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ON THE COUPON COLLECTOR’S WAITING TIME

By BENGT ROSEN

Royal Institute of Technology, Stockholm
1. Introduction, summary and notation. We shall introduce a set of random
variables and give interpretations of them in terms of coupon collection.
A person collects coupons with different colors. Let there be in all N different
colors, which we label 1, 2, ---, N. The different colors may occur with different
frequencies. The colors of successive coupons are independent. Let J, be the color

of the vth coupon. Our formal assumptions are:
J:, J,, - -+ are independent random variables, all with the following distribution

(1.1) P(J =5s) = p,, s=1,2,++-,N
where
(1.2) ps20,  pytpy+--+py=1

Thus, p, is the probability that a coupon has color s. Let
(1.3) M, = # different elements among (J, J,, ***, J,), n=1,2---.

Thus, M, is the number of different colors in the collection after n coupons. Let
(1.4) T,=min{v: M, = n}, n=1,2,+,N.

T, is the number of coupons needed in order to get a collection with n different
colors in. Define

(1.5) ~ D,=1 if J,¢(J,Ja 0, Ju-1), v=1,2,""
=0 otherwise.

Thus, D, tells if the vth coupon adds a new color to the collection or not.

We shall assume that the coupons also carry a bonus value, which is a real
number. All coupons with the same color have the same bonus value, while the
bonus value may differ from color to color. Let a, be the bonus value of coupons
with color s, s =1, 2, -+, N. The bonus sum of a collection of coupons is obtained
by adding the bonus values of the different colors which are represented in the
collection. Thus, duplicates do not count. Formally we define the bonus sum as
follows.

(1.6) Q.=a,D+a;,Dy++a,D,, n=1,2,--.

The random variable Q, will be referred to as the bonus sum after n coupons for
a collector in the situation Q = ((p;, a1), (P2, az), ", (Px, ax)).
We define for B> 0

(L7 . W(B)=min{n: 0, = B}.
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W (B) will be referred to as the waiting time to obtain bonus sum B for a coupon
collector in the situation Q.

The following lemma, which is obvious, states that we have introduced a slight
abundance of terminology and notation.

LemMma 1.1. The random variables M, and T, in (1.3) and (1.4) are respectively
the bonus sum after n coupons and the waiting time to obtain bonus sum n for a
coupon collector in the situation ((py, 1), (p2, 1), (Pss 1)).

Our main concern will be to study the random variable W (B) and its particular
case T,. We confine ourselves to the case when all bonus values, a,, are positive.
The main result is that W (B), under general conditions, is asymptotically (as n and
N increase simultaneously) normally distributed. We give a brief sketch of the idea
of proof, which is well known. When all a’s are positive, the distributions of the
random variables W (B) and Q, are related according to the formula

(1.8) P(W(B) > x) = P(Qp; < B), x, B> 0.

With the aid of formula (1.8) one can “invert” results concerning either of the
random variables Q or W to yield results concerning the other variable. In [5]
we showed that Q,, under general conditions, is asymptotically normally distri-
buted. The asymptotic normality of W will be derived by inversion of the results
in [5].

The asymptotic behavior of the collector’s waiting time has, to the best of our
knowledge, earlier only been considered in the classical case, i.e. p,=1/N and
a,=1,5s=1,2,---, N. In [4] Section 3, Rényi derives results about M by first
deriving results about T and then “‘inverting.” His basic tool is the representation

(1.9 T,=U,+U,+-4+U,

where U, is the waiting time from bonus sum v—1 to bonus sum v. In the
classical case U,;, U,, ‘- are independent random variables and P(U,=k) =
((v=1)/N"Y(N—=v+1)/N,k=1,2,--. Thus, results concerning the asymptotic
behavior of sums of independent random variables can be applied. A complete
investigation along these lines is given by Baum and Billingsley in [1]. A generalized
version of the problem is considered by Ivchenko and Medvedev in [2]. In their
problem, as in our problem here, a representation of the type (1.9) no longer
holds. They proceed along the path we shall follow here, i.e. to obtain results about
the waiting time by ““inverting” results concerning the bonus sum.

The following notation will be used throughout the paper. E and ¢? stand for
expectation and variance. ¢ denotes centering at expectation, i.e. X°= X—EX.
X =, Y means that the random variables X and Y have the same distribution.
=denotes convergence in law. The normal distribution with mean  and variance 62
is denoted by N (u, 6%). The integral part of a real number is denoted by [ ].

2. Formulation of the results concerning the asymptotic behavior of W(B) and T,.
We shall consider the asymptotic behavior of the random variables W and T, as n
and N increase simultaneously. To effect this limit procedure we consider a sequence
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Q= ((Prs @is)s s=1,2,++, N, k=1, 2, -+ of collector situations. We assume
that

2.1) Gy, > 0, s=1,2,"*,N,k=1,2,-+-
and we put
(2.2) Ak=ak1+ak2+"'+aka, k=1,2,"'.

The random variables Q,*, W,(B) and T,® are defined relative to Q,, according

to (1.6), (1.7) and (1.4).
We define some functions related to the collector situation Q,, k =1,2, -

(2.3) dl(x) = Ziv:l ap e~ P=x(1 —e""‘”‘)—x(Zfil Ay Prs e Pe%)?, x=0.
The function w,(x) is defined implicitly by the relation
.4 A—x = zg;l g €~ PV, 0<x< A,

Furthermore, we define
(2.5) 4’ (x) = dkz(wk(x))/(zyé L QysPrs € N2, 0=x<4.

Next we introduce some conditions on the sequence {€;}i=;.

(2.6) Ni—» o as k-
2.7 lim sup,_, ,, Max, py,/Ming p, < 00
2.8) lim sup, ., ,, max, a,,/min, a,, < oo.

As stated in the introduction, we shall derive results about W from earlier
results about Q. The following result is included in Theorem 1 in [5].

THEOREM 1. (a)

(2'9) EQn(k) = )svgl (1 _(1 _pks)n)aks’ nk=1,2---
(b) Let {Q}%, satisfy (2.6), (2.7) and (2.8), and let {n,}i-, satisfy
(2.10) 0 < liminf,_, . n,/N; < limsup;, , 1/Ny < 0.

Then, for d, according to (2.3), we have
(2.11) L((Q%—EQL)/di(m) = N(0, 1) as k- oo.
Next we formulate the results concerning W. |
THEOREM 2. Let {Q,}7, satisfy (2.6), (2.7) and (2.8), and let {B,}i-, satisfy
(2.12) 0 < liminf,_, , B,/A4, < limsup;.,,, B,/4, < 1.
Then, for w, and q, defined according to (2.4) and (2.5), we have
(2.13) L((Wi(B)—wi(Bw)/a(By)) = N(0, 1) as k- .
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4 THEOREM 3. Let w, and q, be the functions which are defined in (2.4) and (2.5).
We write

(2.14) EW,(B) = w(B)+q,(B)-R"(B,Q,), B>0,k=1,2,""

(2.15) o2 (W(B)) = q¢*(B)(1+R,®(B,Q)), B>0,k=1,2,".
If {Q}e=, satisfies (2.6), (2.7) and (2.8), we have for every 0 <1, <1, <1,

(2.16) () limy, ,, SUP,, <p/a, <o, [REV(B, Q)] =0

(2.17) (b) timy_, o SUP,, <3 4, <os [REP (B, Q)| = 0.

As stated in Lemma 1.1, the random variable 7, is only a special case of the
random variable W. Thus, Theorem 2 and Theorem 3 contain information about 7,.
However, we find it worthwhile to write down the results for 7, explicitly. First
we introduce notations for the special cases of the functions d,, w, and g,, which
are obtained when all a’s equal 1. We define #,(x), #,(x) and v,(x) by the following
relations

(2.18) ukz(x) — Zyg " e—pksx(l _ e—pksx)_x(zglg 1 Dxs® _Pksx)Z, x=0
(2.19) Ny—x = YN, o= Pt 0<x<N,
(2.20) (%) = w2 (X)) /(L% 1 prse ™ P")?, 0=x<N,.

Furthermore, let p, = (Piy, Pras > i) K= 1,2, -+
THEOREM 4. Let {p,}i=, satisfy (2.6) and (2.7), and let {n,}i’-, satisfy

(2.21) 0 < liminfn,/N, < lim sup,.,, /N, < 1.
Then, for t, and v, according to (2.19) and (2.20), we have
(2.22) LT —t(m))/o(n) ) = N(O, 1) as k- .

THEOREM 5. Let t, and v, be defined by (2.19) and (2.20). We write forn = 1,2, -,
Npk=1,2,--

(2.23) ET,® = t,(n)+n* R (n, p,)
(2.24) X (T,*) = v 2 (M1 +RP(n, py).
If {pe}i=1 satisfies (2.6) and (2.7), we have for every 0 <1, <1, < 1
(2.25) (a) lim,., , max,,n, <p<eon, |RE(, P =0
(2.26) (b) limy_, , max,, y, <p<en |[REP(, P)| = 0.

RemMARrk. Theorem 4 follows immediately from Theorem 2, while Theorem 5
follows from Theorem 3 and an easy estimate of v,%(x), which is derived in Lemma
3.8.

The ideas of proof in Theorem 2 and Theorem 3 are simple and well known.
However, we will run into technical difficulties. To motivate the following,
somewhat lengthy, estimates we start out on the proofs and see where we get stuck.
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START OF THE PROOF OF THEOREM 2. According to (1.8) we have for —o0 < x < o

(2. 27) P < ”/k(Bk) - Wk(Bk) < x) = P( Wk( Bk) < Wk( Bk) +x ‘Ik( Bk))
qi(By)
wak(ﬂk) + xqi(Bx)] )
=P ; = x(x, By) ).
<dk([wk(Bk) + qu(Bk)]) = xk(x k)
where
(2.28) xi(x, By) = By — EQtw (B0 + xa(B

d([w(B) +xq(BI])

(2.13) will follow from (2.27) and (2.11) if we prove that

(2.29) X(x, By)— —x as k— oo,
The technical part of the proof will be to show that (2.29) actually holds.

START OF THE PROOF OF THEOREM 3. We introduce a condition: For some r > 2
we have for every0 <1, <1, <1

r

Wi(B) — w(B)
q(B)
We shall prove (2.16) under the assumption that Theorem 2 and (2.30) are true.

We give an indirect proof, and we assume that (2.16) does not hold. Then, there
exists a sequence {B,}i-; and 1,, 7, such that 0 < 7; < B;/4, <7, <1 and

(2.30) lim sup,., o, SUP;, <B/ds 51>

(2.31) 1lim supy . o |[Re (B Q)| > 0.

According to (2.30), {(W(B)—wu(By))/a:(B\)}i=1 is uniformly integrable. By
combining this with (2.13) and the fact that N(0, 1) has mean 0, we get

( Wi(By) — wk(Bk)> — EW,(B,)—wi(By) -0
q(By) a(By)

Now, as is easily realized, (2.32) and (2.31) contradict each other, and (2.16) is
thus proved.

In a very similar manner we can prove (2.17) under the assumption that Theorem
2 and (2.30) hold. Assume that (2.17) is false, and select a sequence {Bi}i=i,
0 <1y < Bi/4, = 7, <1, such that

(2:33) limsup, ., , |[R‘P(By, @)| > 0.
As (2.30) implies uniform integrability of {(W,(B)—wi(BW))*/92(B)}i=1, We
get from (2.13)

W(B)—-wi(B)\?>
2.34 R TRTEY k — 0.
(2.34) E( 2B ) as o0

as k- o0.

(2.32)
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/Furthermore, in the notation of (2.14),

_ 2
K%)—(E‘f)(i)) = 0 2(BY) - SA(WBY)+ RV By, ).

Now (2.34), (2.35) and (2.16) yield that R,®(B,, Q,) =0 as k — co. This contra-
dicts (2.33) and concludes the proof.
The hard part of the proof will be to show that condition (2.30) actually holds.

(2.35) E(

3. Some auxiliary results. Here we shall collect, for future use, some results
concerning the functions w, d and ¢, which were introduced in the previous section.
First we list some notation and assumptions, which will be used throughout this
section.

D1, D2, **°, Py is a set of probabilities, i.e. p,=20,5s=1,2,:--, Nand p,+p,+

c+-+py=1.a,,a,, -, ay are positive real numbers. To obtain simpler expressions
in the sequel, we introduce the following notation.

3.1 A=a;+a,+ *+ay and a=AIN

3.2 m=minga, and M = maxa;

3.3) py =mingNp;, and p, = max;Np;,.

We define

(3-4) @*n) =YL (1—(1=p)a,, n=12---,
and

3.5) o(x) =YY (1—e P¥a,, x20.

Our interest in the function ¢* is explained by the formula (2.9), and ¢ will be
used as an approximation of ¢*.

LeMMA 3.1. Forn=1, 2, -+ we have
(3.6 0= o*(m)—op(n) = M.

PrROOF. By ‘using the elementary inequalities 0 <e™ —(1—x)" < nx?e™,
0<x=<l,andxe*=<1/e<1wegetasa,>0,5s=1,2,-, N

0 < ¢*(m)—p(n) = Tl (€™~ (1P,
<YM pnp)e "Pa,<Me 'YL p, S M.

Thus, the lemma is proved. The proofs of the inequalities in the next lemma are
straightforward, and we omit them.

LemMa 3.2. For x = 0 we have
(37) (a) me P2 "/N=_<_ q,’(x) <Me™ " x/N

(3.3) (b) 0< —¢""(x) £ p,/(N)M e ?1 /N,
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LemMa 3.3. For x, y > 0 we have
(39 |e(x)— ()| < |x—y| - M.
PRrOOF. According to the mean value theorem and (3.7) we have, 0 <0< 1,
le()— o) = |x—y|¢'(x+6(y—x)) < |x—y| - M
and the lemma is proved.

Let w(y), 0 < y < 4, be the inverse of ¢(x), i.e. w(y) is defined implicitly by the
following relation (cf. (2.4)).

(3.10) y=A-Y a.e 0, 0Ly<A.
LEMMA 3.4. For 0 £y < 4 we have

N ANR R y\!
(3.11) (@) w(y) = —log(l—‘—> = :—~(1——

P1 A apy A

N y\ 1oy 1
(3.12) b) w(y) = — lo (1——) >,

( . P2 € A a p2

ProoF. We have
(3.13) q)(x) = Ziv= 1 (1 _.e"Psx)as g (1 —e M x/N)A.

From (3.13) we conclude that w(y) is at most as big as the solution of the
equation y = (1—exp(—p, x/N))A. The solution is x = Np, ' log(1—y/4)~!. By
combining this with the inequality —log(1—2z) < z/(1-2z),0 £ z < 1, (3.11) follows.

Quite analogously we get ¢(x) < (1—exp(—p, x/N))4, which yields that w(y)
is at least as big as the solution of y = (1—exp(—p,x/N))A4, which is x =
Np, 'log(1—y/N)~ 1. Now, apply the inequality —log(1—z)=z, 0<z< 1, and
(3.12) is proved.

LeEMMA 3.5. For 0 £ y < 4 and u = 0 we have

2/p1
(3.14) @ PU)+w—yZu-m- e"’”’"(l—%)p ’

2/P1
(3.15) ®) y— W) —u) Z u - m ( i —%) ’ 0= u< w0,

PrOOF. Remember that @(w(y)) = y. As ¢'(x) decreases when x increases, we
have, 0 <0< 1,

(3.16) p(w(y)+u) = @W(y)) +u@'(W(y)+6u) Z y +ug'(w(y)+u).
By combining the estimates (3.7) and (3.11) we get
3.17) o'(w(y)+u)=m exp{—lpv—z(g log(l—%>_ +u>}

p2/p1
= —p2u/Nf 1 _X .
me ( A)
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Now (3.14) follows from (3.16) and (3.17). Similarly we get
y—oW(y)—u) = y—eW(y))+up’(w(y)—0u) = up’'(w(y))

N -1 p2/p1
;u-m-exp{—%-p—log<1—%> }=u-m(1—%) .
1

Thus, the lemma is proved.
Next we shall derive some estimates concerning the function d below (cf. (2. 3)).

(3.18) d*(x) =Y a2 e P (1 —e ") —x(X - a;p e~ )2, x=0.
LemMA 3.6. For x 2 0 we have

(3.19) (@) d*(x) £ x - M?

(3.20) (b) d*(x) 2 x - m*(p, x/N)5(py X/N)

where

(3.21) U(z) = e *(1—e ?)/z, 0<z<w

and

(3.22) )=1-ze ?*/(1—e77), 0sz< .

PROOF. By using the inequality, 1 —e™* < z, z = 0, we get
A(x) =Y ale P (1—e P YL 6’ px S M2 YL b,

and (3.19) is proved. According to Schwarz’s inequality we have

e_psx

(323) CXiape )<YV ale P (1—e P Y, p’ Fper=t

From (3.18) and (3.23) we get

(3.249) dx)2 QN ake (1 —e"’”‘))(l -y pix —e;‘zx——).

L—e P

It is easily verified that the function (z) in (3.21) decreases from 1 to 0 as z
increases from O to oo. Thus, we get the following estimate for the first factor in
(3.24)

(3:25) Yiale P (1—e )z m? - x - Y(p x/N) Y1 Py

By using the easily verified fact that the function &(z) increases from O when z
increases from 0 we get the following bound on the second factor in (3.24)

—Psx
(326) 1-3X,p’x i—_—= Lm(l—%) &py x/N).

—e P 1

Now (3.24)-(3.26) yield (3.20) and the lemma is proved.
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" LemMa 3.7. For x, y > 0 we have

M? -3 . -
(327) |dx)—d@y)| £ |___y|._.3.,,,(p2r_n_a}jv(&_y)> é(pl@%ﬂ) ’

where  and & are the functions in (3.21) and (3.22).
ProoF. We first give an upper bound for |d%(x)—d?(y)|. From (3.18) we get
(.28) |dX(x)—d*(y)| S X1, a2|(e7P — e 2PF) — (e 7P — ™ 20w
+x|(X 1 apse™ 7 = (0= agp e ™)
+|x =y 1 asp e™P)?
=0,+0,+0s.

From the mean value theorem, and the inequality |exp(—x)—2exp(—2x)| <L
x=20,weget,0<0=1

(329) 0y < M2YM., [x—y| pePe+00- 0= 2p:x+00-2)| < M2|x—y].
Assume, without loss of generality, that x < y. Then,

2 S x| aple P —e7™)| Yol  ap(eT P +eTPY)
(3.30) S M|x—y[Yis ppx)e ™ - M - 231 ps

< M?|x—y|le 12 £ M?|x—))|.

Furthermore,

(3.31) 03 < M?*|x—y|.

Now, (3.28)—(3.31) yield that

(3.32) |d%(x)—d*(y)| < |x—y| - 3M>.

We have

(3.33) |d(x)—d(y)| = |d*(x) = d*(W)|[(d(x) +d()).

From (3.20) and the monotonicity of  and & we get
(334)  d(x)+d(y) 2 m([x¥(p, x/N)&(p; xIN)TH +[(p2 yIN)E(p1 ¥IN)]?)

2 m(x*+y*)n/z(pz maxt.y ))*z (pl min y_))*.

Now, (3.32), (3.33) and (3.34) yield (3.27) and the lemma is proved.
Finally we shall consider the following function (cf. (2.5) and (3.5))

d*(w(x))

oo = COCNIT s ap, e, 0Sx<d

(3.35) q*(x) =
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LEMMA 3.8. For 0 < x < A we have

M\? 1 X —(1+2p2/p1)
(3.36) (a) ¢*(x) £ _< ) ‘—<1—>
P1 A

2 m 1 (]_£>—201/pz (BE(I_)i)—])v(& i)
(337 (b Q(X)Z_<M> ” Y W y Y o, 4)

where \ and & are defined according to (3.21) and (3.22).
PROOF. By combining the estimates in (3.19), (3.7) and (3.11) we get

1\2 A\ -1 2
q%(x) £ w(x) E 2PN 7w < X l 1._)L . M p2(p2/p1) log (1 =x/4)~
- m ~ap, A m

x/M 21 x =(1+2p2/p1)
=—(—) —({1——
ﬁ<m> p,< A)

and (3.36) is proved. Quite analogously we get from (3.20), (3.7, (3.11) and (3.12),
remembering that y is decreasing and ¢ is increasing.

g3 (x) = W()»)( > ‘/’( (XJ)Q(Pl V"](v@)ezp, (W(x)/N)
2 1 —1 .
ol ) Moo
x({m\* 1 x | ~2p2/p1 P, x\ 1 py X
25) w0=2) G- )5

and (3.37), and thus the lemma is proved.

l —

X
==
a

4. Completion of the proof of Theorem 2. We are now prepared to finish the proof
of Theorem 2, i.e. to prove (2.29). Let d,, w, and g, be the functions which are
defined in (2.3), (2.4) and (2.5). Furthermore, let ¢,* and ¢, be defined, relative
Q,, according to {3.4) and {3.5). According 1o {2.9) we have

(@.1) Be— EQpuyo0r + xaxtmon = Bi— 0 (Wi B) +xau(BYD).
Furthermore,
@ *([w(B) +xqu(BY)])
(4.2) = uW(B)+ x4 (BY) + {0 ([Wi(BY) + xqu(B)]) — o [w(Bi) + xai(BI D}

+ {‘Pk([Wk(Bk) +xq,(B)]) — O(wi (B + qu(Bk))}'

By applying the estimates in Lemma 3.1 and Lemma 3.3 to the last two terms
in (4.2), we get

(4.3) I(Pk *([wi(BY) + xqi (B ]) — o(wi Bi) + qu(Bk))l < 2max, a,.
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We have the following Taylor expansion, 0 < 6 < 1, (cf. (2.5) and (3.35))
@i(Wi(By) +xqi(By))
4.4) = oW By)) +xq(B)¢i (Wi(By))
+3x2q2(BI@y ' (wi(By) + 0xq,(By))
= B+ xd(wi(BY)) +1x%q2(B)ox (wi(By) + 0xq,(By)).
According to Lemma 3.2(b) we have, p,*) being defined in accord with (3.3)
®)

” p
(4.5) low"(wi(B)+0xqu(BY)| < =~ max, ay,.
k
From (4.1)-(4.5) we get
'B,.—EQ max,a p,®
4.6 k [Wk(Bk)+Xl1k(Bk)]+x’ é s “ks <2+ x2 2 B L—).
“9 d,n(BY) amBI\- T W EBY

By using the estimates in Lemmas 3.6(b), 3.4(b), and 3.8(a) it is quite straightforward
to verify that, under the assumptions in Theorem 2, the right-hand side in (4.6)
tends to 0 as k tends to infinity. Thus, we obtain

4.7 (By _EQ[Wk(Bk)+XQk(Bk)])/ d(w(By) = —x as k- oo.
Now (2.29) follows from (4.7) if we show that
(4.8) limy, ., di([wi(BY) + xq(By)])/di(w(By) = 1.

Again the verification is quite straightforward by using the estimates which were
derived in the previous section, in particular the estimate in Lemma 3.7. This
concludes the proof of Theorem 2.

5. On the absolute central moments of Q,. The remaining part of the proof of
Theorem 3, i.e. (2.30), concerns the absolute moments of W (B)—w(B). We shall
obtain information about these moments by first deriving results about the absolute
central moments of Q, and then ““inverting” these results by (1.8). Our aim in this
section is to prove the following theorem.

THEOREM 6. Let Q, be the coupon collector’s bonus sum after n coupons in the
situation ((py, a,), (P25 @), ***, (Dn» ay)), (cf. (1.6)). Then, we have for every r > 0
andn=1,2,---

5.1 E|Q,7|" £ C,n'*(max,|ay|), .
where C, is a number which only depends on r.
COROLLARY. For ¢(n) according to (3.5) we have for r >0andn=1,2,---

(52) ElQn - (p(n)|r =< Crnrlz(maxs as)r'
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Derivation of the corollary from the theorem. Let ¢*(n) be defined according to
(3.4). In virtue of (2.9) we have

(5.3 E|Q,—o(m)|" < 27 1(E|Q, T +|e(m)— o*(m)]).

Now (5.2) follows from (5.3), (5.1) and (3.6).
Before we can prove the theorem, we need some auxiliary results. We shall use
a representation of the random variable Q, which was introduced by S. Karlin in

B3l.
Let X,(¢), X,(2), ---, Xx(2), t = 0, be independent Poisson processes with right-
continuous trajectories, all starting at the origin at # = 0. Let X(¢) have intensity

parameter p,, s =1,2,-:-, N. Let
5.4) X =X,0+X,®+"- -{XN(t), t=0.

Then, X(¢) is a Poisson process with intensity parameter p, + 172 +:-+py=1,and
X (0) = 0. We define

(5.5 H, =inf{t: X(t) = n}.

Furthermore, let

(5.6) (x)=1 for x>0;
=0 for x£0.

The following representation of Q, is easily realized.

LEMMA 5.1. Forn=1, 2, -+ we have

(5.7 Qn = Ys=1 XX (H,) " a,.
We re-write (5.7) as follows
(5.8) Qn =g 2 =1 XX (M)a, +R, where
(5.9 R, = 2 1 (WX (H ) — (X ()} a,.
LEMMA 5.2. For n,p =1, 2. - we have
(5.10) E|R,|P < C,nP*(max,|ay)?

where C, is a number which only depends on p.
Again, we first need some auxiliary results.
LEMMA 5.3. Forn=1,2, -, we have
(5.11) |R,| £ |X(H,)—X(n)|- max,|a,|.

PROOF. As X,(¢) is non-decreasing when ¢ increases, and increases with jumps of
size 1, we have on the event {H, = n},fors=1,2,-:+, N,

(5-12) 0= X(Xs(Hn)) _X(Xs(n)) = Xs(Hn) - Xs(n)'
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From (5.9), (5.12) and (5.4) we get, on {H, = n}
|R,| < max,|aj| - 3I 1 [x(X(Hp) = 2(X ()]
< max,|a|- YN, (X(H,)— X(n)) = max,|a|(X(H,) — X(n)).
Thus, (5.11) holds on the event {H, = n}. By similar arguments it is easily shown

that (5.11) is true also on the event {H, < n}. Thus, Lemma 5.3 is proved.
The results in the following three lemmas are well known.

LEMMA 5.4. Let X (t), t = 0, be a Poisson process with right-continuous trajectories,
having intensity parameter 1 and X (0) = 0, and let H, be defined by (5.5). Then,

(a) H, has a T'(n)-distribution, i.e.

t ,—x,n—1

(513) P(H" < t) = 0—(-';_—1)—' dx,

t>0,n=1,2,---.

(b) The conditional distribution of |X (H,)— X (n)|, given that H, = t, is

(i) for t < n: a Poisson distribution with parameter (n—t);
(i) for t > n: the distribution of 1+ Y, where Y has a binomial distribution with
parameters (n—1, 1 —n/t).

LEMMA 5.5. Let Y have a Poisson distribution with parameter A. Then, for
p=12--

(5.14) EYP S C(AP+A) S C/(A7+1)
where C, and C,’ are numbers which only depend on p.

LEMMA 5.6. Let Y have a binomial distribution with parameters (n, ). Then, for
0Z=ngl,np=1,2,- - we have

(5.15) E(1+Y) £ C(1+(nn)?)
where C, is a number, which only depends on p.

PROOF OF LEMMA 5.2. C, and C,’ denote numbers which only depend on p. From
Lemmas 5.4, 5.5 and 5.6 we get

e—xtn—l
(n—1)!

n P e_ttn_l ®© n\\’ e_'t"_l
G516  SCR(n—tF+D =, +CPL (1 +<("—1)(1 ‘I» ) =i

e—t n—1

(n=1)!

E|X(n)—X(H,)|” = (¢ E(|X(n)— X(H,)[’|H, = 1) dt

SC, e (+|n—1P)

dt £ C,(1+C,/n??).

Now (5.10) follows from (5.11) and (5.16), and Lemma 5.2 is proved.
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LemMA 5.7. Let Y,, Y,, -+, Yy be independent Bernoulli random variables
PY,=1)=1-P(Y,=0=n,5=1,2,+, N. Then, forp=1, 2, - -+, we have
(517) ElZiL 1 Yscas|2p é (maxs Ias|)2p : Cp *max ((Zlcv=l 77:3(1 _ns))pa —‘sN= 1 7I:s(l _ns))s
where C, is a number which only depends on p.

Proor. This inequality is included in the Theorem in [6]. We have, for
k=1,2-,5=12"-,N,E|Y* = n(1—-n)*+(1 —n)n>* < n(1 —x,). Thus,

(5.18) E|Yfa|* £ a*n(1 —n).

From (5.18) we conclude that Condition (1) in [6] is met for A(p) = |a,| and
p(p) = n(1—=n,). Now (5.17) follows easily from (2) in [6].

PROOF OF THEOREM 6. From the fact that (E|X|")'”", r 2 0, is non-decreasing as r
increases, it follows that it suffices to prove (5.1) for a sequence of r-values, which
tend to infinity. From (5.8) we get, for p =1, 2, -+, C, denoting a number which
only depends on p.

(5.19) E|Q,¢?? S CE[TY  x(X(m)Fa |+ C,E[R, |

The random variables x(X;(n)), x(X,(n)), - -, x(Xy(n)) are independent Bernoulli
random variables, such that

(5.20) P(y(X(n)) =0)=e 7", s=1,2,---,N.
From Lemma 5.7, (5.20) and the inequality 1 —e™™ < x, 0 < x, we get
E[TY 1(X (m))a | < (max,|a)?- C, max (T, (L —e™Pm), Y, (1-e77)
< (max,|a,|)*"- C, - max (X2= , np)”, Y= 1 npy)
= (max,|a,|)*"- C," n”.
Thus, Theorem 6 is proved for r = 2, 4, 6, - -+, and thus in general.

6. On the absolute moments of W(B)—w(B). First we introduce a notational
convention, which will be used throughout this section. C, denotes a number which
only depends on p, while C,(u, t)and C,(u, 5,1),0 <p < o00,1 Su<o0,1 =5< 00,
0 <t £ 1, denote functions which for every p are bounded on every rectangle
1Su=sfuy< o, 05ttty <1, respectively on every rectangle 1 < u < 4y < oo,
1S5850<0,0=5t=¢t,<1.

Furthermore, we continue to use the assumptions and notations, that were
introduced in Section 3.

Our purpose in this section is to derive the following estimate.

THEOREM 7. Let W (B) be defined according to (1.7). Then, for
(6.1) as<B< A
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we have for every p > 0,

B\"? (p, M B
. WB)—wB)IP=(=) C\—= ——
@ mmrs (3 o{4)

where w(B), @, A, m, M, p, and p, are defined in (3.10), (3.1), (3.2) and (3.3).
Again, we write down the particular result concerning 7,,, which is included in
this theorem, and which is an immediate consequence of it.

THEOREM 8. Let T, be defined according to (1.4). Then, for every p > 0 we have for
n=1,2---

_ n
(6.3) E|T,—(n)|” < n”/ZCp<%:, N)
where t(n) is defined in accord with (2.19).
PROOF OF THEOREM 7. Throughout the proof let
6.4) W*(B) = (W(B)—w(B))/(B/a)*.
In virtue of (1.8) and the Markov inequality we have for >0 and r >0
P(W*(B) £ —u)
= P(W(B) £ w(B)—u(B[a)*)
©65) = PWQuui)-uwimyir— XWB)—u(B[a)*]) Z B—o([w(B)— u(B[a)*))

< ELQ_[W(B) —uejaysy — P([W(B) —u(Bj 5)*])|' '
= (B— o([w(B)—u(B/a)*]))

According to the corollary of Theorem 6 and (3.11) we have

. ) B r/2 1 r/2 B -r/2
(6.6) Numeratorin (6.5) £ C,w(B)"*M" £ C, 3 I_Z M.

P1
By using the fact that ¢(x) increases with x, and (3.15) we obtain
(6.7) (B—o([w(B)—u(B/a)*])) z (B—@(w(B)—u(B/a)*)y
2 (u(B/a)*m(1— B|AY/*)'.
From (6.5), (6.6) and (6.7) we get

" M B
(6.8) PW*B)< —u) < l C, p_z’ l—,— s r,u>0.
u p, mA

Let a* = max (a, 0) and @~ = min(a, 0). As W(B) = 0, W *(B)~ has finite absolute
moments of all orders. We have

6.9) EIW*(B)_IP = pj8° uP " 'P(W*(B) £ —u)du
S 1+pfYuP 'P(W*(B) £ —u)du.
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By inserting the estimate (6.8) with r = p+ 1 into (6.9) we get

p2 M B

6.10 Elw*B)lr<c = —, = , .
(6.10) | ()|_,,(p1 mA) »>0

Next we shall derive an estimate for E|W*(B)*|” in an analogous way. However,
things become a bit more intricate in this case.
We assume that u = 2. In virtue of (6.1) we then have the following estimate

(6.11) [w(B)+u(B/a)*] = w(B)+ }u(B/a)*.

By arguing as before, and by paying regard to (5.1), (6.11), (3.11) and (3.14) we

get foru =2

E |Q[w(B) +uB/ayn1— O([w(B)+u(B/ 5)*])"
(p([w(B)+u(B/a)*])— B

C(w(B)+u(BJa)*Y"*M"
= (¢(w(B)+ 3u(B/a)*) - BY

c’ (W(B)"?+ (u(B/a)*)'*)- M"
" (W(BJa)} ) m’ e~ CPHIZNIBA( B[ gyerles”

P(W*(B) > u) <

A

(6.12)

lIA

(6.12) yields the following estimate
\N? (p, M B
. P(W*(B (=) a3 ==), <u £ N(Bfa)~*.
6.13) (W*( )>u)_(u> '(p1 - A) 2 £ u £ N(B/a)

However, (6.12) will give a poor estimate of P(W *(B) > u) when u is consider-
ably larger than N (B/a)~*. The following rather crude estimate will give us a better

bound for large values of u
6.14) P(W(B) > m) £ Ne~/1m/N) | 0<B=£A4A,m=1,2,---.

To prove (6.14) we introduce the following events. E (s, m): The color s does not
occur among the m first coupons, s=1,2,--, Nym=1,2,---.

We have {W(4) > m} =UY.{ E(s, m) which yields
(6.15) P(W(A) > m) = P(U3=1 E(s, m)) < Y 3_; P(E(s, m))
=Y (I=p)" =Y e P < Ne 1,

By combining (6.15) and P(W (B) > m) £ P(W(A4) > m), we obtain (6.14). From
(6.14) and (6.11) we get for u = 2

(6.16) P(W*(B) > u) < N e~ P1/N)w(B) +u(B/a) %) < N e ~P1(u/N)Bla)% ‘u >2.
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From (6.16) we conclude that W *(B)* has finite moments of all orders. Thus, we
have the following formula, where « is a positive number to be specified later on
E|W*(B)+|" = p[§uP~ ' P(W*(B) > u)du
) (6.17) <C +p(J'N(B/a) ‘/z+j~a1v;og)~w/a) %
+ J o tog NeBjay- w)UP T P(W*(B) > u) du
= Cp+p(11 +12+13).

By using (6.16), (6.1) and the estimate [P u?"'e ™ "du< C,x"e™, px =1 we
get, for Jap,logN =1

“1 —4piu % aNIlog NP _. . 1oen
(6.18) I, §NjaNlogN(B/a)—%“p 1 o= 4r1(u/N)(B/DY%2 g, §NC,,( (B/a)i‘ ) e~ 1ap1log N

< C,NP*+1"#1%(log N)Pa?.

We now fix a to be & = 2(p+2)/p,. Then, (6.18) yields, that for this choice of «, we
have

(6.19) I3£Cp, 7"
From (6.13) and (6.1) we get for p = 1

I = [3s g™ 5ur= POV *(B) > u) du
(6.20) < (@Nlog NP~ 'P(W* > N(B/a)™*)

PzMB
lmA

PzMB
leA

< (aNlog N)y*~'((B/a)*/N)"*C (

< NP~ 17" (log Ny~ taP™ 'c<

We now choose r = 4p. Then, (6.20) and our previous choice of « yield

p2 M B
6.21 I,sC
621 =0(259)

Thus, (6.21) is established for p = 1. It is not difficult to modify the proof so as to

obtain that (6.21) is true also for 0 < p < 1.
From (6.13) and the choice r = 2p+1 we get
M B
c,(p—z, =, —).
py mA
p2 M B)

P1 “m A

IIA

(6.22) I, < (Jyem” %yP=1="12 4 C, (pg M B>
pr m A

Now, (6.17), (6.19), (6.21) and (6.22) yield

(6.23) ElWw*B)*IPsC (
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From (6.10) and (6.23) we conclude that

p2 M B
6.24 ElW*BP<sc,| = —,=). .
(6.24) W) < ,,(pl mA) p>0

Now, (6.24) and (6.2) are equivalent. This concludes the proof of Theorem 7.

7. Completion of the proof of Theorem 3. In Section 2 we reduced the proof of
Theorem 3 to the verification of (2.30). The truth of (2.30) under the conditions
(2.7) and (2.8) follows easily from Theorem 7 and Lemma 3.8. This concludes the
proof of Theorem 3.
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