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GROUP CODES DO NOT ACHIEVE SHANNON’S CHANNEL
CAPACITY FOR GENERAL DISCRETE CHANNELS!

By R. AHLSWEDE

The Ohio State University

0. Summary. Elias [9], [10] proved that group codes achieve Shannon’s channel
capacity for binary symmetric channels. This result was generalized by Dobrushin
[7] (and independently by Drygas [8]) to discrete memoryless channels satisfying
a certain symmetry condition and having a Galois field as alphabet. We prove that
group codes do not achieve the channel capacity for general discrete memoryless
channels. It therefore makes sense to introduce a group code capacity and to talk
about a group coding theorem and its weak and strong converses. The group coding
theorem and its weak converse can be established for several reasonable channels
such as the discrete memoryless channel, compound channels, and averaged
channels. An example of a channel is given for which Shannon’s capacity is positive
and the group code capacity is zero. Using group codes, one can therefore expect
high rates only for channels with a simple probabilistic structure.

1. Preliminaries.

(A) Channels, probabilistic codes and errors. Let X = {1, -+, a} be the “input
alphabet” and Y = {1, ---, a} be the “output alphabet” of the channels we shall
study below. Let X' = X and Y'= Yfort=1,2,---. By X, = [ [/~ X we denote
the set of input n-sequences (words of length n) and by Y, = [[/=, Y* we denote the
set of output n-sequences. Let S be any countable set, and let € = {w(: | : |s) | seS}
be a set if (a x a)-stochastic matrices w(: | . |s). For every se.S we define a discrete
memoryless channel (d.m.c.) P(: | : Is) by

(L.1) Py, |x,|$) = [T wO*' %] 9)

for every x, = (x*, ---, x")e X, and every y, = (3, -+, Y€ Y,.
Consider now the class of channels

(1.2) %, ={P(-|*|9s)|seS}.

If we are interested in the simultaneous behavior of all these channels we call this
indexed set of channels a compound channel [18]. (Sender and receiver communi-
cate without knowing which individual channel actually governs the transmission
of any one n-sequence.) Given any probability distribution ¢ on S, then we can
define an averaged discrete channel P(: | *) by

(1.3) P(y,| %) = Y55 P(ya| X, |5) forevery x,eX,, y,e¥,,
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([11, [2]). Throughout this paper we shall be concerned only with channels defined
under (1.1), (1.2), (1.3).

(1.4) A code (n, N) is a system {(u;, 4)|i=1,--, N}, where u;eX,, 4,cY,,
A;nA; = fori#j. :

(1.5) A code (n, N) is a A-code (n, N, A)

(a) for the d.m.c. P(-|+|s), if P(4;ju|s) = 1—Afori=1,-, N.
(b) for the compound channel {P(: |- |s)|se S}, if

P(4;|u;|s)21—A for i=1,--,N and forall seS.
(c) for the averaged channel P(: | ), if
P(4;|u)z1-4 for i=1,---,N.
(1.6) A code (n, N) is a A-code (n, N, 7)

(a) for the dm.c. P(-|-|s), if IINY, P(4;|u;|s) = 1-1.
(b) for the compound channel {P(-|-|s)|se S} if,
infscs I/NZ?=1 P(4, | U; l s)z1-1

(c) for the averaged channel P(:|-), if 1/N Y™, P(4;|u)=1—-1
In case (1.5) we talk about maximal errors and in case (1.6) we talk about average
errors. In probabilistic coding theory for a single channel it is unimportant whether
we work with average or with maximal errors (cf. [17], Lemma 3.1.1). However,
for two channels treated simultaneously it makes a difference, as was shown in [1],

Example 1, and also in [4]. For group codes the difference becomes even more
essential.

(B) Shannon’s channel capacity.
(1.7) A number C > 0 is called (Shannon’s) capacity of a channel, if

(a) for any 6 >0 and A(0 <A < 1) there exists a A-code (n, 2"€-?, 2) for
all sufficiently large n, and if (b) for any § > O there exists a 4 = A(8) such that
for all sufficiently large » there does not exist a A-code (n, 2"€*9, }).

Part (a) is called coding theorem and part (b) is called the weak converse of the
coding theorem.

(1.8) Ciis called (strong or Wolfowitz’s)‘ capacity if (a) holds and (b) is replaced by

(b) for any 6 >0 and A(0 < A < 1) there does not exist a code (1, 2€*9, })
for all sufficiently large ».
(a), (b') imply (a), (b).

(b") is called the strong converse of the coding theorem. Analogous definitions can
be given for (n, N, ) codes.



226 R. AHLSWEDE

(1.9) Let N(n, A) be the maximal length of a (n, N, 1) code and let N(n, 1) be the
maximal length of a (n, N, 1) code for the channel in question. (a), (b) are equivalent
to

(1.10)  inf,, ¢ liminf,,, n~'log N(n, 1) = inf, o limsup,., n~'log N(n,A) = C.
(a), (b’) are equivalent to
(1.11) liminf,,,n"'log N(n,4) = limsup,,,n~ 'logN(n,A) = C forall A4,

0<i<l.
In case (b’) does not hold, one can ask whether

(1.12) lim,_, , n~ ' log N(n, ) = C(J) exists for certain A’s. C(4) was introduced in
[17]. In [4] it is shown that for compound channels lim,_,, #~ ! log N(n, 1) = C(%)
exists except for at most finitely many 1’s and that C(1,) # C(4,) for certain values
of Z,, 1,, whereas always C(1) = C [16].

(C) Algebraic codes. The main criteria for the “goodness” of codes (n, N) for
channels are

(1) low error probability

(2) large code length

(3) short encoding and decoding procedures.

It is in general impossible to do best in all three respects and therefore one has to
compromise between the different aspects. Various approaches have been given.
Probabilistic coding theory usually is concerned with coding procedures which give
optimal code length for fixed error probability or optimal error probability for
fixed code length. The main goal of algebraic coding theory has been the construc-
tion of codes which satisfy (3) and which have certain “‘error correcting abilities.”
A central role in the theory is played by group codes (cf. [6], [13]), which were
introduced by Hamming [12] and Slepian [14]. We repeat now very briefly some of
the basic definitions.

(1.13) We assume that X and Y are Galois fields with a = p® elements and we
identify X, (respectively Y,) with the vector space of dimension »n over the Galois
field X (respectively Y), i.e., we assume that for

x, =(x',-,x"eX,, X, =(x',",xeX, AieX;
(6 X (FL o, ) = (LR e, AR, A e, x7) = (A, AX),

where the sum x’+ %’ and the product Ax’ are understood in the sense of the Galois
field X. '

(1.14) A code (n, N) is said to be a pseudo group code if

(a) the set {u,, -, uy} forms a subgroup of the additive group X,
(b) the A4;’s are arbitrary.

Denote by ¢ the canonical isomorphism between X, and Y,: for x,€ X,, ¢x, = »,,
where y = x'fort=1,-,n.
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(1.15) A pseudo group code is a group code if there exists a system of repre-
sentatives (called leaders) {/;, -+, .} of the cosets of {ou,, -, puy} such that
A;={li+ou; -, Ip+ou} foralli=1,--+, N.

(1.16) A group code is called a linear (or parity-check) code if {u,, -, uy} is a
subspace of X,,.

(In case a = p every group code is also a linear code.) The additional algebraic
structure required for group codes and especially for linear codes allows decoding
methods which need fewer computational steps (cf. [6]).

The question remains: Given a channel (for instance one of those described in
Section 1(A), how well can we do with group codes and with linear codes with
respect to (1) and (2)? As a measure for (1) and (2) we introduce the following
quantities:

(1.17) N,(n, ) = maximal length of (n, N, A)-group codes
N,(n,7) = maximal length of (n, N, Z)-group codes.

The corresponding quantities for linear codes and for pseudo group codes shall be
denoted by

Ny(n, 2), N(n, ), N (n, %), N (n, 7).
C,* =infy,olimsup,,, n~'log Ny(n, 2).
C,” =inf;s,liminf,,,n"'log N,(n, ).
(1.18) C,* =inf,,,limsup,_ ., n~'log Ny(n,1).
C,” =inf,, ¢ liminf,_, , n~'log N\(n, A).
C,* =inf,,olimsup,,, n~'logN,(n, A).
C,” =inf;;liminf,,, n~'log N (n,A).
(1.19) Replacing 4 by 1 in (1.18) we get quantities
c*.c, ,¢*¢c ,C,*C, .
(1.20) In case C,* = C,” we talk about the group code capacity (for maximal
errors) C,and in case C,* = C,~ about the group code capacity (for average errors)

C,. Analogously we define C,, C,, C,, C,, and we introduce the names linear code
capacity and pseudo group code capacity. .

2. Auxiliary results. Dobrushin defines in [7] a channel with invariant transition
probabilities (c.i.t.p.) as a d.m.c. given by a matrix w, which satisfies

.1 w(j|i)=w(j+k|i+k) forall ij,ke{l, -, a}.
We state his main result in our terminology as

LEMMA 1. Let a = p* and X = GF(a). For a c.i.t.p. the equalities C = C, = C, hold.
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Lemma 1 generalizes a theorem of Elias [9], saying that C = C, = C, for binary
symmetric channels.

LEMMA 2. Let a = p* and X = GF(a). For a c.i.t.p. the equalities C = C,; = C, hold.
This result is due to Drygas [8]. It implies Lemma 1.
(2.2). We call the stochastic matrix (W(i|j)) i=1,",a;, j=1,-,a aary
symmetric, if
wijli)=1-¢ for i=}j,
= for i+#j.
a—1
(2.3). The d.m.c. P(- | -) determined by w(-| ) is called an g-ary symmetric channel.
(2.4) We say the (n, N) code {(u;, 4,) | i=1,--+, N} is a strict maximum likeli-
hood code (s.m.l.c.) with respect to P(-|), if
A= {y,,[y,,eY,, and P(y,,|ui) >P(y,,|uj) for j#i} for i=1,---,N.
(2.5) w(: || s*) is dominated by the a-ary symmetric matrix W(- |-) if w(ii[s*) 2
l—gfori=1,---,a.
Accordingly we say P(-|-|s*) is dominated by P(-|-) if w(-|-|s*) is dominated by
Wi ).
After these preparations we can state

LemMA 3. Let P(-| - |s*) be dominated by the a-ary symmetric channel P(:|-) and
let {(u;, A)|i=1,"-, N} be a s.m.L.c. with respect to P(:|-), then

(2.6) P(A;|u;|s*) 2 B(4;|u) for i=1,--+,N.
This was proved in [3], Lemma 1.

(2.7) As usual, the Hamming distance between n-sequences is defined as
h(x,, y,) = number of components in which x, and y, are different. We shall write
h(x,, y,) = h(x,), if y, is the zero vector, and call A(x,) the weight of x,.

Let {(u;, 4)) | i=1,++, N} be a group code for the a-ary symmetric channel with
maximal error A, where 0 < A < 1. Furthermore, we assume that there exist coset
leaders of {ou,, **, puy} with minimal weight, which we denote by I, -+, I,
such that 4; = {ou;+/;|j=1,---,L} fori=1,-+-, N.

It follows from the definition of the g-ary symmetric channel that the transition
probability B(y, | x,) depends only on A(x,, »,), and that P(pu;+1;|u;) has the same
value for alli =1, -+, N. Consequently,

(2.8) P(4;|u) = B(4j|u)z1—4 for i,j=1,---,N.
However {(u;, A;)|i=1, -, N} is not necessarily a s.m.Lc. with respect to P(:|-).
(2.9) Define B, = {y,| P(y,|u) > B(y,|u;) forall j # i}.
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It follows from the definitions of 4; and B, that

(2'10) BicAi and
(2.11) {(u,B)|i=1,"-,N} isasm.lc. withrespectto P(-|-).
LEMMA. 4. P(B;|lu) 2 1-24 for i=1,"--,N.

ProOF. We describe our decoding scheme by the matrix

Li+ouy, -, 1 +ouy
= :

lot+ouy,- -l +ouy

The elements of the ith column of & constitute A;.

(a) Choose u, to be the zero vector. pu, +/; is not in B, if there exists a k # 1
such that P(pu, +1;|u) = P(pu,+1;|u,). Consequently h(l}) = h(u,+I;—u) =
h(uy +1;+w,*), where u,* = —u,. Therefore, and because u, is the zero vector we
have P(ouy*+1;|u;) = P(ou, +1;| u,). That means if gu, +/; is not in B, then there
exists an element @u,* +/; which

(1) lies also in the jth row;
(2) is not in 4,; and
(3) satisfies P(pu* +1;|uy) = Plou, +1;|uy).
It follows from (1), (2), (3) and P(4, |u,) = 1—A that
(2.12) P(B,|uy) = 1-24.
(b) We omit now in our decoding scheme all rows with an index j for which

ou; +1;¢ B;. We denote the set of remaining elements in the kth column by B,
and show now that

(2.13) B,cB, for k=2,---,N.
Assume (2.13) does not hold for k = r. Then we have an element
ou,+1,€B, and ou,+1,¢B,.
Consequently there exists an element u, # u, such that
P(ou,+1;|u;) = P(ou,+1;|u,) and therefore h(u,—us+1;) = h(1).

Defining u, = u,—u,, we get h(ou,+1;, u;) = h(ou, +1;, u,). t # 1 would imply that
the ith row is excluded, in contradiction to ¢u,+/;€ B,. Consequently, u, = u;, and
therefore u, = u, in contradiction to our assumption u, # u,. That proves (2.13).
(2.12), (2.13), and P(B;|u)=P(B,|u,) imply that P(B;|u;)>1-24 for
i=1,+,N.

(2.14) The entropy of a probability vector n = (n,, -+, n.) is defined to be
H(n) = —'Zf=1 7t,~10g7ti.

(2.15) Denote the “rate” for the probability vector 7 on X and matrix w(:|-|s)
by R(m, w(+|*|s)) = H(m'(s))— Y o= m, Hw(- | - | 5)), where n'(s) = - w(-|*|9).
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Now we can state
LEMMA 5. The capacity of the a-ary symmetric channel is

C = max R(z,w(+|*)) = loga+(1 —¢)log(l —e)+sloga—8—1.
PRrROOF. C = max, R(r, w(: | -)) is a well-known formula for the channel capacity
of a d.m.c. The second equality follows from straightforward computation.

LEMMA 6.
(a) For the compound channel defined under (1.2) we have
(2.16) C = max,inf, s R(m, w(* || ).

(b) Let us assume that the probability distribution q on S satisfies q;> 0 for all
seS. Then we have for the averaged channel defined under (1.3)

.17 C = max,inf, s R(m, w(|*|$)).

(a) was proved in [16], (b) was proved in [2].
Let {u; = (u', -, u/|i=1,"++, N} be any system of code words in X,. This
system induces a probability distribution 7* on X*(t =1, 2, -+, n) given by

oMl = e N
' N

LEMMA 7. Given a (n, N, A)-code {(u;, A)|i=1,+, N} for the d.m.c. determined
by w(: | *). For any b(0 < b < 1) the estimate

logN =37 Yo Yo m'w(j|i)log —M~ +k(A, w, b)n* —log(1—A)b

- ! Y= 1mw(i| h)
holds, where 7' is defined as under (2.18) and k(A, w, b) is a known function.

This result is due to Augustin ([5], Satz 8.2).

(Unfortunately, this estimate does not hold for (n, N, 1)-codes. This can be seen
from the following argument: Assume the estimate extends to (n, N, Z)-codes, then
one could derive the strong converse for compound channels for average errors in
contradiction to [1] example 1, and [4] Theorem 1).

(2.18)

(i=1,",a).

3. The existence of the group code capacity for discrete memoryless channels,
compound channels and averaged channels. We recall the definitions given in para-
graph 1, especially those in Section 1 (C).

THEOREM 1. Let a = p*, where p is prime and s a positive integer, and let
X =Y =GF(a).

Then we have for a d.m.c.
c,”=C,"=¢(,.

(The group code capacity exists for maximal errors).
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Proor. We shall use Lemmas 1, 3, 4, 5. Clearly C,~ and C,* exist, because
log N,(n, 2) < nloga. For 6 > 0 and &0 < ¢ < }) there exists a k = k(J, ¢) such that
1/klogN,(k, &) = C,* — /4. Let {(u;, A)|i=1,--, Nk, &)} be a (k, Nk, e), &)
group code for the d.m.c. P(- | ).

(3.1) Let w(j|i)=P(4;|u) for ij=1,"--,Nke).

(3.2) Using the mappings  and y, where Yu; =i and y4,=1i, we let X =
{Yu;|i=1,--, Nk, €)} be the input alphabet and Y= {y4;|i=1, - -, N,(k, &)}
be the output alphabet of the d.m.c. P'(: | -) determined by the stochastic matrix
w'(-|*). The set {u;|i=1, -+, N,(k, &)} is a subgroup of X, and therefore iso-
morphic to a finite direct sum of cyclic groups of order p. The mappings ¥ and y
induce this group structure in X and Y.

(3.3) We denote the N,(k, ¢)-ary symmetric channel with alphabets X and Y
by P*.

Let now {(vj, D)) lj =1,-, N*} bea(t, N* A/2) group code for P*. In accordance
with Lemma 4 we can modify the sets D, such that {(v;, D;)|j=1,:*, N*} is an
s.m.lL.c. with respect to P* with maximal error A. P’ is dominated by P*. As a
consequence of Lemma 3 we get that

(3.4) {(v;, D)|j=1,"+, N*}is a (t, N*, 2) code for P’ and a fortiori that
(3.5) {(vj, Dp)|j=1,""+, N*} is a (¢, N*, 2) group code for P'.

Let N*(¢, A) be the maximal length of a (¢, N*, 1) group code for P*. It follows
from Lemma 1 and Lemma 5 that

(3.6) N*(t,2/2) > exp {(1—¢)log N (k,&)+(1—¢)log (1 —&)+eloge—n}t
for ¢ sufficiently large. (3.5) and (3.6) imply that
(3.7) there exists a (¢, N*, A) group code for P’ with
N* > exp {(1—¢)log N (k,e)+(1—¢)log(1—¢)+eloge—n}t
for ¢ sufficiently large.

We have now to embed {v;|j=1, -, N*} into X,, and {D;|j=1,-, N*} into
Y, in order to get a group code for the original channel P(: | ). The v; are sequences
of length ¢ whose components are elements of {1, -+, N,(k, ¢)}. Define y,”'v; =
Y, 't o) as (W oyt oo, T TvyY) and call the image v **. v ** has now
elements of {y, | i=1,--, Nk, €)} as components.

Define now v;* as sequence of length tk, whose components coincide with the
components of ¥ ~'v;! in the first k places, with the components of §~'v;? in the
places k+1, - -+, 2k and so on. v;* is an element of X,,. For an element ze D,
z=(z',--, 2", where z°e {1, -+, Ny(k, ¢)} for t = 1, - -, 1, we define z** = y,” 'z
as (y"'z%, -+, x~'2", where y"'z'e {4;|i=1, -, N (k, €)}. z** is a sequence of
A;/s of length ¢. Take now the Cartesian product of the components of z** and
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embed this set in a canonical way into Y,,. Call this set z* and define the decoding
sets 4;* as U, p,z*. Obviously

(3.8) P(4;*|v*) 2 1-4.

We have to show now that there exist coset leaders /;*, - -, I.* of {v;* |j =1,-,
N*} such that 4;* = {(pvj*+l,~*|i= 1,---, L*}. Take the coset leaders of the
group code {(v;, D;)|j=1,--, N*}. Their images in Y, are now sets which are
Cartesian products of A4;’s. Choose all their elements to be the coset leaders
{I* -, I8} of {ov;*|j=1,-+, N*}. Then we have 4;* = {pv;*+I*|i=1,""-,
L*}. (3.7), (3.8) imply now

3.9 N,(tk,2) > exp {(1—e)log N (k,e)+(1 —¢)log(1—&)+eloge—n}t

for ¢ sufficiently large, and

1
- log N (k. 7)

(3.10) 2 —{(1—¢)log Ny(k,e)+(1—¢)log(1—¢)+eloge—n}

x| =

4

= C,*—0/2 for en sufficiently smalland ¢t sufficiently large.

= (1—s)(Cg+ —é)+£{(l—a)log(l—s)+slogs—11}

Every nonnegative integer can be written as n = tk+/, where 0 </ < k. Using
N,(tk+1,2) 2 N(tk, 2) and lim,_, ,, (tk+1)/tk = 1 we get 1/nlog Ny(n, 2) =2 C,* -4
for all sufficiently large n and therefore C," = C,” = C,.

REMARKS.

(1) The existence of C, can be proved in the same way.
(2) The continuity of C,, C, as functions of w can be proved by using the fact
that the channel capacity of the g-ary symmetric channel is continuous in e.

THEOREM 2. Let X = Y = GF(a), a = p°. Then we have for the compound channel
{P(-|"|5)|seS}

c,t=¢,~ =,.

Proor. The proof is essentially the same as the proof for Theorem 1. For § > 0
and &(0 <& < 1) there exists a k = k(J, &) such that 1/klog N (k, &) = C‘,+ — /4.
Let {(u;, A)|i=1,---, Nk, ¢)} be a (k, N,(k, ¢), £) group code for the compound
channel {P(-|‘|s)|seS}. We use {yu;|i=1,---, N(k, &)} as input alphabet and
{xA;|i=1,---,Nk,e)} as output alphabet of the compound channel
{P'(-|*|s)| se S} determined by the class of stochastic matrices {w'(*|*|s)|se S},
where w'(j|i|s) = P(4;|u;|s) for i, j =1, -+, Ny(k, ¢). Define the d-ary symmetric
channel P* as above. A (¢, N, 4/2) group code for P* corresponds to a (tk, N, )
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group code for {P(:|-|s) | se S}. The remaining steps are the same as in the proof
for Theorem 1.
For convenience we choose S to be the set of natural numbers N.

(3.11) We denote the group capacity of {P(:|-|s)|s=1, -, 1} by C,().
THEOREM 3. X = Y = GF(a), a = p°.
P(-|")=Ysenas P |"|5) (g; > 0 for all seN).
We have C,* = C,” = C, = inf, C(]).
PROOF.

(a) First we prove C,~ = inf, C,(I). Given y > 0, 4 > 0 choose /*(y, 4) such that
[C,()—inf,C()| Sy and Y i=; g = 1—4/2.

A code with error /2 for the compound channel {P(-|‘|s)|s=1,"--,1*} is
then a code for P(: | -) with an error less than 1 — (1 —4/2)(1 — 4/2) < A. The maximal
length of a (n, N, 1) group code for {P(-|-|s)|s=1,---, I*} may be denoted by
N"(n, 2). Then we have
(3.12) N,(n, ) 2 N"(n,4]2),

(3.13) liminf,_ ,, n~'log N,(n,4) 2 lim,_ , n~'log N"(n, 4/2) = C,(I*),
and consequently

C

,~ =inf,, o liminf, , n~'log N, (n,2) 2 inf, C,(]).
(b) We prove now
C," < inf,C(]).
Fix any /e N. Define n, =inf,_,....,q, > 0. Choose A, =v~'n, for v=2,3,---.
Suppose {(u;, A))|i=1,++, N} is a A,-code for P(-|*). Then
4 P(A;|u;| ) 2 1= 4 q,—4, forall xeN,i=1,"-,N,
and therefore
(3.14) P(A;|ui|) 2 1-2,/g, = 1—1)v for k=1,--,l;i=1,--,N.
Letting v tend to infinity we get
(3.15) C,m sC/).
The choice of I was arbitrary, therefore C,* < inf, C,(/).

4. Examples of channels for which the group code capacity is smaller than
Shannon’s channel capacity. The definition of the group code capacity C, given in
paragraph 1(C) depends on the way in which we define the field structures in X and
Y. The field structure serves only as a tool to deal with purely probabilistically
described channels. We introduce of course field structures which optimize C,.
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(4.1) Let C,* be the group code capacity corresponding to an optimal choice of
the field structures.
The following example demonstrates the need for the introduction of C,*.

ExAMPLE 1. Choose X = Y = {1, 2, 3}; GF(3) = {0’, 1', 2’}. Consider the d.m.c.
given by

100
w=l0 1 0]
010

Let 1 serve as 0, 2 as 1’ and 3 as 2’ in the input space X and in the output space Y.
If u is a code word then also —u is a code word. P(y,|u) = P(y,| —u) for y,e Y,
implies that there exists no (n, N, 1) group code for N > 1, A < 4. C, is zero.

However, if 2 serves as 0’, 1 serves as 1’ and 3 serves as 2’ in X, and 1 serves as
0’,2as 1’ and 3 as 2’ in ¥, then {u,, u,, u3} = {(1’, 2), (2, 1'), (0’, 0")} forms a
group and by choosing the coset leaders (1, 1), (2', 2") we geta (n, N, ) = (2, 3, 0)
group code. By taking direct sums of the group {u;, u,, u;} we can achieve
C,*=2%log3>0.

(4.2) Let 7 be a permutation of {1, ---, n}, where 7i is the image of i under 7.
(4.3) t induces a mapping t* of X, onto X, and a mapping t** of ¥, onto Y,:
*x, = ¥, o, xM) = (x, L, x™)
™y =1L ) =0 ™) (e X, e,
It follows from definitions (1.1) and (1.3) that
(4.4) P(y,| x,|8) = P(x**y,|t*x,|s)  for x,eX,,y,e¥,,s€S
and

P(Yn|xn)=l_)(r**yn|‘c*xn) for anXm.VnEYn'

Thus the invariance property (4.4) holds for d.m.c., compound channels and
averaged channels. (It also holds for channels with arbitrarily varying channel
probability functions and therefore holds for some of the most reasonable channels.)

(4.5) A linear (n, N) code {(u;, A;)|i=1,---, N} is called a systematic code, if
there exists a matrix P=(p;;) i=1,--",k; j=k+1, -, n with coefficients in
GF(p®) such that

(46) {ul’”',uN} = {u|u=(al,"‘,a",b"“,"',b”),
where a'eGF(p*) =X fori=1,"--,k and ¥/ = Y }_, d'p; for j=k+1, -, n}.

The first kK components are called information digits, and the last n—k components
are called check digits.
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(4.7) Given a linear code {(u;, 4;) | i=1, -+, N}, then there exists a permutation
7, such that {(t*u;, t**4,)|i=1,-+, N} is a systematic code and P(A;|u;|s) =
P(t**4,|t*u;|s)(seS;i=1,"++, N), P(4;|u)) = P(e** | t*u)(i= 1, -, N).

(Using property (4.4) the proof of Theorem 3.3 in [13] carries over verbatim and
gives (4.7).)

Because of (4.7) we can limit ourselves to the study of systematic codes. We give
now an example of a d.m.c. with C;* < C.

ExampLE 2. Define w by w(i|i)=1 for i=1,--,p—1,w(j|p)=1/p for
j=1,--,p. Obviously C > log(p—1). Suppose C,* = C. Fix field structures in
X, Y for which C, = C,*. Then for arbitrarily small 4 there exists a n(4) such that
for n = ny(A) there exists a systematic code with maximal error less than 4 and
length greater than exp (n log(p—1)). This code has at least k = nlog(p—1)/logp
information digits. The code word (p, -, p, b***, -+, b") needs a decoding set
with at least exp(H(1/p, -, 1/p)k—K(A)k?*) elements. Therefore we need
exp(H(1/p, -+, 1/p)k— K(A)k*) cosets. But |4,U -+ UA,| 2 exp(nlog(p—1)+
H(l/p,"+*,1/p)k — K(A)n*) 2 exp(nlog(p—1)+nlog(p—1)— K(A)n*) > exp (nlogp),
for n large and p 2 3, contradicts |4, -+ UA4,| = |X,| = exp(nlogp).

For the symmetric channels considered by Elias, Dobrushin and Drygas

(4.8) C,=C,* =C,=C,* = C always holds.

It seems very likely that C, (respectively C,*) can be greater than C, (respectively
C,*) for general d.m.c. We give now an example of a d.m.c. for which C,* < C.

ExaMPLE 3. Define w by
w(i|i) =1 for i=1,--,[p/2];
w(jli)=2/p for i=[p2]+1,--",p,
j=1[p2]+1,--,p—1;
w(i|=3/p for i=[p2]+1,---,p,
i=p.
Suppose C,* = C. Fix field structures in X, Y for which C, = C. Obviously
C > logp/2.

For any 1 there exists a ny(1) such that for n = ny(1) there exists a systematic code
with average error less than 1 and length greater than exp(nlogp/2). This code
has at least k = nlogip/logp information digits. Divide the set {l,-:-, p}
into the sets R={l,---,[p/2]} and Q= {[p/2]+1, -, p}. It follows from
Chebyshev’s inequality that the proportion of code words, which have more than

(4.9) ((p—[p/2])/p — €)k information digits in Q, tends to 1 as n tends to infinity.
Let 1 be less than %, then we can find a subcode of {(u;, 4;) | i=1,-++, N} which
has a length N* = N/2 and a maximal error less than 2. Denote this (n, N*, 1/2)-
code by {(u;*, 4;*) | i=1,"+, N*}. By choosing n large enough we can guarantee
that more than half of the u;*’s are of type (4.9).
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A code word of type (4.9) requires more than exp (H(2/p, 2/p, -, 3/p) - (p—
[p/2D)/p)k — K(A)k* elements in the decoding set. Therefore

2
|40 udy| 2 1exp(nlog E)exp(H(im )p [p/ ]k K(/l)k*)
4 2 )4 )4

Using k = (log(p/2)/logp)n, HQ2/p, * -, 3/p) ~ logp/2 and (p—[p/2])/p ~ % for p
large, we get

1 1logp/2-logp/2
|A1U, Ty, UANl = Zexp(n log2+ E—lgp—— K(A)n* .

But

p 1llogp/2-logp/2 p 1l p log2
Tyl 2 P =log=+=log-{1-———|>1
log2+2 logp og2+2 83 logp > 08P,

for p large enough, in contradiction to |X,| = exp(nlogp).
We give now an example of a discrete channel with C > C,* = 0.

EXAMPLE 4. Let @ = 3,

wi-|-[D=[1 0 of,

wi-|-|2={0 1 0],

wi-||3)={1 0 of,

and define the averaged channel
P(:|") = 4P || D+4P(: |- |2)+3P(-|3).

All fields we can define in X are necessarily additive cyclic groups with 3 elements.
If we choose for the alphabet X = {a,, a,, a3} the group structure {0, 1,2} or
{0, 2, 1}, then the d.m.c. P(:|-|3) has group capacity ;C, = 0. This can be seen as
follows: let u be a code word which is not the zero vector, then —u also belongs to
the code. But P(y,|u|3) = P(y,|—u|3) implies that for 1 < 4 N (n,2) = 1 and there-
fore ;C, = 0. If we choose group structure {1, 0, 2} or {2, 0, 1} then ,C, = 0 and if
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we choose group structure {1, 2, 0} or {2, 1, 0} then ,C, = 0. Applying Theorem 3
we get C,* = 0, but according to Lemma 6

C = max,inf,_, 5 3 R(m, w(*|*|5)).
Choose n* = (3, 4, 1), then

R(*, w(-|+| 1) = R(x*,w(+ || 2)) = R@*, w(+|-|3))

by symmetry. An easy computation shows that R(n*, w(-|-|s)) >0, and there-
fore that C > 0. In this context it may be of interest that the following theorem
holds:

THEOREM 4. Let a = 2.

(a) For the compound channel {P(-|-|s)|se S}, where every P(-|"|s) is a binary
symmetric d.m.c., we have C,* = C, = C = max,inf,.s R(m, w( | - | 5)).

(b) Let g, be a p.d. on S with g, > 0 for all s€ S, then for the “binary symmetric”
averaged channel

P('I')—__Zsesqsp('l'ls)’ _q=ég*=c'
The proof will appear in a forthcoming paper by J. Gemma and the author.

5. An upper bound for the capacity of linear and pseudo linear codes. A pseudo
group code {(u;, A))|i=1,+, N} for which {u;|u=1,---, N} is a vector space
shall be called a pseudo linear code. For these codes we define capacities C;, C,’i,
C,,,C/t as usual.

THEOREM 5. Let a = p*. For a d.m.c. given by w we have C,* < C}* < R(n*,w),
where n* = (1/p%, - -+, 1/p°).

ProoF. According to (4.7) we can restrict ourselves to systematic codes. Let
{uy, -+, uy} be any systematic code as described under (4.5). Write this code as a
matrix so that the ith code word u; equals the ith row vector.

u, all,"'»alk’b1k+1""’b1"
()T
Uy aNl,"',aNk>ka+1>'"»bN"
In the first k-columns every element of GF(p®) appears equally often. Consider now
column j(k+1 £ j < n). Write the matrix P of (4.5) as (Py4y, ' ', P,), where P;
has k components. The set of all elements of the jth column in U equals {oc|oc =
(4, P;), where A4 is any vector with k components}. ((4, P;) is the scalar product of

A and P;.) The number of times a e GF(p*) occurs in the jth column of U is equal to
the number of solutions of

.1 (4,P)) =na.

For a # 0(5.1) has a solution if and only if P; is not the zero vector. In this case we
find all solutions of (5.1) by finding one solution and adding to it all solutions of

(5.2) (4,P)) =0.
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Therefore, if P; is not the zero vector then all elements of GF(p*) appear equally
often in the jth column of U, and if P; is the zero vector, then only 0 occurs in the
Jth column of U. Define now 7, as in (2.18), then either n,’ = 1 or n;' = 1/p* for
all 4.
R(n',w) =0, it ny'=1.
Application of Lemma 7 to our code completes the proof.
R(n*,w) isin general smaller than C = max, R(w, w).

One can easily construct examples where R(n*, w) < C even for a = 2. This case
was not covered by Example 2.

THEOREM 6. Let a = p*. For a d.m.c. given by w we have

C* < C! <R(n*,w),  where n*=(/p%-",1/p").2

ProoF. We deal now with average errors, and in this case Lemma 7 does not
apply directly. We make use of Lemma 2 in [4] which states

(5.3) Let {(u;, A)|i=1,---, N} be a code for P(- | ') with average error 1; then
there exists a subcode of length N' = Ne | (1 + ¢) with maximal error I+¢, if 1+¢ < 1.

Denote the subcode by
(5.4) {(us,, 43)

(5.5) We have omitted only (1—¢/(1+¢)) N sequences from our original set

{ul’ T uN}‘
u,-l
o (" )
Uiy,

Define the matrix
Assigning probability vectors 7'’ to the subcode (5.4) according to (2.18), we get

v=1,+,N'}.

N{ Ny

N N

n

|n/t =] =

b

where N = number of times i occurs in the sth column of U and N;* = number of
times / occurs in the fth column of U'. It follows from (5.5) that |N,//N — N/*|N'| is
less than a function g(e, 1), where lim;_,, g(e, 1) = 0.

Using the continuity of R(m, w) in 7 and applying Lemma 7 to U’ we get
Clt < R(n*,w)+f(1,¢€), where f(Z, ¢) tends to zero as 1 tends to 0. Therefore we
have C < R(n*,w).

2 R. G. Gallager has pointed out to me that he independently found this result (unpublished).
His proof uses Fano’s Lemma instead of Lemma 7. Compare also his remarks on page 208 in [11].
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Using Theorem 6 we can easily construct examples of channels with any alphabet-
length a = p* for which even pseudo-linear codes with average error do not achieve
the channel capacity.

We show now that the bound given on C,* in Theorem 5 is not sharp.

ExAMPLE 5. Consider a d.m.c. given by

1 00
w=|1 0 0.
010

Assign to the alphabet X = (a,, a,, a3) a field structure for which a; # 0, because
otherwise C,=0. W.l.o.g. choose a; =2. For n* = (%, 4, %) we get R(z* w) =
log, 3—%. A systematic code with rate R(n*, w) has to have k& ~ n(log3—%)/log3
information digits.

(5.6) There are 2* code words which have only 0 and 1 as components in the
information digits.

We call two sequences ‘‘separable’ if there exists at least one component in which
one sequence takes the value 2 and the other not. Only for those sequences can we
find disjoint sets A; and A, such that P(4;|u;) > 0 and P(4,|u,) > 0. We call a
set of sequences ‘‘separable’ if any two elements are separable. The set of code
words has to be separable. The subset described under (5.6) is separable only if its
check sequences are separable. But the maximal cardinality of a separable set of
check sequences is 2" ¥,

log3—-4%
log3

n>in,

therefore 2% > 2"~ The subset is not separable, therefore the set of code words is
also not separable. Consequently C;* < R(w*, w).

It might be pointed out that Example 5 illustrates the fact that the capacity of a
“subchannel” can be greater than the capacity of the channel. The capacity of

1 00
010
1 00

is less than log, 3 —% whereas the capacity of <l 0) is log,2 > log,3—%. Itis to
0 1

be pointed out that this is for the capacity C,* as defined. This is eliminated if C;*
is defined as the maximum over all mappings of GF(g") into the set of channel sym-
bols for ¢* < p°. Theorem 5 could be easily modified to be consistent with this
alternate definition.
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6. Unsolved problems.

(1) Can one prove the existence of C,?

(2) Can C, be larger than C, for discrete memoryless channels?
(3) In which cases does a group coding strong converse hold ?
(4) What is the relationship between the different capacities?
(%) Is Ct = R(z*,w)??

This problem is entirely different from the problem treated in [11], page 208. The
most important and difficult problem, however, is
(6) Can one find explicit formulas for any one of the capacities defined ?
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