p(F1. F).

Let

25) Fi(x) = [2:;8;] F*(x) = [i EZEB]

where FU'(x) (j=1,2) be the empirical distribution function of independent
samples of size n; from F,¥)(x) and n, +n, = n. Then we have

LEMMA 2.2.
(2.6) —p(F,,F*) < p(S,.F)—p(So, F*) < p(F*,F),
_p(F*9 Ft) < p(F,, SO)_P(F*, SO) = p(Fb F*)'

AsSUMPTION 2.3. There exist majorants f; and f, with respect to the pseudo
distance p which satisfy

2.7 P[p(F*,F) 2 y] £ f1(») for any F,eS,
P[p(F..F*) = y] = f,(y) for any F,eS.

THEOREM 2.4.
() If lim,_,  f;x(e) = O for any e >0 (i = 1,2), then p(So,F*) and p(F*, So) are
consistent estimates of p(S,,F,) and p(F,, S,) respectively.
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(ii) A joint confidence interval of p(S,,¥,) and p(F,, S,) with at least 100 (1 —x)%,
. confidence coefficient, where a = o, +a,, is given by

2.8) [o(80, F*)=f,™(22), p(So. F*) +£1 ™} (1)],
[p(F*, So)—f1™!(o1), p(F*, So) +£2 ™ }(22)].

THEOREM 2.5. For the problem

(2.9) H: p(F,,So) < po, A: p(F,, So) > po,
" the procedure:
(2.10) When p(F*,S,) < po+f; (), we make no decision.

When p(F*,So) = po+f,~ @), we reject H,
has level not greater than o and power not less than 1—f,(y) when p(F,, S,) =
Po+fi (@) +.

AsSUMPTION 2.6. When we speak of a distance d in the space S, we assume the
existence of a majorant which satisfies

(2.11) P[A(F*,F) 2 y] = f(») for any F,eS.
Lemma 2.7.

(2.12) |d(So, F,)—d(So, F*)| < d(F*,F,).
THEOREM 2.8.

() If lim,_, f(e) =0 for any ¢ >0, then d(Sy,F*) is a consistent estimate of
d(S 0s Ft)

(ii) A confidence interval of d(So, F,) with at least 100 (1—a)%, confidence coeffi-
_ cient is given by

(2.13) [d(So, F*)—f ™ (@), d(So, F*) +f ()]
THEOREM 2.9. For the problem
(2.14) H:d(Sy,F)<do,  A:d(Sy,F)> dy,
the procedure:
(2.15) When d(So,F*) <dy+f " (x), we make no decision.
When d(So,F*)2do+f"'(a), we reject H,

has level not greater than o and power not less than 1— f(v) when dF,, So) = dy+
@)+
Now we shall introduce three specific cases.

Caske 1. For a probability distribution K over Q,

(216)  px(F1,F;) = (ny ny/n?) [o (1, — 1)(F, —F,) dK(x)

=(n, ”2/”2)%_‘.9 {(Fl(l)_Fz(l))_(Fl(z)_Fz(Z))} dK(x)
and
(2.17) dg(F1,Fy) = (nyny/n?)? fo|(1, — 1)(F, —F,)| dK(x).



2008 MASAO TANAKA

" THEOREM 2.10. Define
(2.18) [i) =f(p) = e (v >0),
(2.19) f(y)=2e"2" (y > 0).

Then f, and f, are majorants with respect to the pseudo distance py defined by (2.16)
and f is a majorant with respect to dy defined by (2.17) (cf. Theorem A.8).

CASE 2. Define a pseudo distance and a distance
p(F, F;) = supg px(F, Fy)

(2.20) = (ny nyn®)*sup {(F, V= F, V) —(F, P~ F,®)}
X

d(F;,F,) = supgdy(F,,F,)
=(n, "2/”2)%5‘19](Fl(l)_Fz(l))—(Fl(l)_Fz(z))i-

X
THEOREM 2.11. Define
. o2 log(t—1
(2.21) i) =f(p) = e, where y =z+ gi =
nz
2 log2(t—1)
(2.22) fO) =e"2"" wherey= z+&g—(——~)
4nz

t =ttt and t, is the number of mass points of x; with respect to F ) and F,®,
then f| and f, are majorants with respect to p defined by (2.20) while f is a majorant
with respect to the distance d defined by (2.20) (cf. Corollary A.11).

THEOREM 2.12. For the problem
(2.23) H: p(F,,So) < po,  A: p(F,,So) > po,
the procedure:
(2.24) When p(F*,Sy) < po+f1~ (), we make no decision.
When p(F* So) 2 po+f1~(®), we reject H,

has level not greater than o and power not less than 1—exp(—2ny?) when
p(F,,So) = po+ /i~ (&) +y. For the problem

.25) H:d(So,F)<dy,  A:d(Se F,) > do,

the procedure:

(2.26) When d(F*, S,) <do+f'(®), we make no decision.
When d(F*,So) = do+f, " '(a), we reject H,

has level not greater than o and power not less than 1—exp(—2ny?), when
d(F,,So) = do+f " (a)+y.
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4CASE 3. We introduce

227)  pAFy,F,) = log[[4faexp{ra(l, —1)(F, —F,)} dK(x) dL(a)]'"

where r > 0 and K and L are probability distributions over Q and 4 = {aja=
+(ny ny/n*)t} respectively. If Lebesgue measure is absolutely continuous with
respect to K,

(228) poo(Fh F2) = sup (nl "2/"2)’}(1, - 1)(Fl _F2)’ if ja=(n1n2/"2)'/z dL(a) =1,
X

(2.29) po(Fy1, F2) = sup (n; no/n)*|(1, = )(F, —F,)],
X

if ja=(n1nz/n2)‘/z dL (a) >0 and _‘.a= —(nn2/nd) % dL (tl) > 0.
Now, from Holder’s inequality

(230) Pr(so,F*)—Pm(So’Fr) é pr(FnF*)’
pr/Z(SO9 Ft) _pr(’SO’ F*) é pr(F*: Ft)

For any ¢, there exists a real number R = R(F,, K, L, ¢) such that

(231) _pr(F*9Ft)_8 é pr(SO: F*)_pco(SO9 Ft)
In the sequel in Section 2, put
(2.32) f(») = exp(=2ny?).

THEOREM 2.13. For any y > 0, and F,€ S and any probability distributions K and L, ,
it holds that

(233) P[p4ny(F*’Fr) g y] éf(y)a
P[p4ny(Ft7F*) g y] éf(y)

Proof follows from Theorem A.10.

THEOREM 2.14.

(i) If'y is a function of n such that ny — oo and y — 0 as n —» o, then p,, (Sy, F*)
is a consistent estimate of p (So, F,).

(ii) For y = f~Y(a), the interval (2.42) below is a confidence interval of p . (S,,F,)
with at least 100 (1 —o) %, confidence coefficient.

(2.34) (Pany(So, F*)—f " (), 0).
THEOREM 2.15. For the problem
(235) H: poo(SO9 Ft) é Pos A: poo(S09 Ft) > Po
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the procedure:

(2.36) When  pan(So.F*) < po+f~"(), we make no decision.
When  pan,(So,F*) Z po+f~'(w), we reject H,

where yo =f"(a), has level not greater than « and power not less than
1—exp (=2nv?), when p,y(So. F)) = po+f (@) +y (y Z yo).

REMARK 2.16. The fact that lim,, ,, p,(F*, F,) = sup (n, n,/n*)*|(1, = 1)(F*—F))|
together with the following table which was prepared from Massey’s table [7]
suggest that the inequality

(2.37) Pllog[ffaexp {4ny a(F®" —~F®")} dK(x)dL(a)]"/*"
S (nyny/n?)ty]lz1—e™ 2™’ where n =2m

which is equivalent to (2.29) provides actually a fairly good approximation.

TABLE 2
m y Plsup; |[Fi*(x)—FR*) S yl,m=np=m  1—exp{—2my?}
5 4/5 992063 .959238
10 6/10 987659 972676
15 7/15 973752 961841
20 8/20 966458 959238
30 9/30 929113 932794
40 10/40 .90293 917915
3. Several sample case.
DerINITION 3.1. Put
F“)(X)
3.1) F(x) = | FP(x)
FO(x)

where FU(x) (j = 1,2 k) are probability distributions over Q and denote by S
the set of all possible F. Assume that a pseudo distance p is defined in the space S.
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Define
O] 1
3.2 So =1 F(x) = F(zf(x) FO —...—
F("i(x) '
(3) p(F, So) = infy, 5, p(F, Fy),
(34 p(So,F) = infg, .5, p(Fy, F) and

FM(x) F'(x)
Ft = s F* = ’
F®(x) F®(x)
where FO* (j=1,2,---,k) are empirical distribution functions of independent

random samples of size n; from F,¥.
Then we have

LemMa 3.2.
3.5 —p(F,F*) £ p(So,F)— p(So, F*) < p(F*,F,),
—p(F*,F)) < p(F,, So)— p(F*,S,) < p(F,F*).

All results in Section 2 from Assumption 2.3 to Theorem 2.9 remain true in the
present situation, which are omitted here but will be referred to as Assumption 3.3
to Theorem 3.9; while three specific cases can be described as follows.

CASE 1.
(3.6) prx(F,Fp) = IA In a'(F, —F,)dK(x)dL(a),
dix(F1, Fy) = [4 [ |a'(F, —F,)| dK(x) dL(a),

where K and L are probability distributions over Q and A respectively and A is the
set of all points (a,," -, a,) which satisfy

i-1a;=0, Y b?=1,  a;=(n/n)tb,, j=1,k
THEOREM 3.10. Define
) [0 =£0)=e,  f(y)=2e7"

Then f, and f, are majorants with respect to p,x and f is a majorant with respect to
d; g (cf. Theorem A.12).

CasE 2. Define

(3.3) d(Fy,F,) = sup sup a'(F,;—F,),
X a€A
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which implies by Theorem A.16

(3.9) d(F,, So) = sup {3 5= 1 (n;/n)(F, V' = F,0)?},
X
d(E*, So) = sup {} - (n;/n)(FO"—F")?},
X
where FO=%%_1(n/m)FY and FO" =Y%_ (n;/n)F9>.

TueoReM 3.11. If F (j=1,2,---,k) are discrete probability distributions,
t=t, -t and t, is the number of mass points of x; with respect to F V), -+, F®, then

(3.10) P [Sup{ ‘Z (n;/W)[(FY" - F,9)—(F ""—F,"’)]z}&
x W=t
> (k_l)%{“_logZ(t—1)(k—1)}] <o
4nz

(cf. Corollary A.15.)

THEOREM 3.12. For the problem

(3.11) H:d(F,,So)<d,,  A:d(F,,So) > do,
the procedure:
(3.12) When d(F* So) <do+f~'(a), we make no decision.

When d(F*,So) = do+f"1(2), we reject H,

has level not greater than o and power not less than 1—exp(—2ny?) when
d(So, F) = do+f (@) +.

CasE 3. We introduce
(3.13) p(F1,F,) =log[|,[aexp {ra'(F,—F,)} dK dL]'".

If Lebesgue measure is absolutely continuous with respect to K and L(U) > 0 for
any neighborhood U of the point a, then we have

(3.14) Pu(F1,F;) = sup sup a'(F,—F,), and
x aed
(3.15) peo(Sos F) = sup {T s, (n,/m)(FP— FOP}.
X

Next, we obtain
(3-16) pr(SO, F*)_pw(S09 Ft) é pr(FuF*)a
pr/2(S09 Ft) - pr(SO, F*) é pr(F*, Ft)-
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Therefore, for any positive ¢, there exists R = R(F,, K, L, ¢) such that
(3.17) —p(F*F)—e < p(So, F*)—po(So,F;)  forany r>R.

THEOREM 3.13. For any y > 0, any F,€ S and any probabilily distributions K and
L, it holds that

(3.18) Plp,.(F*,F) 2 y] (),
PlpanF, F*) 2 y] S f ().

(Cf. Theorem A.14.) Theorem 2.14 and Theorem 2.15 can be easily generalized to
the present situation.
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APPENDIX

LeEMMA A.l. Define ¢(o) by
(A1) o() = (1/a) log((e*—1)/a) forany a>0,
then 0 < (o) <1 and @(&) is an increasing function.

Proor. First, it holds that
(A.2) O<gp@)<lel<(®*—Da<e*a<e’—1 <ae”

We can easily obtain the last inequalities, so that we have 0 < ¢(«) < 1. Next, the
derivative of ¢(a) is written as

(A.3) @'(0) = (1/a?) g(a) where

(A4 g(a) = —ap(a)+exp (e —oap(a))—1.
Now, it holds that

(A.5) lim, og(x) =0 and
(A.6) g'(@) = (1/(e*— 1)) h(a) where
A.D h(a) = (e*—1)*>—a? e

Since we have lim,_,, #(«) = 0 and
(A.8) h(x) =2ee*—(1+a+a?/2)} >0,

it follows that A(x) > 0 for any o > 0, which implies g’(«) > 0 in view of (A.6).
This and (A.5) yields g(«) > 0, which implies in turn ¢’(x) > 0 because of (A.3),
thus completing the proof.
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LemMMa A.2.
(A9) a?/8 = —1+a/(e*—1)+log((e*—1)/a) forany a#0.
Proor. First, for a > 0, put
(A.10) f(@) = a?/8+1—aj(e*—1)—log ((e*— 1)/a).
Then, we have lim,_,, f(«) = 0 and
(A11) f'(@) =a/4+{("—1—ae)/(e*~ )}{1/a—1/(e*— 1)}
= o/d—ap(@[1— p(o)] exp {x0() P(ap(®)
+ao[1-p(@)]p@[1—e(@)])—ap()}
using ¢(«) defined by (A.1). Since, by Lemma A.1,

(A.12) ee[1-p@] < o(®),  @(ae®) < o),
we have
(A.13) '@ 2 44— ap@[1- ()] 2 0,

which implies f(«) > 0 for any « > 0.
Next, for the case « = —f < 0, put

(A14)  g(B) =f(—B)=B*[8+1—exp {B[1-o(B)]} +B[1 - 0(B)].

Since lim,_, ¢ g(f) = 0 and

(A.15) 9'(B) = B/4+[1—o(B)—Bo'(B)]{1—exp [B(1 —p(B))]}
= B{1/4—[1-o(B)— Bo'(B)ILo(B) + Bo'(B)]} 2 O,

we have g(B) = 0 for g > 0, which completes the proof.

Let Q be the s-dimensional Euclidean space and in the sequel until Theorem
A.16 (inclusive) let F*(x) be the empirical distribution function of a random sample
of size n from F,(x).

LemMa A.3.
(A.16) E[exp {na(F*(x)— F(x))}] < exp(na?/8) forany xeQ
and o > 0.

PRrOOF. It is easily seen that the first member of the inequality (A.16) can be
written as

(A.17) E = {F(x)e*+(1—F(x))}" exp { — naF,(x)}.
This is a function of F,(x) and takes the maximum value at the point

(A.18) F, = (1)a)—1/(¢*—1).
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Substituting this into the right-hand side of (A.17) yields
(A.19) E < exp[n{—1+a?/(e*—1)+log((e*—1)/a)}] < exp (na?/8).

by Lemma A.2.

The following theorem is a generalization of Okamoto’s Theorem 1 [8] because
the latter deals with a single binomial variate, while the former a linear combination
of such variates.

THEOREM A.4. We have

(A-20) P[fo(F*®)~F(x))dK(x) 2 y] < e™*"",
(A21) P[fo(F(x)~ F*(x))dK(x) Z y] < €7,
(A.22) P[fo|F*(x)~F(x)|dK(x) 2 y] £ 2¢7*"",

for any y > 0 and any probability distribution K over Q.

Proor. We shall use Chernoff’s method [2]. For arbitrary positive 0, the first
member of (A.20) can be written as

(A.23) P = Plexp{0 Jo(F*—F,)dK} = €]
< P[faexp {6(F*— F)} dK 2 ¢”],
since the exponential function is convex. Hence, for « > 0, it holds that
(A.29) P <inf,,oe ™ E[[qexp {na(F*—F,)} dK]
=inf,, o e ™" [q E[exp {na(F* — F))}]dK
by Fubini’s theorem. Thus
(A.25) P < inf,, e ™ sup E[exp {na(F*—F,)}]
X
<inf,, gexp {n(—ay+a?/8)} = e~ 2"

by Lemma A.3, which has proved (A.20).
The inequality (A.21) can be proved similarly. As for (A.22), the first member is
bounded from above by

inf,> o e sup E[exp {na |F* —F,|}]
X

(A.26) S inf,5 o e ™ [sup E[exp {n(F*—F))}]
X

+sup E[exp {na(F,— F*)}]1]
b

<inf,, e " 2e™ /8 = 2™ 2,

which completes the proof.
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THEOREM A.5. For any sequence {K,} of probability distributions over Q and for
any y > 0, it holds that

(A.27) P[liminf,_, , fo (F*—F)dK,, = y] < ™",

(A.28) Pliminf,,_, , [o(F,—F*)dK,, = y] < e~ >,
Proor.? Put X,, = [o(F*—F,)dK,, then for any ¢ > 0 it holds that

(A-29) P[liminf,_, X,, 2 y] £ P[liminf,,,., X,, > y—¢]

< liminf, ., P[X, > y—¢]

by Fatou’s lemma. By Theorem A.4, the last expression is bounded from above
by exp {—2n(y—e)?}, which tends to exp {—2ny?} as e >0 and proves (A.27).
A similar argument yields (A.28).

THEOREM A.6. We have
(A.30) Pllog[[4foexp{4ny a(F* —F,)} dK(x)dL(a)]"/*” = y]
e for any y >0,
where A = {a|a=+1}.
ProoF. The first member of the inequality (A.30) is written as
P[f,faexp{4nya(F*—F)}dK dL = &*™’]

< e ** | supE[exp {4ny a(F*—F,)}]dL
X

< e~ 4m? IA PLCDILY | gy e—2ny2,
where the second inequality sign follows from Lemma A.3.

CoRrOLLARY A.7. If F, is a discrete probability distribution over Q, then for any
z>0,

(A3D) p| sup(Fr0— Fix) 2 24180 D | < pm2m
L x 4nz

(A.32) P:Sl)l‘p(F,(x)—F*(x));z+ g4(; - 1)] o-2m

(A33) P _SuplF*(x)—F,(x)| > z+l°g2(‘ 1)] o2,
- X

where t = [ [i=, t; and t, is the number of mass points of the component x; with respect
to F,. ‘

2 The proof has been simplified to the present form by a suggestion of Professor Masashi
Okamoto.
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PrOOF. Let K be the probability distribution which has the same probability
1/(t—1) at each point for which every coordinate is a mass point of the component
variate, except for the maximum point which has the maximum value of the mass
points for each component. Suppose now

sup (F*(x)— F(x)) = z+log {(t—1)/4nz}.
X

Then it follows

faexp [4nz(F*(x)— F(x))]dK(x) = (t—1)"! Y exp [4nz(F*(x) — F(x))]
X

2 (t—1)"texp[4nz{z +log {(t—1)/4nz}}] = exp(4nz?).
This implies

P[sup(F*—F,) 2 z+log {(t—1)/4nz}]
X

< Pllog(foexp {4nz(F* — F)} dK)"*" 2 7] < e~ 2

in view of Theorem A.6. Equation (A.32) can be proved similarly, while (A.33)
follows from Theorem A.6 by using the same K and the probability distribution L
which has probability { at the two pointsa=1and a = —1.

All these theorems have their analogues for the two sample case which will be
stated without proof, since they are all, except for Corollary A.11, special cases
of the several sample problems considered later. Let FU)* (j = 1, 2) be the empirical
distribution functions of independent random samples of size n; from F,¥)(x).
Put n=n,+n,.

THEOREM A.8. For any y > 0,

FO*—F M
F@*_F®
FO*_F M
F(Z)‘—F,(Z)

(A-34) P[Iﬂ("l ny/n?)¥Q, — 1)[ ]dK(x) > y] < e M

(A35) P _In (ny na/n?)¥(1, — 1)[ ]dK(X)i 2 y] < 2e7 2,

THEOREM A.9. For any sequence {K,,} and any y >0,

i o 2 _F(l)._Ft(l)_ ]
(A.36) P| liminf,_, ., [o(n, ny/n*)¥1, —1) F@r_F,@ dK,(x) =y
Se ™™,
[ . 2 [F,(V— FO™] ]
(A37)  P|liminf,., [o(n,ny/nH)¥(, —1) F.0)_ p» dK,(x) =y

~2ny?

I\

e
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THEOREM A.10. For any y > 0,

FO¥_F® 1/4ny
(A.38) P [log I:_[ 4Jaexp {411 ya(l, —1) [F an_ Ft(z)] } dK(x) dL(a)] = y]

<e” Znyz'

COROLLARY A.11. For any z > 0, if F,\") and F,® are discrete probability distribu-
tions over Q, then

(A.39)  P[sup(ny ny/n*)}{(F" —F )~ (F®" ~ F, )} 2 z+(4nz)~ ' log (t—1)]
< ‘

- 2
e 2nz,

(A.40) P[sup(n, ny/n®)}|(FV*—F )= (F®*—F?)| 2 z+(4nz) "' log2(t—1)]
X

lIA

—2nz2
e 2nz,

I

where t = [[i-1 t; and t, is the number of mass points of x; with respect to F,*) and
F®,

Finally, for the several sample case, let FU*(x) (j = 1,2, -, k) be the empirical
distribution functions of independent random samples of size n; from F,¥)(x),
n=Y*%_,n;and 4 be the set of all points (a;, -, @) which satisfy

(A.41) ‘;=1aj=0’ Z.?:lbjz: 1’ a.i=(nj/n)*b_i’ j= 132a“'3k'
Let K and L denote probability distributions over Q and A4 respectively.

THEOREM A.12. For any K, L and any y > 0, we obtain
(A42) P[fsfaYf=1(n;in)*b(FO"—F ) dK(x)dL(a) Zy] £ e~*"",

(A43)  P[f4fa|X5=1(nyim)* b,(F" ~F )| dK(x)dL(a) 2 y] £ 2¢7*"".

Proor. From Jensen’s inequality, the first member of (A.42) is not greater than
P{f4faexp{na ’_, (n;/n)*b(FY* -~ F,¥)}dK dL Zz "] for any a > 0, and hence
not greater than
(A44) inf,.oe™™ [, [o[14=1 E[exp {na(n;/n)* b(F" — F, )} dK dL.

Using Lemma A.3 as in the proof of Theorem A.4, we find that (A.44) is not
greater than inf, .  exp (—nay) exp (nx?/8) = exp (—2ny?), which has proved (A.42).
Next, the first member of (A.43) is not greater than

inf,>o0e™" [4 {sup E[exp {na 3, (n;/n)* b;(F" — F,)}]
X

+sup E[exp {na Y., (n,/n)* b(F,9— FI")}]}dL
X

. - 2 - 2
Sinf,, (2 " "8 = 2~ 2,
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The following two theorems can be proved similarly as Theorem A.5 and A.6.
THEOREM A.13. For any sequence {K,,} and any y > 0,

(A45) P[liminf,, [o Y%=, (n;/n)} b}(F9" = F, D) dK,(x) = y] < e~ ™",

THEOREM A.14. For any y > 0,
(A.46) Pllog[[4faexp{dny Y5, (n;in)* b(FV" —F D)} dK dL]"*» > y]

< e—2ny1.
COROLLARY A.15. For any z > 0,
k 3
(A47) P[sup( Y. (njin)? b,-{(F‘f"—F,”’)—(F""—FJ")P)
Jj=1

X
g (k— 1)%<Z+!‘(§-2(—t;n12)$9):| é e—2n22’

where t = t, -t and t; is the number of mass points of x; of FV, ---, F,®,
ProoF. Let K have equal probability 1/(—1) on the mass points except the

maximum point and L(a) have equal probability 1/2(k— 1), on the set of orthogonal
vectors a,a,, **,a,_, and —a,, —a,, -+, —a,_,, then

P[Sup( > ("~ F )~ (F—F, ”)}2)&
x V=1
= (k—1)*<z+10g2(t_______1)(_k___1)):|

4nz

t—1)(k—

=P [Sup sup a(F*~F) 2 (k—1)%(z+l°_gm1)>]
x aeAd 4nz

= P[EI a,supa(F*—F)>z

| Jog2(t=1)(k— 1)]
X

4nz
< P[log'/*" ([, fqexp {4nza(F* — F)} dK dL)!/*" > 7] < e~ 2",
THEOREM A.16. If ) 5_, (n;/n)*b; =0 and Y%_, b2 =1, then, we have

(A.48) max Zf: 1 (",‘/")4lr b;x;= {Zf: 1 (ny/m)(x;— 37)2}%,
b

where X =Y %_, (n;/n)x;.
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