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RATES OF WEAK CONVERGENCE AND ASYMPTOTIC EXPANSIONS
FOR CLASSICAL CENTRAL LIMIT THEOREMS'

By R. N. BHATTACHARYA

University of California, Berkeley

0. Introduction and summary. Let Q,(n =1, 2, ), Q be probability measures
on the Borel o-field of R*. The sequence {Q,} converges weakly to Q if for every
real-valued, bounded, almost surely (Q) continuous function g on R* the
convergence

0.1 lim, [gdQ, = [gdQ

holds (cf. [9], Chapter 1). Such functions g are called Q-continuous. If the indicator
function 1, of the set A is Q-continuous, then A is also called Q-continuous. If F
is a class of Q-continuous functions g over which the convergence (0.1) is uniform
for every sequence {Q,} converging weakly to Q, then & is called a Q-uniformity
class. A class of sets is called a Q-uniformity class if the indicator functions of the
sets of this class form a Q-uniformity class of functions. A systematic study of
Q-uniformity (in separable metric spaces) was initiated by Ranga Rao [21], who
obtained a number of nice results. His studies were carried further in a very useful
manner by Billingsley and Topsee [10].

In this article the error of normal approximation |f g d(Q,—®)| is estimated for
arbitrary ®-continuous g, ® being the k-dimensional standard normal distribution
and Q, the distribution of the appropriately normalised nth partial sum of a
sequence of independent k-dimensional random vectors {X®;r=1,2,---}. The
classical central limit theorems assert weak convergence of {Q,} to ® under
certain moment conditions. It is shown here (Theorem 1, Section 3) that for an
arbitrary real-valued, bounded, measurable g on R* one has

0.2) [Jgd(Q,—®)| < clk, ), (RYpILP/CIn ™4 4 [ 0,(S(x, £,)) dD(x),
where J is any positive number; p; . ;5 , is defined by (1.4), and

(0.3) wy(4) = sup {|g(x)—g()|; x, ye A}, S(x,€) = {y;|x—y| < ¢},

&, = c(k)p35,Pn " *logn,
c(k), c(k, 6) being positive constants depending only on their respective arguments.
If &, goes to zero as n goes to infinity, then the right side of (0.2) goes to zero for
every ®-continuous g. For the rest of this section let us assume that {p;.;,} is
bounded. By (0.2), if | w,(S(x, €)) d®(x) = O(¢) as & goes to zero, then the error of
approximation is O(n~*logn). One may also use (0.2) to obtain uniform upper
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242 R. N. BHATTACHARYA

bounds for errors of approximation over arbitrary ®-uniformity classes. In
particular,

(04) sup {Ugd(Qn_(D)I’ geyl(q); (N da 80)} = O(H_*log n)’
where
(0.5)  F(P;c,d,e0) = {g;0,R) Z ¢, [, (S(-,€)dD = e for 0<e < e},

¢, d, &, being arbitrary positive constants. For the largest translation-invariant
subclass of this class a sharper bound O(n™*), which is best possible, was obtained
in [3]; [5], (cf. [4]). A similar result (in the i.i.d. case) has been independently
obtained by Von Bahr [22]. As applications one obtains precise bounds for many
interesting classes of sets and functions. However, there are ®-continuous functions
and ®-uniformity classes of functions for which the technique used in [5] or [22]
is not effective. An example in Section 3 shows that there are Borel sets 4 such
that the upper bound for |Q,(4)—®(A4)| as provided by [5] (Theorem 1) is O(1),
while (0.2) provides the bound O(n"*logn). A modification of the bound (0.2)
when applied to g = I, for an arbitrary Borel set 4 enables one to show that the
Prokhorov distance between Q, and ® is O(n~*logn). It is not known whether the
factor logn in the expression for ¢, in (0.3) (and, hence, in (0.4) and in the estimate
of Prokhorov’s distance) may be dispensed with or not. However, under Cramér’s
condition (3.42) log»n may be replaced by one.

The remaining theorems are proved for the i.i.d. case, partly for the sake of
simplicity and partly because of the non-availability in the existing literature of
complete proofs for some of the expansions related to the characteristic function
of Q, in the non-identically distributed case. Theorem 2 provides an asymptotic
expansion for | gdQ, with a remainder term which is o(n~¢~%/?) uniformly over
all gin #,*(®; c, d, &,), the largest translation-invariant subclass of & (®; c, d, &),
when F IX @ |‘ < oo for some integer s not smaller than three and the characteristic
function of X obeys Cramér’s condition (3.42)'. Applications to the class ¥ of
all measurable convex sets, the class L(c, d) (see (3.54)) of bounded Lipschitzian
functions, etc., are immediate. Theorem 3 gives an asymptotic expansion for | g dQ,
for a very special class of functions g when no restriction like (3.42)" is imposed.
Theorem 4 provides some classes of functions g (under varying restrictions on the
distribution of X)) for which the error of approximation || g d(Q,—®)| is of the
order O(n™1).

Section 1 introduces notation to be used throughout the article. Section 2
provides basic lemmas for proving the results (outlined above) of Section 3.

1. Notation. All probability measures here are defined over the Borel o-field #*,
unless otherwise specified. Let {X® = (X,®, .-+, X,*”); r =1, 2, - - } be a sequence
of independent random vectors in R¥, the rth vector X having distribution 9
and characteristic function f®. It will be assumed that

1.1 E(X ") =0, i=1,,k; r=12,-",
Cov X® = D", r=1,2,"-,
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D™ being a positive definite covariance matrix. The same symbol will be used for
a linear operator on R* and its matrix relative to the standard Euclidean basis.
Thus Bx denotes the image of x under the map B. Let B,, B,’ denote a non-singular
matrix and its transpose, respectively, such that

(1.2) B,/B,=n(}r-,D")" 1.

Let

(1.3) Y,=n"*B,Y"_ X,  Q,(A)= Probability (Y,e 4), Ae R,
50 =[[=1fO(n™2B,'D), teR.

Thus Q, is the distribution of Y, and f, its characteristic function. The covariance
matrix of Y, is, by (1.2), the identity matrix. We write

#s(r) = Z’;= 1 E(Xj(r))sa #s,n = (Z:= 1 #s(r))/n’
(14) ﬁs(r) = Z§= 1 E !Xj(r)ls9 ﬂs,n = (Z$= 1 ﬂs(r))/n9
Psn=QU=1 E[B,XVP)n,  Agu(u) = (Lr=1 A"())/n, ueR?,

where x| = (5= 1 x5 (x,0) = Yoy x; y;forx = (x4, -+, x),and y = vy, )
belonging to R¥, and A,"(x) is the cumulant of order s of the random variable
(u, X™). The expressions in (1.4) are, of course, defined for appropriate values of s.
Let Pj(u),j=0,1,2,---,be polynomials in u = (uy, -+, u,) defined purely formally
by equating coefficients of n~#/2 on both sides of

(1.5) exp[Yi2an~ U722, W)j1] = Y2 on 2P (u).

Thus what P;’s are meaningfully defined depends on the set of moments which
are assumed finite. One has

(1.6)  Pow)=1,  Py(u)=123,w)f6,  Py(u) = A4, (u)/24+23 ,(u)/72.

We shall denote by P,(—¢) the function on R* whose Fourier transform has the
value P (it)exp(—|t|*/2) at 7. Note that since the relation

1.7 (it (i)™ exp (—|1]?/2)

0

—_ (—1)S1 1tk .

=(-1) fexp [l(t’ x)] 0x 5t 0x, % o(x)dx,
where ¢ is the standard normal density, ¢(x) = (2m) "2 exp(—|x|?/2), holds for
every k-tuple of nonnegative integers (this may be proved by repeated integration
by parts), P,(—¢)(x) may be obtained ftom the expression P(ir)exp(—|t|*/2) by
replacing each term (it,)* - (it,)* exp (—|t|?/2) by (—8/0x,)* - (—0/x,)*¢(x).
The finite signed measure with density P,(—¢) is denoted by P;(—®). The distri-
bution function corresponding to the measure @ will also be denoted by ®.

The topological boundary of any subset 4 of R* will be denoted by 4. Also the

g-neighborhood A°® of A is defined by

(1.8) A* = {x;|x—y| <& for some y in A}, e>0.
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For ease of reference the definitions (0.3) of the sphere S(x, €) and the oscillation
w,(A) are repeated here.

(1.9) S(x,e) = {y;yeR"|x—y| <e}, xeR¥e>0;
w,(A) = sup {|g(x)—g(»)|; x, ye 4}, AcRk,

g being a given real-valued function on R*. Often times we shall deal with the
oscillation function w,(S (x, €)) on R*into the nonnegative reals for a given positive .
A probability measure P will be said to have support in a set B if P(B) = 1.

ConveNTION. Throughout ¢’s will denote constants, either absolute or depending
on the indicated arguments.

2. Some lemmas. We shall prove five lemmas in this section. Lemma 1 gives a
type of inequality first obtained by Cramér [11] (page 72, Lemma 2).

LEMMA 1. If p3 45, < 00 for some 6,0 < & < 1, and |t| < n?/(2p3/S4?), then
2.1 ,f,,(t)—(l +n_*P1(it))exp(-—lt|2/2)|
é (5/2)pg(+1;’-':§)/(3+6)n—(1 H)/z(ltIs”"‘lt|3(1+6))exP(_lt|2/2)-

PRroOOF. We first prove the lemma for k£ =1. In this case

(22) Bn = /‘;,;}n p3 +4,n = Au2—,513 +6)/2ﬂ3 +d,n
Let
(2.3) g, ) =fOm 3y, U0 =g(r,n-1.

By Taylor expansion (cf. [18],-page 199),
(24) g(r,1) = 1=, 1% (2np, 5) + 3 it)* (61243 )
+621 9B [P UL + )2+ )3 + O MG v,

where 6 is used here and elsewhere for a complex number, not always the same, of
magnitude not exceeding one. In the given range of ¢,

2.5 UG 0| <B5,  |log(1+U(r,0)—U(r, 0| < |U(r, )|
Hence from (2.4) one gets
logg(r, 1) = —u, "1 [(2npy )+ B V(i) (npez o)
26) + OB 3 32, )+ 912+ 00, V1% 2np,.)
+ BB |2t )+ BB 2+ 1)+ 1212,
We now note that for 2 < s < 3+ one has
2.7 B < (BSLTCTD, TR i (B S (B )T,

Summing both sides of (2.6) over r =1, -++, n, and using (2.7) one obtains after
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elementary calculations (note that for any three complex numbers a,b,c,
la+b+c|* < 3(|af*+ B>+ |c|*)
(28) logf,(t) = —12[2+ s (it)*/(6n*ui )

+0GDB3 40|t o/ TG IO = — 224V,
say, so that

(29) fo()—exp(—1%/2) = [exp(V)— 1] exp(—1?/2).
Clearly, .
(2.10) exp(V)—1=V+(6/2)|V|*exp(|V).

Also simple calculations show that in the given range of ¢
(211) |V| < _g" |V|2 < ﬁg("-l6+':$)/(3+6) t|3“+”)/(n(1+’”/2yg(,}+")/2).
Using (2.10) and (2.11) in (2.9) one obtains
(212)  |fu()=[14+n" g, p33(i1)° /6] exp (—1/2)]
< (%)ﬁgg;:)/(3+6)#2—'3'(1 +6)/2n—(1 +6)/2(|t|3 +6+ |t|3(1 +6)) exp(_ |t|2/2)

for |t| < n*/(2p3'$34%). This proves the lemma for k = 1. Note that in this case
P,(it) = 23,(it)/6 = p3 , 17 3(i1)*/6. For the general case, define, for a non-zero ¢
in R¥,

(2.13) Z® = (t,B,X")/|1|.

Then {Z®} is a sequence of independent random variables centered at expectations,
and

(2.14) Cr=-1EZ)in=1,  (|)’Qr=1 EZ")*)/(6n) = Py(it),
G r-1E|ZOP)n £ ps s s=0.
Applying (2.1) (for k = 1) to the characteristic function g, say, of (3 r-; Z®)/n*and
using (2.14) one gets the inequality
(215)  |gu@)—[1+n"*(iv)> Q0= E(ZP)*)/(6n)] exp (—v*[2)|
é (%)pg(*‘16+:)/(3 +5)n—(l +5)/2(|v|3+6 + |U|3(l +5)) exp(_ 02/2)
for |v| < n*/(2p3/{35?). Take v = [¢] in (2.15). Since g,(|¢]) = £,(1), (2.15) reduces to
@1. [ ,
LEMMA 2. If p345,, < 00 for some 8,0 < 8 < 1, and 1| < n*/(4p3/54%), then

(2.16) |1:(0)] < exp (= [1]*/3).

ProOF. For k =1 and é = 0 this is a result of Cramér [11] (page 75, Lemma 3).
Since p;, < p3/{34H9 for § 2 0, (2.16) holds in the given range of ¢, for the case
k = 1. The multi-dimensional case is proved by applying the one-dimensional

inequality to the characteristic function g, defined above. []
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The next two lemmas estimate the effect of smoothing by convolution. We denote
by u*, u”, |u|, the positive, negative, and total variations, respectively, of a finite
signed measure u (u=p* —u", |,u| = p* +p7). The symbol ‘¥’ denotes the opera-
tion of convolution. For a bounded, real-valued function g on R* and a positive
number &, we define (see (1.9))

2.17) g%(x) = sup{g(y); ye S(x, )},
g"(x) = inf {g(v); y e S(x, )}.

Note that g*¢ is lower semi-continuous and g“¢ is upper semi-continuous because
of the (readily verified) equalities

(2.18) {x;9%(x) > ¢} = U{S(x,8); g(x) > c}, ceR!;
g = —(—g)"

In particular, g%, "%, w,(S(-, &)) = g*°*—g"* are all Borel measurable (whether
or not g is measurable).

LeEMMA 3. Let G, be a probability measure with support in S(0, ), P an arbitrary
probability measure, and Q a finite signed measure. For a real-valued, bounded, Borel
measurable function g on R¥, define

(2.19) y(e) = max {| g**d(P— Q) * G,,— [ g"*d(P— Q) * G},
(e) = max {[(¢**— 9)dQ*, [ (g—g"*)dQ*}.
Then, for every positive &,
(2.20) f 9d(P—Q)| = (&) +1(e).
PRrOOF. By definitions (2.19),
¥e) 2 [ g™ d(P-Q)*G,
= fix1 < [[ 4% +x) d(P— Q)(»)] dG (x)
221) = [<.[f ¢ +x)dPG) - [ 9(y) dQ(y)
— (™ (y+x)— 9(») dQ(»)] dG ()
2 [ixi<[J 900 dP() = [ 9(») dO) = [ (g™ (y +x)— 9(»)) dQ* (»)] dG (x)
2 [l <c(J 9d(P=2)) dG(x) =[x <. [[ (97*(») — 9(») dQ* (¥)] dG(x)
=[gd(P-Q)—[(¢***—9)dQ* = [gd(P—Q)—1(e).
Similarly,
—9(e) £ [ g7 d(P=Q) % G, = [|41 <. [[ 9°(y +x) d(P — Q)(»)] dG(x)
(222 = fix1<c[] 9" +x) dP(y) - | 9(») AQ(y)
+(9(n) = g""(y+x)) dQ(»)] dG(x)
<[gdP-Q)+[(g—g"*)dQ* < [gd(P—Q)+(e).
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If [ gd(P—Q) 2 0, (2.21) yields (2.20); if [ gd(P— Q) < 0, then (2.20) follows from
(222). 0

COROLLARY. Under the hypothesis of Lemma 3, the following inequality holds:
(223)  |[gd(P-0Q)| < |fgd(P—0Q)*G,|+[w,(S(-,8)d|(P—Q)*G,|
+J 0y (S(+,2¢))d|Q].

If, further (P— Q) * G(R*) = 0, then
(2.24) fgd(P—0)| £ 0 (RY) |(P—Q)* G| (RY)+[ 0,(S(-,26))d |Q].

PROOF. It is easy to see that

(2.25) &) £ |[gd(P—Q)*G,|+[ 0, (S(-,e)d|(P-Q)* G,
and that
(2.26) 2(e) < J o (S(-,26)) d Q|-

Using these estimates in Lemma 3 one gets (2.23). If (P— Q) * G,(R*) = 0, then from
the definition of y(e) it follows that

(2.27) 1(e) £ 0(RY) [(P- Q)+ G, | (R).

Inequalities (2.26), (2.27) yield (2.24). []

The next lemma is similar to Lemma 3 in content. Given any probability
measure G we denote by G, the distribution of the random vector ¢X, X having
distribution G. In this notation G, of Lemma 3 may be regarded as arising from a
G with support in the unit sphere. Given any real-valued function g on R* we
denote by g, the translate of g by u, i.e.,

(2.28) 9u(x) = g(x+u).

For a given probability measure G, and a constant o’ satisfying
(2.29) <o <1,

one can find a constant « such that

230) [ie1<ae 4G X) = [ <2 dG(x) 2 .

LEMMA 4. Let P be a probability measure and Q a finite signed measure. For a
real-valued, bounded, Borel measurable function g on R¥, define

(2.31) y,(e) = sup {max (|f g,*d(P— Q)= G,),|J g,>*d(P— Q) % G,); u e R¥},
1,(¢) = sup [max {[ (9,°**— 9,0 d|Q|, [ (9.— 9."***) d|Q|}; u e R¥],

where G is any probability measure, o is chosen to satisfy (2.30). Then one has, for
every positive &,

(232) [fgd(P-0Q)| = 2w = 1) [11(e) +71(e)]-



248 R. N. BHATTACHARYA

This lemma and the following corollary are proved in [5] (Lemma 8 and relation
(2.27)).

COROLLARY. Under the hypothesis of Lemma 4 one has
(2.33) |[gdP-0Q)| = 2 —~1)"[sup {|f g, d(P— Q) * G|+ [ w5 (S(+, 0¢))
“d|(P-Q)*G,|;ueR*} +sup {[ 0, (S(-,20e))d|Q|;u e R¥}].
Lastly, we shall need the following lemma.

LEMMA 5. There exists a probability measure H, with support in S (0, 1) and having
a characteristic function { satisfying

(2.34) [¢@)| £ a(k)exp(—|t[h), teR*,
PRrOOF. By a result of Ingham [17], there exists a probability measure H on %'

such that

(2.35) [ClndH =1, |Jexp(itx) dH()| < a(k) exp(—|*), teR'.

Let H, be the product measure on (R¥, #*), each coordinate measure being H. []

3. Main results. We continue to use the notation of Section 1.

THEOREM 1. If p3 45, < 00 for some & > 0, then for any bounded, Borel measurable
function g on R¥, the inequality

G |fgd(Q,—)| = ek, 5w (R34 CHIn " + [ w,(S(, &) dD
holds with &, = c(k)p3/359n"* logn.?

Proor. Without loss of generality we assume 0 < < 1. Let Z be a random
vector with distribution H, of Lemma 5. Let H, denote the distribution of #Z for
positive 7. In Lemma 3 take P = Q,, 0 = ®, ¢ = pn, G, = H,*?, where p is a positive
integer and H,*? is the p-fold convolution of H,. Since (Q,—®)* G(R*) =0, one
has, by (2.24) (corollary to Lemma 3),

(3.2) If 9 d(Q—@)| £ 0,(R)[(Qs—D) * G| (R + [ w,(S(+, 2¢)) d.

Now

(33 |(@u= D)% G| (R £ [(Q@u—D®—n"*P (—©)) * G| (R +n"*|Py(— ®)|(R).
One can show (cf. [5], Lemma 7) that

(3.4) |P1(—®)| (R¥) < h(k)p3,,-
We now estimate |u,| (RY), where
(3.5) ty = (Qy—=@—n"*P(—D))*G,.

2 One may take 6 = 0 if k = 1 or 2 (see [5]). This is true for all k if { X"} is i.i.d. This and some
other recent results in the i.i.d. case are contained in the author’s article “Recent results on refine-
ments of the central limit theorem” in the forthcoming Proc. Sixth Berkeley Symp. Math. Statist.
Prob.
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For r > 0,

(3.6) |a] (R¥) = |11a] (S0, 7))+ |1, (R*— S(0, 7).
Now

(3.7 | 4a| (R*—5(0, 7))

S(Qu*xH*+®xH,*)(R*—S(0,r))+n"* |P1(—<I>)| * H *!(R¥).
We shall later choose r, p, and # so as to satisfy

(3.8) , r>2pn,

and, consequently,

39 H, *?(R*—S(0,r/2)) = 0.
Therefore,

(3.10) Qn* H*(R“~S(0, 7)) < Q,(R*~S(0, 7/2)),

@ » H,*"(R*—5(0,1)) < ®(R*—S(0, 7/2)).
Now it is easy to show that
G.11) D(R*~5(0,7/2)) < (c; (k) exp (—r?/8k))/r.

Also one can show (cf. [5], relation (2.48)) by using the Berry-Esseen theorem (cf.
[14], page 43, Theorem 1) that

(3.12) Qu(R*=5(0,7/2)) < (¢1(k) exp (— r[8k))/r+cy(k)p3 nn ™+,
Using these estimates and (3.4) in (3.7) one obtains
(13) || (R*~S(0, 1) < (2¢,(K) exp (= r2[8K))/r+c,(k)p3 , n~* + h(k)p3 nn~%.

It remains to estimate |u,| (S (0, r)). Now u, has an integrable Fourier transform
¢, given by

(.14 &0 = (fu()—[1+n"*P (in] exp (= [1]*/2))¢7(n), teR,

where { is the characteristic function of H,. By the Fourier inversion theorem Ha
has a density g, given by

(3.15) 4(x) = 2n) *fexp [ —i(t, x)]- £,() dt, xeRk,
Hence

(3.16) - |4 (S0, 7)) = [y <1 |2:(%)| A < e3(R)PF(Ly +1, + 1),

where

Iy = [ smosiaotrgrony | £ =[1+n"*P (i) exp (- |12/2)| dt,

3+6,n
(3.17) I, = qu]>n1/6/(2p;/§g;6))} |f,,(t)C"(nt)| dt,

I, = j(]t|>"l/6/(2pl/(3+6)» Il +n'*P,(it)| exp(— |t|2/2) dt.

3+6,n
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By Lemma 1,

(3.18) I, £ cy(k)p3ls G +oy - +ai2

Since one may assume that

(3.19) nt2p33n") 2 1

(in the contrary case (3.1) is trivially true), one easily obtains

(3.20) I £ cs(k)p3L /3 +p-(+a)12

By Lemma 2,

(B21) I = > mrszpiss oy XD (= [1213) A1+ [ 1 2w 2yap3is +onyy | (D ()] dt.

3+6,n 3+6,n
The first integral is smaller than
(3.22) ca(k)p3Us I+ o ro2,
and the second is, by Lemma 5, smaller than

(3.23) 14 = I(Itlgnl/z/(4p3/(3+d))) oc”(k) exp(-— |’1t|*p) dt.

an

We now choose

(3.24) n = 16(loga(k)+ k)*p343,9n 4,
p = [logn]+1,

where [x] denotes the integer part of x. Elementary calculations now yield

(3.25) I, < c;(k)n~*?log™*n,

Using estimates (3.22) and (3.25) in (3.21) one obtains

(3.26) I, < cg(k)p3 L DIC+0p =+ 4 o (K)n~*/2 log™* n.
The estimates (3.18), (3.20) and (3.26), when used in (3.16), give
(3.27) 1] (S0, 1) S ek, 8)p3 I+ Prkn ™ 4 log ™.
Now choose

(3.28) r = (8klog(n+1))*.

Then (3.13) and (3.27) give

(3.29) ] (RY = co(k, )p3 43 2/C +Om 4,

Finally, making use of (3.29) in (3.2) one obtains (via (3.3) and (3.4)) the desired
inequality (3.1). Note that ¢ = py = c(k). p3/$5n"*logn by the choice of # and p
in(3.24). [
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REMARK 1. If g in Theorem 1 is such that
(3.30) f o (S(+,€))d® = O(e), e—0,
then
(331) [Jgd(Q,—®)| < ek, B)eo,(RIPILIICn™4 4 ¢4k, 9)p3/0n ™ Hlog m.
For the ®-uniformity class & (®; c, d, ¢,) defined by (0.5) one has
(332 sup{|fgd(Q,—®)|; g€ F,(®;c,d,z0))
< c(k, 9)ep3 sl T T+ c(k)(d +cleo)p3S3 5 n Flogn.

The term involving &, is introduced to take care of those integers for which
&, > &; note that |[gd(Q,—®)| < ¢ for all g in the class #,(®; ¢, d, &). If we
denote by /,(®; d, ¢,) the class of all Borel sets A4 satisfying (cf. [5], Section 1)

(3.33) D((0A)) = de, O0<e=c¢g,

04 denoting the boundary of 4, then the class of all indicator functions of sets in
this class is contained in & ,(®; 1, d, &,).
Hence

(3.34)  sup{|Q(A)—D(A)|; Ae ,(D;d, &)}

< ek, B)p3Yat 4 4 e(k)(d+ 1eo)p3lG 5 Pn~Flogn.
For suitable ¢ and d these two classes include most functions and sets of interest.
But (3.1) provides an upper bound for every ®-continuous g. By a variant of a
characterization of uniformity classes of functions due to Billingsley and Topsee
[8] (also see [5]), & is a ®-uniformity class of functions if and only if
(3.35) (i)  sup{w,(R";g9eF} < 0,

()  limsup,, {0, (S(-,e)d®;geF} =0.

Hence (3.1) provides effective uniform upper bounds to errors of normal approxi-
mation over arbitrary ®-uniformity classes.

REMARK 2. An error bound different from (3.1) is given in [5] (Theorem 1).
According to this

(3.36) 1 9d(Q,—®)| < ¢'(k, o (RYp3 LD+ O~
+c'(k)sup {0, (S(-,,))dD;ueR"},

where a, = ¢”(k)p331¥n"%. Although (3.36) provides a precise upper bound
O(n™*) (if {p3+5.,} is bounded) for several interesting classes of functions and sets
(cf. [5], [20]), we shall show by an example now that there are Borel sets 4 for
which ®((04)°) = O(e) as ¢ goes to zero, while sup {®((d(4 —w))*); ue R*} =1 for
every positive ¢; thus for such a set A4, (3.36) is useless, while (3.1) provides an
upper bound O(p34 /G +)p=+1ogn).
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ExampLE. In R! let
(3.37) A= Uz, U2 [r+2ifr, r+ Qi+ 1)/r]},

where [(r—1)/2] is the integer part of (r—1)/2. It is easy to see that for every
positive ¢

(3.38) sup {®((0(A—u)));ueR¥} =1, but
(3.39) O((0A)) < e(Qr)"* Y2 rexp(—r?/2) = de, say.

REMARK 3. It is clear that if g has a compact support, then one may take 6 = 0,
in Theorem 1. For this case one will have to replace (3.2) by (see (2.23))

(340) ”g d(Qn _(I))l é U g d(Qn - (I)) * Ga' +Iwg(S( Ty 8)) d |(Qn _(I)) * Ge|
+ [y (S(+,2¢))d®,
and (3.27) by (use Lemma 1 and Lemma 2 with 6 = 0)

(3.41) |ﬂn| (S(O’ r)) é cl 1(k9 g)p3,n n—*’

where r is such that g vanishes outside S(0, r). A similar remark applies to the
inequality (3.36). It is not known however, whether the factor logn in the
expression for ¢, in Theorem 1 may be removed or not. If the sequence of
characteristic functions {f} obeys Cramér’s condition: for all positive n

(3.42) sup {|fO@)|;|t| > mr=1,2--} <1,

then even without the factor logn in ¢, (i.e., with p = 1 in (3.24)) one may easily
show that I,, defined by (3.17), is of the smaller order of 1/n as n goes to infinity,
so that one obtains (3.1) with ¢, = c(k)p3/3:9n"*. Consequently, logn may be
removed from the expressions (3.31), (3.32), and (3.34). For the independent and
identically distributed case (3.42) is equivalent to:

(3.42) limsupyj- o, | f()| < 1.

REMARK 4. There are several well-known metrics which metrize the topology of
weak convergence of probability measures on (R¥, *). We mention here the Lévy
distance d,, the Prokhorov distance dp, and the bounded Lipschitzian distance
dp; defined by

dy(Q,Q) =inf{e;e >0, Fy(x —ee)—& < Fp(x)
S Fy(x+ee)+¢ forall x in R¥},
(343)  dp(Q, Q) = inf{e;e > 0,0(4) < O'(4%)+¢ and
Q'(A) < Q(A4% +¢ for all Borel sets A},
dpi(Q, Q) = sup{|f gd(Q—Q")|; 9.|9(x)—g(»)| < |x—y| forall
x,y in R, 0 (R") =1},
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where Fy, Fy are the distribution functions corresponding to Q, Q’, respectively,
and e = (1, 1, -+, 1) is the unit vector in R¥. The fact that d; metrizes the topology
of weak convergence of probability measures in R' is proved in [16] (page 33,
Theorem 1); the proof for R* is entirely analogous. A proof of the corresponding
assertion for dp (in a separable metric space) may be found in [9] (page 237-238).
Dudley [12] (Theorem 12) shows that dg; also metrizes this topology (in a separable
metric space). We now estimate these distances between Q, and ®. Note that in
view of Bergstrom’s extension (cf. [1]) to R* of the Berry-Esseen theorem, one has

(3.44) d(Q,, @) < sup {|Fp,(x)—P(x)|; xeR¥} = O(n™?), n— oo,

if {p;™} is a bounded sequence. This estimate is precise. The estimate (3.44) may
also be obtained under weaker hypotheses (cf. [5], (3.19)). It has been shown in [5]
(Section 3, Application 2) that under the hypothesis of Theorem 1,

(3.45) dp(Q,, ®) = O(n™%), n - .
To estimate dp we note that (cf. [13], Proposition 1)

(3.46) dp(Q,0") =inf{e;e > 0,0(4) < Q'(4° +¢ for all Borel sets A}.

Also, note that, by (2.21), for every bounded Borel measurable g,

(3.47) f9d(@-0Q) = [g7°d(Q—-Q)* G, +[(g"*~g)dQ,
for probability measures Q, Q'. Taking g = I,, where A is a Borel set, one obtains
(3.48) 0(A) = Q'(A) < (Q—0)* G(A)+Q' (A~ A).

Now take Q = Q,, Q' = @, and G, as in Theorem 1. From the estimates obtained
in the course of proving Theorem 1, one now has, for every Borel set 4,

(3:49) 0,(A) = 0(A) < ¢15(k, 0)p34 5,0 P~ E + D(A™ - 4),

where ¢, is as in Theorem 1. Let ¢, 3(k, 8) = max {c(k), ¢;,(k, 6)}.
Then

(3.50) 0,(4)—D(4) < &, + DA™ — A), where
(3.51) &, = c13(k,0)p3 /G *+dp % ogn.

It now follows from (3.46) and (3.50) that

(3.52) (0, ®) S &

The next theorem provides an asymptotic expansion for a large class of functions
under Cramér’s condition (3.42)". For a given triplet (c, d, ¢,) of positive numbers,
we define

(3.53) F *(®@;c,d, ) ={g;9.,€F (D;c,d,e,) forall ueR"}
={g;0,(R") L ¢,[ 0, (S(-,8)d® < de forall ¢ in
(0,¢0] and for all u in R*}.
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Thus Z  *(®; c, d, &) is the largest translation-invariant subclass of # (®; ¢, d, &).
We consider a few examples.

ExAMPLES. Let & be the class of all measurable convex sets of R*. For a suitable
constant d depending on k (cf. [20], Appendix A, or [5], Application 1), the class
of all indicator functions of members of % is contained in & ,*(®; 1, d, ¢;) for
every positive &,. The bounded Lipschitz class L(c, d) of all functions g satisfying

(354 wRY=Zc, |g(x)—g(y)| < d|x—y| forall x and y in R,

is contained in & ,*(®; c, 2d, &,). The class of all indicator functions of sets in
R?, each with a boundary contained in a rectifiable curve of length not exceeding a
given number /, is contained in &, *(®; 1,2/+4,1) in R* (cf. [10], Section 9,
Example 7).

The proof of the theorem below makes use of Lemma 4 and an important
estimate of Bikjalis [8]. We shall consider only the identically distributed case. The
symbol ®, will denote the distribution of ¢Z, where Z, has distribution ®.

THEOREM 2. Let {X"} be a sequence of independent and identically distributed
k-dimensional random vectors each with a zero mean vector, a covariance matrix 1
(the k x k identity matrix), and a finite moment p; = E IX ‘1)|‘, s being an integer not
smaller than three. If Q, denotes the distribution of (Y r—y X®)/n*, then for every
triplet of positive numbers (c, d, &),

(3.55)  sup{|[gd[Q,—Y5=in PP~ ®)][;9€F *(®;c,d, &)}
= o(n=~2)/2), n— oo,
provided XV obeys Cramér’s condition: limsupy,,., |f(t)| < 1.

Proor. It has been shown by Bikjalis [8] (relations (15), (16), (22), (28), (29)
combined) that

(3.56) I[Qu= Y523 n 2P (~®)] 5 @] (RY) = o(n™~D12), n— oo
for a suitable ¢ satisfying
(3.57) g=o(n" 2%, n— 0.

By Lemma 4, for every bounded Borel measurable g,
(358)  |[gd[Q—Yizin 2P (~®)]| £ @2~ 1) [1@)+1.@)],
where, denoting by v, the signed measure Y 523 n”//*P(—®), one has
(3.59) 71(6) = sup {max (| 6, d(Q,~ )+ ®);ue RY
2 0 (RY|(Qu—va) * @[ (R) = o(n™ 7212, n— 0,
by (3.56). The inequality in (3.59) holds because
(3.60) (Qn—V)(R") = 0.
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Also,

(3.61) 1,(e) = sup[max {[(¢,5** — g.) d|v.|, [(9u— 9."**) d|v,|} ;u € R¥],
so that, for ge &, *(®; ¢, d, &), one has
(3.62)  74(e) < sup {[ o, (S(+,206))d(®+) 523 n™I?|P(—®D)|);ueRY}

< 2dae+sup {[ w, (S(+,20))d(Y 523 n~ 2 |P(—D)|);u e R¥}.
Now (see the definition of P;(—®) in Section 1) for r = (3slogn)?,
(3.63) IS(O,r) @, (S(+ , 2ae)) d(Zj;zl n~I2 |Pj(_q))l)

< c1a(n~Hp(1+7C72) [y (S(+, 20e)) dD < ¢y 5(k)p, de,
and
(3.64) JRk -5(0,n @, (S(* » 208)) d(Zj 1 in=i2 IPj(_q))I)

S 0, RYY523n™ 2| P(—D)|(R*-S(0,)) =o(n"*?), n- oo.
Hence
(3.65) 7,(e) = o(n~ = 212), n— co.
One now obtains (3.55) by using (3.59) and (3.65) in (3.58). []
REMARK 1. As an application of Theorem 2 one has

(3.66)  sup{|Q(C)=Y33n 2P (—B)C)|;CeB} = o(n™ D),  n—w,

under the hypothesis of Theorem 2. This is an improvement on a previous result
of Ranga Rao [20] (Theorem 5.3.2). A result similar to Theorem 2 for indicator
functions has been proved by Von Bahr [22] (Theorem 3(b)) under more restrictive
assumptions. When applied to distribution functions (i.e., taking the supremum in
(3.66) over the subclass of infinite rectangles), one obtains a previous result due to
Bikjalis [8] (Teorema 2) and Von Bahr [22] (Theorem 2). The present author has
now been able to prove that one may replace & ,*(®; ¢, d, ¢,) by the larger class
F (®; ¢, d, &,) in Theorem 2. The proof, however, is based on somewhat different
techniques, and will be given elsewhere.

REMARK 2. If X has a distribution with a non-zero absolutely continuous (with
respect to Lebesgue measure) component, then Cramér’s condition is satisfied.
However, in this case the following much stronger inequality holds under the same
moment conditions as in Theorem 2:

(3.67) |Q,— Y3525 n772P (=~ ®)|(R*) = o(n~C~2/2), n— 0o.

For k = 1, this was proved simultaneously by Petrov [19] (Theorem 5) and Bikjalis
[6] (Teorema 1). For arbitrary k it has been proved by Bikjalis [8] (Teorema 3).

Theorem 2 obviously holds (and so does Theorem 1) if we allow g to be complex-
valued, and redefine & ,*(®; c, d, ¢,) appropriately. In particular, if one takes
g(x) = exp [i(¢, x)], xe R¥, then one obtains

(3.68) |70~ [X5=3n 2P (] exp (=[] = o(n™C"2),  n— o,
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for all 7 in R*. However, much more refined expansions of the characteristic
function f,(t) are available (cf. [16], page 204, Theorem 1 for k =1, and [20],
Theorem 5.4.1 for arbitrary k), under the same moment conditions as in Theorem
2, and without the assumption of Cramér’s condition (such expansions are, in fact,
used to prove (3.56); note also that Lemma 1 of Section 1 is an expansion of this
kind). It is, therefore, natural to seek out functions g for which asymptotic
expansions hold whatever be the type of distribution of X ), The theorem below is
only a preliminary result in this direction. It does not imply (3.68).

THEOREM 3. Let {X} be a sequence of independent and identically distributed
k-dimensional random vectors, each with a zero mean vector, a covariance matrix I
(the k x k identity matrix), and a finite moment p, = E IX “’|‘ Jfor some integer s not
smaller than three. Let Q, be the distribution of (3r-, X)[n*. Then for a real-
valued, integrable function g on R* whose Fourier transform ¥ satisfies

(3.69) fles2 |¥()| dt < oo,

the asymptotic expansion

(3.70) f9d[Q,—Y3523n I2P (= ®)] = o(n~C~212), n— o
holds.

PRrOOF. We need the following lemma (cf. [20], Theorem 5.4.1).
LEMMA 6. For |t| < n*(1/85)p, ™", the characteristic function f, of Q, satisfies
BT [fD-(C5z3n~ 2P i) exp (= 12/2)]
< cy6(k, 5) 0(n)n = C=D2p 36D 1]+ |1] 36~ D) exp (— |1]?/4),
where 6(n) goes to zero as n goes to infinity. Now by Parseval’s formula
(3.72) [gd[Q,—35=8n /P~ ®)]
= (2n) Y= == n /2P (in) exp (—|1]?/2)] d1.

The integral on the right is estimated first over the region {|1| < n¥(1/85)p,”**} by
Lemma 6. This is of the order o(n~“~2/2), Over the complement of this region it is
bounded above in absolute value by

(3.73) 21 [ (> w8510, - 375y | F(D)] dE
FO T [ > wh1/sgpe-2rmy | 2525 0 TIPP (i) exp (= |1]2/2) d.

The first integral is o(n~¢~2"?) because of (3.69), while the second integral is
o(n~©7?/2) because of the presence of the exponential term. []

REMARK. Condition (3.69) implies that g has bounded, continuous derivatives of
all orders up to (and including) s—2.

ExampLes. The functions g,(x)=exp[—YF;_,a;(x;—m)(x;—m;)] where
4 = ((a;))) is a positive definite symmetric matrix and m = (my, - -+, m,) is a given
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vector in R¥, g,(x) = []%,; (1 +x,* ™", and any function whose Fourier transform
has a compact support (e.g., [ = (sin®x;)/x;%) meet the requirement (3.69).
Before stating the final result let us observe that one cannot expect the error
|| 9 d(Q,—®)| to be of order o(n~?) if the second term n~*[gdP,(—®) in the
asymptotic expansion (whenever appropriate) does not vanish. It does vanish,
however, if g is symmetric (about zero) in each co-ordinate for every set of values
of the remaining co-ordinates, in which case we shall say that g is symmetric. It
also vanishes if the third order moments of X (i.e., E(X;VX;VX,™) for all
i,j, 1) vanish (e.g., if X* and —X™ have the same distribution). Esseen [14]
(Theorem 1, page 92) has shown that the error is of the order O(n~***V) yniformly
over all indicator functions of spheres centered at the origin provided E|X®)|* is
finite. Theorem 4 below provides some classes of functions (under varying
restrictions on {X ®}) for which the error of normal approximation is O(n™?).

THEOREM 4. Let {XP} be a sequence of independent and identically distributed
k-dimensional random vectors each being centered at expectation, and having the
covariance matrix I and a finite fourth moment p, = E|X ®|*. Let g be a real-valued,
bounded, Borel measurable function on R*. Let also the following hypothesis (H)
hold: either g is symmetric, or all the third order moments of X V) are equal to those
of ®. Then each of the conditions (a), (b), (c) below implies

(3.74) [fgd(Q,—®)| =0(n""), n— .
(a) g is integrable and has an integrable Fourier transform ¥ satisfying

(3.75) Taase |t [®@®]dt = 0(c™Y), ¢ — .
(b) Cramér’s condition (i.e., lim supy,, ,, | f*(#)| < 1) holds, and

(3.76) sup {[ w, (S(,¢€))d®;ueR*} = O(e), el0.

(c) The distribution of the random vector X *) has a non-zero absolutely continuous
component.

PRroOF. (a) By the hypothesis (H) and Parseval’s formula,
@B7)  [gdQ,—®) =[gd(Q,—P—n"*P,(-D))
= 2m) *[W(= O[S — (1 +n"*P,(ir) exp (- |t]|*/2)] dt.

Over the region {|¢| < n*(1/32)p,~*} the last integral is of the order O(n™?), by
Lemma 6. Over the complement of this region it is bounded above in absolute
value by

(3.78) (Zﬂ)—kj(l,l>,,x/z(1/32)p4-3/4) |lI"(t)| dt
+(2n)—kj(|t|>n1/2(1/32)p4"3/“} |1 + n_%Pl(l.t)| exp(— |t|2/2) dt.

The first integral is of the order O(n™!) because of (3.75), and the second integral
is of the order o(n~!) because of the presence of the exponential term.
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(b) In this case (3.74) is a consequence of Theorem 2 and the first equality in
3.77).

(c) In this case (3.74) follows from the first equality in (3.77) and Remark 2
following Theorem 2. []

REMARK 1. If one assumes, instead of (H ), that all moments of order s and less
(s is an integer larger than two) of X ¥ coincide with the corresponding moments
of @, then under the condition (b) one has, by Theorem 2,

(379 sup{|fgd(Q,~®)|; g€ F 1 *(®;c,d,e0)} = o(n~C7P'),

since the polynomials P (it) (see (1.5) and remember that every cumulant of @ of
order three or more is zero), and, hence, the corresponding signed measures
P(—®), vanish identically for j = 1,2, -+, s—2. If, in this case, (c) holds, then
(by (3.67),

(3.80) |Q"-q)| (R¥) = o(n= G2/,

REMARK 2. All the results in this article may be stated for convergence to a
normal distribution ®; with an arbitrary positive definite covariance matrix X.
This may be done directly by using expansions of characteristic functions in terms
of the characteristic function of such a normal distribution (cf. Bikjalis [7]), or by
noting that (cf. [5], Section 4) if {Q,} converges weakly to @y, then for every
bounded, measurable g, one has

(3.81) J9d(Q,—®5) = [gT ™' d(P,—- D),

where {P,} converges weakly to ®, and g7 ~'(x) = g(T ~!(x)), T being a linear
operator satisfying

(3.82) T'T =31
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