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0. Summary. Recently several authors (cf. [5], [6], [8], [9]) have established for
arbitrary positive numbers ¢y, - - -, ¢, the inequality

(1) P{X\| S ey, | X S e} 2 TT P{X| < ¢}

valid for a random vector X = (X, -+, X,) having a multivariate normal distri-
bution with mean values 0 and with an arbitrary covariance matrix. A question
then arises whether also an analogue to (1) for multivariate Student distributions
holds true, i.e. the inequality

) P{lxll/sl Scp,ty, IXkI/Sk < Ck} = H{"=1P{IX1'|/S;' < c,-}

where X = (X, -, X,) is as before, while S;=(Y?_,Z2)%, i=1,-, k, where
Z,=(Zyy,"**,2Z,), v=1,---,p, is a random sample of p vectors, which are
mutually independent and independent of X, and each of which has, in the simplest
case, the same normal distribution as X. More generally, the Z,’s have some
normal distributions with mean values 0 and with some covariance matrices which
need not coincide with that of X and even need not be identical.

A certain proof of (2) was presented by A. Scott [6] but we shall give here a
counterexample showing that, unfortunately, this proof is incorrect. However, if
the correlations between X; and X; have the form A;2;p;; (i, j =1, ", k; i #)
where |[4,| < 1(i=1, -, k) and where {p, ;1 is any fixed correlation matrix, and if
the correlations between Z;, and Z;, have the form t,,t;, (,j=1,", k; i #J;
v=1,-,p) where |t,|<1(=1,"-,k;v=1,--+,p), we shall prove here that
the left-hand side probability in (2) is a non-decreasing function of each |/1,-| and
each |r,-v|; therefore, in this case of a special correlation structure, (2) is indeed true.

The general validity of (2) still remains an open question.

1. Bibliographical remarks and a counterexample. Let us begin by a few remarks
on related investigations. (Here, and throughout the whole paper, p(X;, X ;) will
denote the correlation between the variables X; and X, etc.)

The proof of the inequality (1) for normal random variables was originally
given by O. J. Dunn [2] only for cases where k =2 or k = 3 or p(X;, X D) =Aid;
(Gj=1,,k;i#j)with0< A, <1(i=1,--, k). The general validity of (1) for
the case of an arbitrary covariance matrix was established almost simultaneously,
but by different methods, by three authors: A. Scott [6], the present author (the
result announced in [8], the proof given in [9]), and C. G. Khatri [5]; to be more
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precise, the last author did not mention the inequality (1) explicitly, but his main
result was

(3) P{(Xl"“9Xm)eD19(Xm+19”'9Xk)eD2}
Z P{(XU“'9Xm)EDl}P{(Xm+l"”,Xk)eDZ}

for any convex regions D,, D, symmetric about the origin, so that (1) is an im-
mediate consequence of his inequality (3). (Cf. also Corollary 4, Corollary 5, and
Corollary 5’ in [5] giving the inequality (1) as an easy specialization.) Still a different
proof of (1) follows from a more general assertion presented in [11]: If X'is as above,
and p(X;, X)) =Aid;p;; (=1, k;i#j)where 0= A, <1(=1,", k), and
{p;;} is any correlation matrix, then the left-hand side in (1) is a non-decreasing
function of each A;.

The case of multivariate “Student” variables defined in a different and simpler
way, namely, the case of X,/S, - -+, X,/S (where all X;’s have the same variance o2,
and S is a common single estimate of ) was studied simultaneously. The relevant
analogue of the inequality (2) was given also in [2] for the same special cases as
mentioned above, and in [8], [9] for the general case; moreover, it is sufficient to
suppose here only that S is any positive random variable independent of X =
(Xl’ ) Xk)

Coming to the subject of the present paper, we will now concentrate on the
inequality (2). Certain special cases of this inequality were proved by the following
four authors, again almost simultaneously.

M. Halperin [4] proved (2) for the case k = 2, but assuming completely generally
that the correlations p(Z,,, Z,,) may be different for different v’s. For a general
dimension k = 2, but for a special correlation structure of Z,’s, the present author
[10] established (though by a somewhat lengthy method) the following result: If
Xand Z, (v =1, ---, p) have normal distributions (possibly different) described in
the Summary, where the covariance matrix of X is arbitrary, the variances of all
Zys are 1, and p(Z;,,Z;)=7;7; (,j=1,-,k;i#j;v=1,,p) with 0 =
1,21 (@G=1,--,k), then (2) is true. Essentially the same result, assuming more
generally only |t;| <1, follows by an easy specialization from C. G. Khatri [5],
Corollary 8. (The precise contents of this Corollary lies somewhat far from our
present interest.) These results will be further slightly generalized in Corollary 1 of
the present paper.

A certain general proof of the inequality (2) under the assumption that X and all
Zs have the same normal distribution with mean values 0 and an arbitrary
covariance matrix was presented by A. Scott [6]. (Precisely, he states explicitly
only a more special inequality, in which the X’s are the averages and the S;’s are
the empirical standard deviations in a multivariate normal random sample.)
Unfortunately, this proof is correct only for k = 2 but incorrect for k > 2. (This
fact is also stated in the Correction to [6].) As a matter of fact, Scott’s proof uses in
an essential way Lemma 2 in [6] asserting (in a different notation) that

“4) P{lle 2 dn"'slzkl 2di} 2 l—[i"=l P{[Zi[ 2 d}
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for any positive numbers d|, - - -, di, whenever Z,, - - -, Z, have a k-variate normal
distribution with mean values 0 and with an arbitrary covariance matrix. However,
the proof of (4) was given in [6] only for k = 2, whereas it was skipped for & > 2,
and we are now going to show by a counterexample that, in fact, the assertion (4)
generally fails to hold in this latter case. (Note, of course, that this counterexample
shows only that Scott’s method of proving (2) fails but it does not say anything
about the validity of (2) itself.)

The inequality (4) does hold for k=2 provided that p(Z;, Z;) =1;1;
(,j=1,+,k;i+#j)ywith|t,| <1(i=1, -, k), as was shown by C. G. Khatri [5],
Theorem 2. Moreover, Khatri in a Remark on page 1864 expressed some hope that
(4) might be true for any covariance matrix; however, our counterexample shows
that this hope was in vain.

In the sequel, we write ¢(x) = (27) " *exp (—x?/2), ®(x) = [* , ¢(u) du, and by an
N(0, 1) variable we understand the random variable with the density ¢(x). For the
counterexample, we shall need the following

LEMMA 1. ®(—2%x) > 20%(—x) for all x > 0.
PrOOF. Writing /(x) = ®(—2%x)—2®%(—x), we have
¥'(x) = 2nto(—x)2n " O(—x)— o(—x)].

Put now w(x) = 2n~*®(—x) — @(—x). We get then o’(x) =@(—x)[—2n"*+x], so
that w'(x) = 0 at exactly one point x = 2n~*. Since w’’(2n~%) > 0, the function
(x) has a local minimum at x = 27~ %, and has no other extremes for x > 0.
Taking further into account that w(0) > 0, ’(0) < 0, and lim,_, , w(x) = 0, we see
that w(x) = 0 has exactly one root for x > 0. Hence also /’'(x) =0 for exactly one
x >0, and the function ¥/(x) has at most one local extreme for x > 0. Since,
moreover, Y(0) = 0, Y'(0) > 0, and lim,_, , ¥(x) = 0, we can conclude that y(x) > 0
for all x > 0, which proves Lemma 1.
The following counterexample now contradicts the inequality (4).

ExaMpPLE. Let Z,, Z, be two independent N (0, 1) variables, and let Z, =
Z,/2*+Z,/2*. Then, for any d > 0 and for any sufficiently small d; > 0, we have

(5)  P{z,|z 4,

Zy| 2 4,|Z3| 2 ds} < P{|Z,] 2 d}P{|Z,| 2 d}P{|Z4] 2 d3}.
PrROOF. We shall investigate the difference

P{|Z,| = d}P{|Z,| = d}P{|Z5| 2 d;} —P{|Z,| 2 4,

ZZ| g da

Zs| = dj}

(6) = —P{|Z,| 2 d}P{|Z,| =2 d}P{|Z5| < d3}+P{|Z,| 2 d,|Z,| 2 d,

Z,| < ds}

=P{|Z,| 2 4,|2,| 2 4,|Z,/2* + Z,/2¥] < d3} = 80*(~d)[D(d3)—1].
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We introduce new random variables U,, U, by Z, = U,[2*-U,/2}, Z, = U,[2} +
U,/2%. Since this is an orthogonal transformation, U, and U, are again independent
N(0, 1) variables. Then (6) equals

P{lU,—U,| 2 2%d,|U,+ U,| 2 244, |U,| < d3} —80*(— d)[®(d;)— ]
(1) 2 P{|U,| <ds,|U,| 2 2¥d +d;} —80*(—d)[®(d3)—1]
= 4[®(d3) — 3] ®(—2%d —d3) — 80*(— d)[@(d)— 4]
= 4[®(d3) - 3][D(—2*d — d;) —20%(—d)]).

However, by Lemma 1, this last expression is positive for any d > 0 and for
sufficiently small dy > 0, and thus (5) is proved.

This is an example of a singular distribution for which (5) holds. However, since
the inequality in (5) is strict, and since a singular distribution may be approximated
by some nonsingular ones (cf. H. Cramér [1], Section 24.3), there exists also a triple
Z,, Z,, Z4 with a nonsingular normal distribution for which (5) is true.

2. A stronger positive result for special correlations. In this section we shall prove
a positive result, which is stronger than the inequality (2) but which is, unfortunately,
restricted only to cases of a special correlation structure of Z;,’s. First, we prove a
Lemma, generalizing Theorem 2 in C. G. Khatri [5] (which was also mentioned
here just before our Lemma 1).

LEMMA 2. If the random vector Z =(Z,, -+, Z;) has a normal distribution with
mean values 0, arbitrary variances, and p(Z;, Z;) = v;1; (i,j =1, -+, k; i # j) where
"ril <1(@(=1,---, k), then, for any positive numbers d,, -+ -, dy, the probability

(8) P{Izllgdb“'alzklgdk}

as a function of 1,(i = 1, - - , k) is non-increasing for —1 < 1, < 0 and non-decreasing
for 0 < t; < 1, so that it has a minimum for t; = 0.

The proof follows the same lines as that of Theorem 1 in [7]. First, let us prove
Lemma 2 for the case where all t;’s are nonnegative. Clearly, we may suppose that
all variances are equal to 1, and prove the assertion only for 7, satisfying0 < 7, < C,
where C is a fixed constant, C < 1. Further, we may employ the device by
C. W. Dunnett and M. Sobel [3] supposing that each Z; has the form Z; =
(1-=t2*Y,—1, Y, (i=1,---, k) where Y,, Y, -+, Y, are independent N (O, 1)
variables. Then, writing simply P (t,) for the probability (8), we get

P(Tl) = P{(I—Tiz)%Yi—TiYO g di or (I—Tiz)%},i_TiYo é —di’ i = 1,' i ,k}
) = P{Yi 2 (y Yo"‘di)(l—‘fiz)_’lr or ;=< (t; Yo—di)(l—‘fiz)_%a =1 »k}
= Iiow o(y) nf=1 [1=®((r;y+d)(1 —tiz)_%)'i'q)((riy_di)(l —Tiz)_%)] dy.

It is sufficient to prove that dP(z,)/dt; = 0. However, it is easy to see that, in view
of the assumption 0 < t; £ C < 1, differentiation under the sign of integral in (9)
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is justified. Thus, after differentiation in (9) and after some manipulation with the
functions ¢ in the resulting expression, we obtain

(10) 0P(zy)/0r,
= ¢(d)) |Ze o(y=dy 1)1 =7, ) H(y—d 1)1 —-7,})7H
o2 [1=0((r y+d)(1 = 72) H+O((r; y—d)(1 —72) )] dy
—0(d) |20 o(y+d, 1)1 =1 Dy +d; 1)1 -1, 7}
2 [1=0((r y+d)(1 =12 H+O((r; y —d)(1 —72) )] dy-
Substituting now z=(y—d, 1,)(1-1,%)"% in the first integral in (10), z =
(y+d;t,)(1—1,%) "% in the second integral in (10), and writing then briefly p; =

dy1 —Tiz)_%, gi=dt,741 _Tiz)_%ari =11 —‘512)*(1 _Tiz)_%9 A=q(d;)(1 "‘512)_%,
we get

(11)  8P(r)))ot, = A2 @(2)2] [¥=2 [1 = @(zr;+ g, + p) + D(zr;+ g, ~ p)] dz
—Ajfw(p(z)z 2 [1—®(zr;— i+ p) + O(zr,— q;— p)] dz
= A[%2, 0@ [i-2[1 - P(zri+ g+ p) +(zri+ ;= p)]
~ {2 [1=®(zr;— q;+ p) + (zr,— 9, — pp)]} dz.

Further, split the last integral [©, -+ in (11) into the sum of two integrals g - -
and [%, -, denoting them by I, and I, respectively. Beginning by the integral
I,, observe that we have here zr; 20, ¢; =0, p; > 0. Hence |zr;—q,| < zr;+q;,
which evidently implies

O(zr;—q;+p) —O(zri—q;— p;) Z O(zr;+q;+ p) — P(zr;+q;— py)-
Therefore
i=2 [1=®(zr;— q;+ p) + O(zr;— q;— p))]
S [I=2 [1=0Cri+ g+ p) + O(zri+ 4, — p)]

so that clearly 7; = 0. In an analogous manner we find also 7, = 0, and the proof
of Lemma 2 for nonnegative 7,’s is finished.

If some 7,’s are negative, it suffices to use the assertion just proved for the
variables Z,*, -+, Z,* defined so that Z,* = Z; whenever 7,20, Z;* = —Z,
whenever 7; < 0.

The following main Theorem of this paper is a partial “Student” analogue to
Theorem 1, or rather to Corollary 1, in [11].

THEOREM. Let the random vector X = (X, '+ *, X) have a normal distribution with
mean values 0, arbitrary variances, and p(X;, X;) = A A;jpi; (,j=1,",k;i#j)
where |/1,~| <1 (=1,,k) and where {p;} is some fixed correlation matrix.
Further, let Z,=(Z,,, ", Z,), v=1,"+,p, be a sample of p random vectors,
which are mutually independent and also independent of X, and let Z, have a normal
distribution with mean values 0, arbitrary variances, and p(Z;,, Z;) = TiyTi
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G j=1,",kyi#jv=1,p) where|t,| <1(=1,,k;v=1,",p). Put
S;=(2_,Z2)?% i=1,", k. Then, for any positive numbers c, -, ¢, the
probability

(12) P{lel/Sl §01,"‘,|Xk|/sk§0k}

as a function of A; (i =1, -+, k) is non-increasing for —1 £ 1; < Oandnon-decreasing
for 0 < A; £ 1, so that it has a minimum for A; =0, and, as a function of t;, (i = 1,
«oo k;v=1,+-+,p) is non-increasing for —1 <1, <0 and non-decreasing for
0 < 14 < 1, s0 that it has a minimum for t;, = 0.

Proor. (I) First, let us prove the assertion for A;’s in the case where all 4,’s are
nonnegative. Clearly, it is sufficient to prove it for the conditional probability
analogous to (12) for given Z;, =z, (i=1,---,k;v=1,---, p). However, this
immediately follows from Corollary 1 in [11] (quoted also in the present paper
after formula (3)), and it then suffices to take expectations.

If some ;s are negative, we apply the assertion just proved for the vector
X*=(X* -, X,*) defined so that X;* = X; whenever 4;20, X;*= —X,
whenever 4; < 0.

(IT) The proof of the assertion for 7;,’s is based again on a conditional argument.
It is sufficient to carry out the proof for v = 1 and for the conditional probability
analogous to (12) for given X;=x; (i=1,""",k), Z;y=z;, (i=1,""",k; v=
2,-++, p). Now, this amounts to proving that the probability

2, -2_YX"p 2 2 ... . 2,-2_X"P 2 2
P{xl C1 Zv=2zlv§211, s Xk Ck Zv=22kv§Zkl}

as a function of 1;; is non-increasing for —1 < 7;; < 0 and non-decreasing for
0 < 1;; < 1, which is an obvious consequence of our Lemma 2.

COROLLARY 1. If X = (X, -+, X,) has a normal distribution with mean values 0,
arbitrary variances, and arbitrary correlations, and if Z,=(Z,,, ", Zy,), V=
1,--+, p, is a sample specified in the Theorem, then

P{|X1|/Sl Sept, |Xk|/Sk =< ck} = §=1P{|Xi|/‘si = Ci}-

This Corollary 1 shows the validity of the inequality (2) in certain special cases,
and gives a generalization of the results proved by M. Halperin [4], the present
author [10], and of the result obtained from C. G. Khatri [5], Corollary 8. (For
details, cf. Section 1.)

COROLLARY 2. Let Y, =(Y,,, ", Y},), v=1,--+, n, be a random sample of n
independent vectors, each of which has the same normal distribution with mean values
Ui My variances o, -+ 02, and p(Yy, Y) =11 (Gj=1,,k;i#];
v=1,-",n) where |t|<1 (i=1,-"+,k). Putting Y,=n"'Y3_, Y, 8=
[(n=1)" 30 (Y, =Y, (i=1, -, k), we have

P{nilyl_ﬂlljsl Sept ’n%ll_/k_ﬂkl/sk Sar 2zl P{"%|7i—l/‘i|/si Sl

This last Corollary may be used in constructing conservative confidence
rectangular regions for unknown mean values pq, *+*, i in the case of unknown
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variances (for details cf. [2], [8], [9], [10]). As a matter of fact, this latter problem
was the first stimulus to prove inequalities like (1) and (2).

Unfortunately, the results of the present paper assume a special correlation
structure of the variables in the denominators of the ‘“‘Student” variables in
question. It would be much desirable to get rid of this restriction but this is still an
open problem.
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