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1. Introduction. Let {X,:7 2= 0} be a right continuous stochastic process taking
values in some space (E, &) and adapted to a right continuous family of o-algebras
{#,:t=0}, and let {r,:1 =0} be a nonnegative real-valued right continuous
stochastic process such that each t, is an & -stopping time. Then the process
X, = X(t,) t 2 0, which is adapted to {#_}, is called the random time trans-
formation (RTT) of {X,} determined by the change of time {r,}.

Two classical RTT’s that transform Markov processes into Markov processes
are found in Dynkin [3] (or in Blumenthal and Getoor [2]) and in Feller [4]. For
the RTT in Dynkin, {z,} is the inverse mapping of a strictly increasing continuous
additive functional of {X,}. This RTT is used in constructing generalized Brownian
motion from a Wiener process. Feller discusses RTT’s under the heading of sub-
ordination of processes. He shows that if {X,} is a Markov process with continuous
transition probabilities and {r,} has stationary, independent, nonnegative incre-
ments and is independent of {X,}, then {X,'} is a Markov process. This type of
RTT was used by Bochner to construct symmetric, stable processes from a Wiener
process. In addition to their theoretical significance, RTT’s are useful in applica-
tions where {X,:u = 0} describes some phenomena as a function of some para-
meter u, which increases in time according to a process {t,}, and one is interested
in {X,'} which depicts the phenomena as a function of time.

In this paper we present several RTT’s of semi-Markov step processes (SMP’s)
(Definition 2). In Theorem 1, our major result, we identify some general conditions
on a time process {t,} under which {X,'} is an SMP whenever {X,} is an SMP.
We use this result in Section 4 to identify four types of RTT’s. Two of these RTT’s
are analogous to those discussed by Dynkin and Feller for Markov processes, and
a special case of another is similar to the RTT presented by Yackel [15]. Special
cases of the RTT’s presented transform Markov chains or regular step Markov
processes or SMP’s into any one of these three classes of processes. We conclude
in Section 5 by presenting two other RTT’s for special SMP’s {X,} when {z,} is a
step process independent of {X,}.

2. Preliminaries. Let (Q, &, P) be a probability space: all stochastic processes
introduced herein will be defined on this space. Let E be a locally compact
Hausdorff space with a countable base, and set & = #(FE), the smallest g-algebra
containing the Borel sets of E. Let R, = [0, 0) and set #, = #(R.).

Let O(x, G) be a real-valued function defined for each xe Eand Ge& x %, with
the properties:
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(i) G- Q(x,G) is a probability measure on & x £, for each xeE, and
(ii) x - Q(x, G) is &-measurable for each Ge& x 4.

Foreachn =0, xe E and Ge& x %, we define Q"(x, G) by setting Q°(x,G) = 1 or
0 accordingly as {x} x ¢ is or is not in G, and for n = 0 we set

0" (%, G) = [§ O(x,dy)Q"(», G).

Note that Q is uniquely determined by the values it takes on the cylinder sets of
& x A .. That is, if (i) and (ii) hold for cylinder sets of & x %, then for each xe E
we let G— Q(x,G) be the unique extension, of the measure G — Q(x, G), to the
c-algebra & x #.. The mapping x — O(x, G) turns out to be &-measurable for
each Ge& x #.,. This follows since (E x R,, & x #.,) being a locally compact
Hausdorff space with a countable base implies that G — Q(x,G) is a regular
probability measure (see [8]), and so for each Ge & x %, we can write

Q(x’ G) = limn-'oo Z;:o= 1 Q(x’ Ank 3 Bnk)

for an appropriate sequence of cylinder sets {4, x B} of & x & .

DErINITION 1. Let {4,:n =0} be a non-decreasing family of sub-g-algebras
of &# (which are complete with respect to P) and let Q be as above. Let
{Y,,W,:n=0} be a Markov chain (on (Q, #, P)) with respect to {¥,} taking
values in (£ x R,,6 x #.) and with kernel Q. That is:

(i) Each (Y,, W,) is 4,-measurable.
(ii) For each n and Geé& x 4.

(2.1 P[(Y,+1, W,+€G|%,] = Q(Y,,G) as.

We call {Y,, W,} a Markov renewal process (MRP) with respect to {¥,} with
kernel Q.

The name MRP is motivated by properties (a) and (b) below. Several authors
also use this name for the processes {N,} and {X,} in Definition 2. Note that
without loss of generality we can assume that Q is of the form

(22 Q(x, 4 x [0,1]) = [ 4 K(x,dy)F (1),

where K is a Markov kernel on (E, &) and {F,(-): x,y€E} is a family of distribu-
tion functions such that (x, y) = F, (1) is & x &-measurable for each 7. This follows
since

Q(x,4 x [0,1]) = P[Y,e A, W, 1| Y, = x]
=jAP[YIEdy| Yo =x]P[W1 §t|Y0 = X, Yl —_—y],

and we can take K(x,A4) and F, () to be the regular conditional distribution
functions P[Y,€4|Y, = x] and P[W, < 1| Y, = x, Y, = y] (see [8]) respectively.

An MRP {Y, W,} with respect to {%,} with kernel Q has the following
properties.
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(a) {Y,} is a Markov chain with respect to {#,} with kernel K.
(b) For any n,, - *,n,and t,, -, ¢,

P[W, <t, -, W, = tkl Y,:nz0]= H’;"=1Fy,.,-,y,.i(ti)-
That is, the {W,} are conditionally independent given the o-algebra o(Y,:n = 0).

(c) Set Tp =0 as. and T, =) s-, W,. Then {Y,,T,} is a Markov chain with
respect to {#,} and for any n = 1, and Ge& x 4, ,

P[(Y,, T)eG|%,] = Q"(Y,,G) a.s.
(d) Set { = sup, T,. Then a necessary and sufficient condition for
P[{=+w0|Xo=x]=1 for each x€E,
is that for each 4 >0 and xe E
(2.3) [§ e #Q"x,E x df) >0 as n— co.

Properties (a)-(c) follow directly from (2.1) and (2.2). Property (d) follows since,
by (c), the integral in (2.3) represents E[exp(—AT,)|X, = x]. Another useful
property of MRP’s is as follows.

PrOPOSITION 1. Let {Y,, W,} be an MRP with respect to {%,} with kernel Q
which satisfies (2.3). Set vo = 0 and for each n 2 0 let v, , = inf {m>v,: W, >0}
Set Y¥,=Y,, W,=W, and §,=9, . Then {Y,,, W,} is an MRP with respect to

Vn?

{Z,} with kernel satzsfyzng
0(x, A x [0,1]) = Y20 [§ Q(x, dy x {0})Q(y, 4 x (0,1]),
for each xeE, Aec& and t 2 0.

Proor. The variables {v,} are well defined and finite valued due to condition
(2.3). We see by induction that each v, is a ¥,-stopping time. Obviously v, =0
is a %,-stopping time and assuming that v,,- -, v, also are, we have

{vn+1 > m} = U;c"=1 {vn = k’ Tm = T;(}U{V,, > m}egm’

and so v, is a %,-stopping time.
By the strong Markov property for {Y,, W,}, for each n,t and A&

P[ V0164, W, £ t|{Zn]
= Zrﬁojo P[Y, k1€ AW, 11i1€(0,1],Y, (x€dy, T, 1= Tv,.l Y, ]
=Y 0f5 Q" (Y, dy x {0DQ(y,'4 x (0,1])
=0, 4 x[0,{]) as.

This proves the assertion. []

DErINITION 2. Let {Y,, W,:n =0} be a stochastic process (on (@, Z,P)),
taking values in (E x R,,& x %) such that

2.4) Wo=0 and W,>0 forn = 1.
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For each n20 set T,=)r_oW,, and let { =sup,7,. For each 0 <t <{ let
N=nifT,<t<T,,,and X, =Y, if T, <t <T,,,. Let {#,:teR,} be a non-
decreasing right continuous family of sub-c-algebras of # (which are complete
with respect to P). Assume that {X,, N,} is adapted to {#,}, i.e., for each n, ¢ and
Aeé

{X,€eA,N,=n}eZ,

If {Y,, W,} is an MRP with respect to ¥, = %, n >0, then we call {X,,(} a
semi-Markov step process (SMP) with respect to {#,}. We say that {X,,(} is
induced by the MRP {Y,, W,}. The process {N,,(} is called the counting process
associated with {Y,, W,}, or with {X,,{}.

Calling {N,,{} and {X,,{} stochastic processes (on (Q, #, P)) is justified for

and
{XtEA’t<C} = Un{n§t< T;n+1’ Y,IEA}EQ’-

(Herein set equality is taken to mean equality up to a set of P-measure zero.) The
assumption that {N,} is adapted to {#,} guarantees that each 7} is an & -stopping
time, since {7, <t} = {N, > n, t <{}eZF, for each ¢t = 0. This in turn justifies the
definition of the ¥,. Without this assumption, the 7, may not be & ,-stopping
times.

The SMP {X,,{} is a continuous time step process, which proceeds through its
state space (E, &) according to the Markov chain {Y,}, at a speed which is given by
the {7,}. It makes N, jumps in the interval (0, ¢], the nth jump occurs at time T,
and takes the process to state Y, where it remains for a time W,,; > 0 a.s. Note
that some of these jumps may not be actual jumps in that we may have
P[Y,=Y,.1]>0. (For this reason an SMP may be induced by more than one
MRP.) The lifetime of the SMP is given by the random variable {: note that
{ =400 as. if (2.3) holds. Our results can be formulated in an obvious manner
(see [3]) for SMP’s with random lifetimes, but for clarity of exposition we will
assume { =+ oo a.s. The basic properties of SMP’s on countable state spaces
appear in Lévy [6], Smith [14], Pyke [9], [10], Pyke and Schaufele [11], [12] and
Feller [5].

ReEMARK 1. An SMP induced by an MRP with kernel Q(x,A4 x [0,?]) =
K(x, A)H (1), where H, is the degenerate distribution with unit mass at 1, is a
Markov chain with kernel K. An SMP induced by an MRP with kernel

0(x, 4 x [0,1]) = K(x, A)[1 —e™ 1],
where K satisfies K(x, {x}) =0 for each xeE, and A is a positive real valued
&-measurable function, is a regular step Markov process [1]).

REMARK 2. Foreach t 2 0 let X, = Yy, .y, U, = Ty, and U,* = Ty, . Then it
can be shown that the processes {X,, U,} and {X,, X,*,U,, U,*} are regular step
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Markov processes. They in general will not be Markov processes with respect to
{#}.
For our major result we require the following.

LeMMA 1. Let f be a function from R, into R, which is non-decreasing, right
continuous and f(0) =0 and f(t)too as t— oo. For each teR, let g(t) =
inf {s:/(s) > t}. Then the following are satisfied:

(a) The function g is non-decreasing, right continuous and for each se R,
f(s) = inf {¢: g(¢) > s}.

(b) If f is continuous at s, then f(s) > t is equivalent to g(t) < s for any teR,.

PRrOOF. Part (a) is proved on page 108 of Meyer [7]. For part (b) first assume
f(s) > t. Under the hypothesis, there exists a 6 > 0 such that f(s) > f(s—9) > ¢,
and so

g =inf{u:f(u)y>t} <s—d<s.

Conversely, if g(¢) < s, then since g is right continuous (by part (a)) there exists a
& > 0 such that g(¢) < g(¢+96) < s, and so from part (a), N

f(s)=inf{u:g(u)>s} = t+6>1.
This completes the proof of (b).

3. The main result. For the remainder of this paper we take {X,} to be an SMP
with respect to {#,} (as in Definition 2), which is induced by the MRP {Y,, W,}
having kernel Q satisfying (2.3).

Let {¢,: 1€ R, } be a stochastic process on (Q, #, P), taking values in (R, %),
adapted to {#,} and with right continuous, non-decreasing paths, which for con-
venience, satisfy ¢, = 0 a.s. and ¢, o0 a.s. as ¢ 1 co. Assume the following:

(A1) For a.a. weQ, the mapping s — ¢ (w) is continuous at the points 7,(w),
n = 0 (this is obviously satisfied if {¢,} has continuous paths).

(A2) For any n let @, = o(T,+t)— ¢(T,). Then o(@,:t = 0) is conditionally
independent of ¢, = #, given 6(Y,, Y,.,, W,+,); and for any ¢t,u,w and x, ye E

P[(T),§u|Y,,=x,Y,,+1=y,W,,+1=w]=P[<p,§u|Yo=x,Yl=y,W1=w].

For each ¢ = 0 let 7, = inf {s: ¢, > t}. We call {1,} the inverse of {¢,}. For each
t20let X,/ = X(zr,) and #,' = Z . Our main result is as follows.

THEOREM 1. The process {X,'} is an SMP with respect to {F,'}.
PrOOF. Set vo = 0 and for n = 0 let
vn+1 = mf{m > V,,Z (p(Tm) > QD(TV,.)}

We see by induction that each v, is a %,-stopping time. Obviously v, =0 is a
@,-stopping time. Assume that vo,:--,v, are %,-stopping times. Since {¢,} is
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adapted to {#,} and T, is a & -stopping time {¢(7,) < t}€ ¥, for each ¢ and n,
and so for each m

{vn+1 > 'n} = U;(n=1 {V,, = k’ ¢(Tm) = (P(Tk)}U{Vn > m}egma

that is, v, is a %,-stopping time. This completes the induction argument.
For each n = 0 let

3.1 Y, =Y,, T,=T, and %,/=9,,
and set
3.2) Wo'=0, and W,/ =T,/'-T,_, forn = 1.

We will show that {Y,’, W,'} is an MRP which induces {Y,'}.

Since {#,} is right continuous, for any s, ¢

{Tt < S} = Un{¢s—n-l > t}e‘g'-s’
and so each 1, is a & -stopping time. Moreover by Lemma 1(a), {r,} is right con-
tinuous. It follows that {X,'} is right continuous; and it is adapted to {#,'},
since for any t,u and A&,
{X,'GA}('\{T, = u} = Ur§u;rrational {Tt =r, X,.GA}Egg‘-".

For each ¢ we can write
(3.3) X/ =Y, if T,St<T,,.
Under assumption (Al) it follows from Lemma 1(b) that for any » and ¢
(3.9) (TSt < T} = {0(T) S 1 < 9T, )}
and so (3.3) is equivalent to

(3.5) X/ =Y, if o(T)=t<q(T,y)

Then by the definition of the {v,}, (3.5) is equivalent to X, = Y,/ if T,/ <t < T, ;.

The counting process, N,/ =n if T,'<t<T,,,, associated with {X,'} is
obviously adapted to {F,'} if each T, is a &,’-stopping time. We prove the latter
by induction. First note that by an argument similar to the above it can be shown
that {N(z,)} is a right continuous process adapted to {&,}, and N(t,) = v, if
T, =t <T,,;. (Note that each T, is a jump point of N(z,) since v, > v,_;.) Now
obviously Ty’ = 0 is a & /-stopping time, and assuming that Ty, -, T, are &, -
stopping times, for each ¢ > 0

{Tn’+1 > t} = Urgt;rralional{Tn, =r N(Tt) = N(‘L',.)}U{T;,' > t}e'g;r,
which completes the induction argument.

It remains to show that {¥,’, W,'} is an MRP with respect to {#7..}. One can
show by their definitions that

(3.6) Fry=F 1,y and 9, =F .
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By assumption (Al), for any n
«(T) = inf{u:p, > T}

=max {u: o, = ¢(T, )}
=T,,
and so from (3.6) we have

Fio =9, =9,

To show that {Y,’, W,’'} is an MRP with respect to {%,’} it suffices by Proposition
1 to show that {Y,, o(T,)—o(T,-,)} is an MRP with respect to ¥,. The latter
follows, since by the strong Markov property of {Y,, W,}, and (A2) we have for
any xeE, Ae & and any n,t

P[Y,.1€A4,0(T, 1) —o(T,) < l|gm Y, = x]
(€)] = Juxr. Q. dy x dWP[(T,+W,, )—o(T,) S t| Y, =x, Y,1y = y,

. W1 = w]
= Jaxr, Q(x,dy x dw)P[p(W,) < tl Yo=x,Y, =y, W, =w]
=P[Y,eA4,0(T)) £ t| Y, = x].

Thus the proof is complete. ]

REMARK 3. The SMP {X,'} with respect to {#,} is induced by the MRP
{Y,', W,'} (defined in (3.1) and (3.2)) which by Proposition 1 and the above proof,
has a kernel Q' satisfying

Q'(x,Ax [0,t]) = Y2 0[5 0%x,dy x {0HD(y, 4 x (0,1])
where
O(x, 4 x [0,1]) = | , K(x,dy)P[o(W,) < t|Yo=xY =yl

REMARK 4. The above theorem also holds if we replace (A2) by:
(A2') There exists a sequence {a,} of finite ¥,-stopping times that satisfy

(3.8) Oy = Optael,,

where {0, } is the family of translation ‘operators associated with {Y,, W,} (see [2]),
and in addition

3.9 o(T,,, )—o(T, 1) =0 tor any n = 0.
Set

@G %=y, T=T, 9=9,. V=0 ad V,=T,-T,_;
and assume that (A2) holds with Y,, T, and %, replaced by Y,, T, and 7, respectively.
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Note that (A2) was only invoked in proviag that {Y,’, W,'} is an MRP with
respect to {#,’}. Under (A2’) it can be shown that the {v,} defined in the above
proof satisfy

Vps1 = inf{m >v,:0(T,) > o(T, )}
and so
Yn’ = Yv,.’ VV;:’ = (P( ) (P( V- l) and gn’ = {Zv,.'

Then to show that {Y,’, W,’} is an MRP with respect to {%,’}, it suffices by
Proposition 1 to show that { ¥, ¢(T,)—¢(T,_,)} is an MRP with respect to
{4,}. The latter follows since it can be shown (see [13]) that {¥,, ¥,} is an MRP
with respect to {#, }, and so under (A2’), (3.7) holds with Y,, T, and %, replaced by
Y., T, and F, respectively.

4. Examples. We now list several classes of processes {¢,}, which according to
the above, determine RTT’s that transform SMP’s into SMP’s.

Functionals of {X,}. Using the notation of Remark 2, set Z, = (X,, X,*, U,, U,")
for each t = 0, and assume &, = 0(Z,: s < t). Foreach 0 < s < ¢ let ¢,° be a (non-
negative) random variable such that {¢;° < u}e &,. The family {¢: 0 Ss<t}is
called a (nonnegative) functional of the Markov process {Z}.

We will take {¢,°} to be continuous, that is for a.a. 0€Q, . » ¢, (w)iscontinuous
for each s: and additive, that is for a.a. weQ

4.1) o () + ¢,/ (®) = ¢, ().

We will also assume that forany nand 0 < s <¢

Thts

4.2) @007, = Q1015

where {0,} is the usual family of translation operators associated with the Markov
process {Z,}. (This resembles the homogeneity property of functionals, see page 173
of [3].) We will call {¢,’} a nonnegative, homogeneous, continuous, additive fun ctional
of the SMP {X,}.

Define the process {¢,} by setting ¢, = ¢,° for each 7 = 0. Clearly {¢,} satisfies
(A1), and (A2) is satisfied, since by (4.1), (4.2) and the strong Markov property for
{Z,},foranyn=20, x, yeEand t, u, w20

PLo(T,+ )= (T) S u|%,, Y11, Woii] = PloT01 S u|9,]
’ =P[‘P:°@T”§“l3‘-T]
where the latter is a 6(Y,, Y;, W,)-measurable function for each u.
The RTT’s determined by functionals of this sort are analogous to the RTT’s

described in Dynkin [3].
An example of the above type of functional is given by

= .tsf(Xw Xv+’v_Uw Uv+ —v)dv,
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where f(x,y,u,v) is a nonnegative real-valued measurable function defined for
each x,yeF and u,v = 0, and satisfies

4.3) Jof(x,y,u,t—u)du < oo, for each ¢ > 0.
That this functional is a.s. finite valued follows since for each ¢,
eSS o <0 as,
the above being true since N, < oo a.s., and by (4.3) and the fact that W, < o a.s.,
prEt = [PtV Yo u—Tioy, Tri—u)du < 0 as.

Random functions of {X,}. Let {V,(x,y):n = 0,x,yeE} be a family of indepen-
dent random variables which is independent of {Y,, W,} and satisfies:

() (x,y,0) > V,(x,y,0) is & x & x F-measurable for each n.
(ii) For each x,yeE, Vy(x,y) =0 a.s. and

PV, (x,y) S u] = P[Vi(x,y) £ u] for n>1.

Set V,=V,11(XpXpey) if T,2t<T,.q. It can be shown that Z,=
X, X,*,U,U,* V), t=0is a regular step Markov process. Assume that for each
t=0

Fi=0(Zs;:s<t).

Let {¢/:0<s<t} be a nonnegative, continuous additive functional of {Z,}
satisfying (4.2) and set ¢, = ¢,° for each ¢ = 0. As above it can be shown that
{¢,} (called a random function of {X,}) satisfies (A1) and (A2).

The following special case of the above determines a RTT that transforms
SMP’s into regular step Markov processes. Suppose that the SMP {X,} has a
kernel Q which satisfies Q(x, {x} x R,) =0 for each xe E. Assume that

P[Vi(x,y)) St]=1—e"*™"  for t =0,
=0 otherwise;

where 1 is a positive &-measurable function. For each ¢ = 0 set p, = V,/Wy ;. and
@, = [ p,du. This random function determines a RTT of {X,} such that, according
to Remark 3, {X,'} is an SMP induced by the MRP {Y,’, W,’} (in this case
{Y,, V,(X,-1,X,)}) which has kernel

Q’(X,A X [0, I]) = K(x’ A)(l _e-l(x)r)‘

That is, {X,'} is a regular step Markov process. This type of RTT is presented in
Yackel [15]. He uses it to show that an SMP with a countable state space (and
with some instantaneous states) can be transformed into a Markov process having
the same succession of states, and the same instantaneous states as the original
SMP.

Random functions based on MRP’s imbedded in {Y,, W,}. As in Remark 4 we let
{o,} be a sequence of ¥,-stopping times satisfying (3.8) and let {¥,, W,} be the
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MRP with respect to 4, defined by (3.9) and (3.10). SettingX, = Y,if T, <t<T,.,,
it follows that {X } is an SMP with respect to {#,} and induced by {¥,, W,}.
Let {X,,X,*,U, U,"} be the Markov process associated with {X,} as in Remark 2.
Let {V,(x,»):n2=0,x,yeE} be a family of random variables as above and set

Ve=Vorr(F Toiy) if T,<t<T,..
For each ¢t = 0 set
Zt = (Xt’ Xt+’ U!’ Ut+’Xt’ X!+9 Uﬂ ljt+, i7t)

and #, = o(Z;:s < t). It can be shown that {Z,} is a regular step Markov process.
Let {¢,:0=<s =<1t} be a nonnegative continuous additive functional of {Z,},
which in addition satisfies:

(i) Foreachn>0

4.9 efmir =0 as.

nt+1

(ii) Foreachn=0and 0<s <t
@.5) ¢’o O, = @11

where {0,} is the family of translation operators of {Z,}.

Then define {¢,} by setting ¢, = ¢,° for each ¢. This process satisfies (Al) and
it satisfies (A2") since (3.9) follows from (4.4), and by (4.5) and the strong Markov
property of {Z,}, forany n =0, x,yeE and t,u,w = 0.

P[(p(T;l-I-t)_(p(ﬁl)é ulgm T;n+19 l/‘f/n+l] = P[(ptOOT,, é ul’g;f,.]

where the latter is a 6(Y,, Y,, W,)-measurable function for each w.

This type of random function can be used as follows. Given any Markov chain
{¥,} (as above) imbedded in {Y,} and any family of distribution functions
{G.,(1): x, ye E}, where G,(0) = 0 and (x, y) - ny(t) is & x &-measurable for each
t, one can construct an RTT of {X,} such that {X,'} is an SMP whose succession of
states {Y,’'} is given by { ¥,}, and whose sojourn times {W,’} satisfy

PW i St Y =xY, =y]= G(1).

A RTT of this type is determined, according to the above and Remark 3 and
Remark 4, by the process ¢, = [; p,du where

pe=Vori(¥,, Yn+1)/”’n+1 if T, St<T, .,
=0 otherwise;
and where P[V(x,y) £ t] = G,,(1).

Processes {¢,} independent of {X,}. Let {¢,} be a non-decreasing right continu-
ous process (with ¢(0) = 0) taking values in (R, %), adapted to {Z,}, and which
is continuous in probability and is independent of {Y,, W,}. Assume that {¢,} has
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stationary independent nonnegative increments with respect to {#,}, that is for
any s, t = 0, o(p(t+5)— ¢(s)) is independent of #and

Plo(t—s)—o(s) S u| F] = Plo(t) S ul.
Since {¢,} is continuous in probability, for any 7 =0
Plo(t)—(t7) > 0] < P[o()—@(t—n"')>0] >0  as n— oo,
and since {¢,} is independent of {Y,, W,}
P[o(T,)— (T, ) > 0] Yo = x] = [2, PLo(t)—(t7) > 0]Q"(x, E x dt) = 0.

Thus (A1) is satisfied.
Assumption (A2) is also satisfied for it can be shown (see [1]) that if 7 is any

finite & -stopping time, setting
3, = p(t+1)—p(t) and F,=o0(P:s=1) for each t = 0,

the o-algebra &, is independent of &, and
(4.6) P[p( S u|F]=Plp()Su] as.
Then (A2) follows from (4.6) and the independence of {¢,} and {Y,, W,}.

RTT’s determined by this class of processes are analogous to the RTT’s of
Markov Processes as presented in Feller [4] (which we noted in the introduction).
For his RTT’s, {7,} is a process with stationary independent nonnegative incre-

ments, which is independent of {X,}; while in this case {,} is the inverse of such
a process.

5. Some other random time transformations. In this section we take {r,} to be a
step function of the form

(5.1) 1,=S5, if Z,<t<Zyi1s

where {S,} and {Z,} are sequences of strictly increasing random variables such
that S, = Z, =0 a.s. The inverse {¢,} of {r,} obviously satisfies ¢, = Z,,, if
S, <t <S8, Assume the following:

(i) {S,} is independent of {Z,}.

(ii) {r,} is independent of {Y,, W,}.

(iii) {¢,} is adapted to {F,}.

(iv) There exist distribution functions G and H such that for any n

P[S,+1—S,St|Fs,]=G()
and
P[Z,1,-Z,+1 S tlg'-s,,] = H().

(Note that each S, is an % -stopping time, since these are the jump points of {¢,}
which is adapted to {#,}.)

Let {X,'} be the RTT of {X,} by the change of time {r,}. Then we have the
following.
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THEOREM 2. Suppose that {X,} is a regular step Markov process with respect to
{#.}. Then {X,'} is an SMP with respect to {F '}, which is induced by the MRP
{X(S,), Z,1:n =0} with kernel §(x, A x [0,t]) = R(x, A)H(t) where

R(x,4) = [§ P[X,eA| X, = x]G(du).

Hence, if {t,} is a compound Poisson process (i.e., H(t) = 1—e ™ for u > 0), then
{X/'} is a regular step Markov process with respect to {F'}.

PROOF. Just as in the proof of Theorem 1 it follows that {X,’} is a right continuous
process adapted to {&,'}, and directly from (5.1) we have X, = X(S,) if Z, <t <
Z,,,. The counting process of {X,'} is given by N, =n if Z, <t < Z,,,. Each
Z, is a & /-stopping time since it is a jump point of the process {r,}, which is
adapted to {#,'}. Thus it follows that {N,'} is adapted to {#,'}.

Under Assumptions (i)-(iv) and the strong Markov property for {X,} it follows
that for each n =20, xeE, Ae€ and t 2 0

P[X(Sy+1)€A,Zys2—Zpyy S t| Fs,, X(S,) = X]
= P[X(S,+1)€A| Fs,, X(S,) = X]P[Z,1 2= Z, 41 S 1]
= K(x, A)H(1).

Thus {X(S,), Z,+} is an MRP with respect to #, and this proves the first state-
ment of the theorem. The second statement follows from Remark 1. []

Note that the second statement in the above theorem is a special case of the
above mentioned result in Feller. It can be shown (see [13]) that the result in Feller
for Markov processes does not hold for SMP’s. However, we do have the following
special case.

THEOREM 3. Suppose that the jump points of the SMP {X,} occur a.s. at integer
time points, i.e., each F,(t) is an arithmetic distribution with an integer valued span.
Let (t,) be a Poisson process where, using the above notation, for eacht =20, 1, =n
len é t< Zn+1 and

P[Z, stf]=1-e"* for some 4> 0.

Set Z, = Zy, for each n. Then {X,'} is an SMP with respect to {F '} and is induced
by the MRP {Y,, Z,} which has the kernel

Q(X’A X [0’ t]) = ZI:O=1 Q(X,A x {k})Hl,k(t)
where H, , is a gamma distribution with parameter A and order k.

PROOF. Just as in the proof of Theorem 1 it follows that {X,’} is a right continuous
process adapted to {#,'}, and that

(5.2) Xt’ = Y;’ if T" é T‘ < T”+ 1
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Under the hypotheses it follows that
{T, =7 < T4}
={T,=t}u{T,+1=1}u U{T,,,-1=1}
={Z1, St <Zp 1 }V{Zr, 41 St<Zpo}0V{Zy,,,. 1 St<Zp,}
={Z,21t<Z,.}.
Thus (5.2) is equivalent to X, = Y, if Z, <t < Z,,,.

Just as in the proof of Theorem 2, it follows that the counting process associated
with {X,'} is adapted to {#,'}. In addition, each Z, is a & -stopping time. Thus
{Y,, Z,} is an MRP with respect to {Z }, since for any xcE, Ac& and t = 0

P[Y,. €4,Z,,,-Z,< t|F 2,0 Yo = x]
=221 P[Y4,1€4, T, — T, = k,Zp,1x—Zr, < t|~9"z,.’ Y, =x]
=2%10(x,4 x {kDP[Z, = 1]
=321 0(x, A x {k})H, (1).
This completes the proof. []
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