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A SHORT PROOF OF STECK’S RESULT ON TWO-SAMPLE
SMIRNOV STATISTICS

By S. G. MOHANTY

McMaster University

Let there be two independent random samples of sizes m and n respectively from
a continuous population. Let R; denote the ranks of the first sample in the ordered
combined sample. Suppose b = (b, b,,-**, b,,) and ¢ =(cy, ¢, "**, C,) are two
increasing sequences of integers such that i—1 <b; < c¢; <n+i+1. Denote by
N(b; c) the number of ways the event {b; < R; < ¢;, i =1,2,---, m} can occur in
the ordered combined sample. It is well recognized that N(b; c¢) determines the
null distribution of Smirnov statistics in the two-sample case. In a recent paper
[1], Steck has established that

(6] N(b;c) = det(d;mxm
where
(Ci_bj+j i- 1)
Here %) =0 if z;éO and y<z orif z<0
=1 if z=0.

His proof, which is long and difficult to follow, consists of checking that the
determinant satisfies the recurrence relations and boundary conditions required by
N(b; ¢). In this note, we provide a direct elementary proof.
Let T, = R;,—i,u; = b;—i+1 and v; = ¢;—i—1. Then
{bi<Ri<c,i=12 " m}e{;, ST, Sv,,i=1,2,""+,m}
and therefore N(b;c) represent the number of vectors (x;, x,, "+, x,,) which
satisfies the following:

(i) x;’s are integers,

(i0=sx, =x, < =x é
(liy; £ x;2v,i=1,2,-++, m.
Clearly, we can write
(2) N(b C) an =uy 2222=y2 T l;'r::l =Ym- 1me—.vm
with y; = max (y;, x;_,), i =2, 3, .-+, m. Note that
e T G e o
0 (xm—laum—l)+ (xl-'"m 1)+
(3) 0 0 (xx-“m 2)+ =1.
| 0 0 . e (x16u1)+
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Furthermore, it is easy to verify that for u; > u; and r 2 0,

C) in B G R (A I G L)

for each of the two cases y; = u; and y; = x;_,. Replacing 1 in the right-hand side
of (2) by the determinant in (3) and using (4), we see that

N(b;c) =

D T S e T G W P G B PR (e
X1=ug X2=y2 Xm=1=Ym=1 1—1 (xm-laum—l)+ (xn um 1)+
0 0 ARl
0 0 (x16u1)+
T S S o T S W PR
X1=Uy X2=y2 Xm=1=Ym-1 1 (xm-laum-l)+ cee (xl “m 1)+
0 0 (xn “m 2)+
0 0 o (Xlaul)+

With the help of (4), when the summation is continued to the end, we get
N(b,c) = det(d)mxm

where

d;j - (vm_“}:a_‘rii“+1) = (L‘m—j+1_gm:i+ll+i_j—1)

It is easily checked that det () = det(d;;), and hence the proof of (1) is complete.

Finally, we offer the followmg remark. If in the starting determinant (3) (%),
is replaced by (x;—u;),"/r! (where (x), = max(x, 0)) and if the multiple sum (2)
is replaced by the multiple integral

vy fv2,,, (V¥
jun y2 yzdxm dxl ’

then it is possible to adapt the above proof to prove Steck’s result on the joint
distribution of uniform order statistics [2].
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