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ERRORS IN THE FACTOR LEVELS AND
EXPERIMENTAL DESIGN

By NORMAN R. DRAPER! AND WILLIAM J. BEGGS?
University of Wisconsin

1. Introduction and summary. Suppose that an experimenter is interested in
determining the relationship between a response # and several “‘independent”
variables, x,, x,, -+, Xg. The x-variables may be controlled by the experimenter
or observed without control. Suppose, further, that these K ‘“independent”
variables represent all the factors that contribute to the response #, and that the
exact relationship between # and the x’s is

(1.1 n = ¢(x),

where x = (x;, x,, ***, x¢)". The function ¢(x) is called the response function and,
geometrically, it defines a surface in K-space which is called the response surface.

In the real world, however, we rarely know the exact relationship, or all the
variables which affect that relationship. One way of proceeding then is to graduate,
or approximate to, the true relationship by a polynomial function, linear in some
unknown parameters to be estimated and of some selected order in the independent
variables. Under the tentative assumption of the validity of this linear model
(which we can justify on the basis of a Taylor expansion of ¢), we can perform
experiments, fit the model using regression techniques, and then apply standard
statistical procedures to determine whether this model appears adequate. Since in
practice we do not know all of the K factors which affect the response, we usually
select k(< K) variables which we believe might have significant effects. This selec-
tion may be made on the basis of prior knowledge, or a preliminary experiment
may be performed to screen the important variables out of a larger set of possible
variables. We can write our graduating model as follows:

(12) Yu :f(xlu,xmn e ’xlmiﬁo’ ﬁb e 5ﬁp)+8u5

where y, is the observed response at the uth trial, x,, is the setting of ith input
variable for the uth trial, B; is the jth parameter to be estimated, ¢, is the error in-
volved in observing y on the wuth trial, u=1,2,---,N; i=1,2,"+-, k<K
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and j=0,1,2, -, p. The errors ¢, arise in one or more of the following
ways:

(i) The true response n may be observed with error.
(ii) The function f(xy,, X2, **, Xx,) May not be the correct model.
(iii) The observations on the independent variables may contain errors.

Once an experimenter has chosen a polynomial model of suitable order, the
problem arises as how best to choose the settings for the independent variables
over which he has control. A particular selection of settings, or factor levels, at
which observations are to be taken is called a design. Designs are usually selected to
satisfy some desirable criteria chosen by the experimenter.

In this paper we consider the problem of design selection when there are errors
in the factor levels as well as in the response. This problem has received little
attention; in fact it appears that only Box (1963) has tackled it. Box first gives
conditions under which the variance of a linear combination of the observations,
say L =Y a,y,, is estimated unbiasedly. Next, he shows that these conditions are
satisfied by two-level factorial and fractional factorial designs for first order models.

In Section 2, we present a criterion for selecting designs for experiments in which
errors occur in the factor levels. In Section 3 we make a simplifying assumption
and an approximation which leads to an approximate criterion, and this is applied
to the first order model case in Section 4.

2. Development of a design criterion.

2.1. Selected and exact design matrices. In some region of interest R we graduate
the true relationship (1.1) by the linear model

(2.1.1) y =XBx+¢,

where y is an N x 1 vector of observations, X = (1, f;, f,, -*-,f,) isan Nx(p+1)
design matrix of full rank, 1 is the Nx1 unit vector, f; = (fjy, fj2, "> fin)»
J=1L2, k fiu=f(X1 X2w s X))y u=1,2, -+, N, By is a (p+1)x 1 vector
of parameters, and g, is an N x 1 vector of observational errors on y. We shall
assume

(2.1.2) E(,)=0, Var(g) =02 xI

Under the standard assumption that no errors occur in setting the factors at
their designated levels (i.e., the uth scaled level for x; is exactly x;,), Gauss’ Theorem
applies and the least squares method yields minimum variance, unbiased estimates
of the parameters given by

(2.1.3) Bx = (X'X)"'XY.

Let x, be a vector which lies in the space spanned by the columns of X. In particular,
X, may be one of the rows of X, i.e.,

(21'4) Xy = (l’fwaZw T 9fpu)'
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The fitted or predicted value of the response at the point x,, obtained under the
assumption of no errors in the factor levels, is given by

(2.1.5) Ix(x) = XO,BX'

It is the standard assumption of the absence of errors in the factor levels which
is in question here. However, even if the x’s are in error, the procedure given above,
leading to the estimate (2.1.3), is valid as a first approximation to the correct
analysis, which would employ the exact settings achieved by the independent
variablés. Assuming that errors do occur in the factor levels, we write

(216) Ziy = xiu+ Eius

where, for the uth run, z;, is the exact setting of factor i actually achieved, x;,, is
the selected setting of factor i, and ¢, is the error involved.

If we knew the errors ¢,, and hence the factor levels z;, exactly, the usual least
squares analysis would be appropriate and would yield minimum variance unbiased
estimates of the parameters of the model. We would have the model

@2.1.7) y=ZB+s*,

where y is the same N x 1 vector of observations as before, Z = (1, f, *, f,*, - - -, f,*)
is the exact N x (p+1) design matrix, £,* = (ffy, /15, SN > S u =121 Zow "
Ziw)s B = (Bo, By, **+, Bp) is a (p+1) x 1 vector of unknown parameters, and g,* is
an N x 1 vector of observational errors on y. We shall assume

(2.1.8) E(e,*)=0 and Var(g,*) =01

Note that (2.1.7) involves the exact factor levels Z while (2.1.1) involves the
selected factor levels X. Thus By and B are not in general the same unless all
&, = 0. In addition, the functions of the xs, f,, have been replaced by the same
functions of the z’s, f}5. We also note that, if errors do occur in the x’s in (2.1.1), the
observations are those occurring when the factors are actually at the z levels, i.e.,
the vector of observations y is the same in both (2.1.1) and 2.1.7).

The estimate of B obtained by the least squares analysis on the z’s is

(2.1.9) B.=Zz)"'zZy,
and the fitted or predicted value of the response at the point X, is
(2.1.10) 92(Xo) = X'y

If, indeed, errors do occur in the x’s, and Z is the exact but unknown design
matrix, then the usual least squares estimate By (2.1.3) based on the known matrix X
is biased; that is, since now E(Y ] Z) = ZB, then
(2.1.11) E(By |Z) = (X'X)"!X'ZB = B+b
where b = (X' X) ™' X'ep is the bias of the estimate By induced by the errors in
setting the x’s, and where

(2.1.12) e=27-X,
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is the matrix of design errors. Similarly, $4(x,) contains a bias, since
(2.1.13) E(ﬁx(x0)|Z) = Xo'B+x'b.

Now iy based on the selected factor levels X, will yield a different set of fitted
values from $,, based on the unknown, but exact, factor levels Z. Our goal will be
to select a design X, i.e., choose factor levels x;, which, in a sense to be defined below,
will minimize the distance between the ‘‘biased” fitted values and the ‘“‘exact”
fitted values.

2.2. Choice of a criterion. If x, is an original selected design point x.,, (see (2.1.4)),
we can evaluate the fitted values py(x.,) and §,(x.,), the predicted responses at
the point x., using the selected and exact design matrices respectively. The
difference,

(2.2.1) w, = Px(x.,) = P(X..),

is a measure of how closely the biased predictor y (given that Z is the exact design
matrix) approaches the unbiased and correct predictor j, at the point x.,. By
summing over all the selected design points x., in X, we can use, as a measure of
deviation, the sum of squares

(2.2.2) Now2

u=1

Note that w, is a function of the observations y (which are subject to observational
errors and factor errors) as well as the selected factor levels. In theory, we could
repeat the experiment at the same z-values and obtain a distribution of observations
at each design point. We first average (2.2.2) over these distributions for fixed
&;,' s, and hence for fixed &, to obtain the measure of discrepancy

(223) Ey K3 [Zu Wu2 .

Now (2.2.3) is a function of the actual factor errors ¢;,. Averaging (2.2.3) over the
distributions of the elements of &, we obtain the quantity

(2.2.4) G=E,E, [y wl]=E.E, [ww],
where

(2.2.5) w=9x—92

and

(2.2.6) Ix = (Px(x.0); Px(X.2),+*+, Px(X.n))',

and ¥, is similarly defined. Thus, G represents an average measure of discrepancy
between the two fitted surfaces §, and §,, averaged over the distributions first of
y | ¢ and then of the elements of ¢, and evaluated at the points x.,, in X.

By performing the expectation operations, we can develop (2.2.4) in the following
way: writew = §y—§, as

(2.2.7) w = X[(X'X)"'X'—(2'Z)"'Z']y.



50 NORMAN R. DRAPER AND WILLIAM J. BEGGS

Then, after some reduction it can be shown that

(2.2.8) Ey . [ww]=pC,B+0}2trC,,

where

2.2.9) C, =X'(X'X) X,

and

(2.2.10) C,=XXX)"X'-X(ZZ)"'Z -4UZZ)" X

+Z(Z'Z)"'X'X(Z’Z2)"'Z'.
Expecting over the factor errors gives
(2.2.11) G=E.E,  [ww]=PE[C ]B+0c,trE[C,].

Thus, we see that the average measure of the discrepancy between the two fitted
surfaces is composed of two parts. The first of these terms is a bias term induced
by the errors in the x’s and involves the parameters g of the model. The second
term is a variance term, and can be shown to be the sum of the expected variances
of the deviations of w, about their means. A desired design criterion would be to
choose the design matrix X to minimize (2.2.11). Because of the difficulties
associated with obtaining the expectation of C,, we use instead the procedure of
the next section.

3. An assumption and an approximation. Since X’'X is a positive definite sym-
metric matrix, we may write X’ X = P~ ! (P’)"!, where P is square and non-singular.
It follows that

3.1 Z’Z =XX+Xe+eX+¢e'e
=P '[I+QJ(®P) 7,

where Q = P[X'¢g+¢' X +¢'g]P’.

In performing an experiment in which errors may occur in the setting of the
factor levels, it is implicitly assumed that these errors are ““‘small” in some sense.
If this were not the case, we would be in such a state of uncertainty that there would
be serious doubt as to the validity of any estimation results. We make, therefore,
the following assumption:

AsSSUMPTION. The errors ¢, i=1,2,-",k, u=1,2,---, N, are sufficiently
small with respect to the range of the factors x; that

(i) the matrix Q" converges to the null matrix as r — o,
(ii) terms of third and higher order powers in the errors may be ignored, and
(iii) Y25 (—1)" Q" is negligible, where Q is defined in (3.1).

We may now make use of the following expansion result from matrix theory:



ERRORS IN THE FACTOR LEVELS AND EXPERIMENTAL DESIGN 51

THEOREM 1. If M is a p X p diagonable matrix and c is a scalar constant such that
"M’ - 0, a null matrix, as r — oo, then
3.2 A=) ' =2, M,
where, by definition, M° =1. (For proof, see Jennings (1964) pages 185-186.)
Applying this result to Z’ Z, we first note that Q is a symmetric matrix and hence is
diagonable. Setting M = Q and ¢ = —1, we have that ) 2,c'Q" =I-Q+Q*+

23 (—1)Q" converges to (I+Q)™! = [I+P(X'e+¢& X+¢'e)P’']"!, since, by
assumption (i), Q" — 0 as r —» co. Furthermore, from assumption (iii), we may
drop Y 725 (— 1)y Q". Recalling that (X' X)™! =P’P, we now have

(Z'Z)"' = P[I-Q+Q*IP
3.3) =XX)"H{I-X'e+&X+&e)(X'X)™!
+[(X'e+eX)X'X) T2} +RE),

where R(g*) is a matrix containing terms of third and higher order powers of the

errors. Under our assumption (ii) then, we drop R(g®) from (3.3) so that we have
the following approximation:

(3.4) (Z'Z)" = [I-(X'X)"'(X'e+&X)— (X'X)"'ee
F(XX) T I(X e+ X)X'X) " {(X'e+&'X)](X'X) L.

From (2.2.10), using (2.1.12) and (3.4), and dropping terms containing third and
higher order powers of errors, we can show that

(3.5) trC, = tre(X'X) "¢,

Our measure of the deviation of the fitted values using the selected design matrix
X from the fitted values using the exact design matrix Z can thus be approximated
by

(3.6) G= ﬂ'Aﬂ+0'y2 trM~ 1y,

where

(3.7) A = E[¢X(X'X)"'Xe],

(3.8) M = N"X'X, and
3.9 ¥ = N!E[¢¢],

and where terms of third and higher order in the factor errors have been ignored.
Our proposed design criterion will now be to choose the design matrix X to minimize
3.6).

4. The case of a first order model. We now examine (3.6) for a first order model,
and see what conditions on the design moments are required in order to minimize it.
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4.1. Notation. By definition, for a first order model,

4.1.1) X =1,%1,X5,° ", Xp),

“4.1.2) Z=»1,2,,2,,",2) =1, X;+8,X,+85, ", X+ &),
and

(4.1.3) e=2Z-X=(0,¢,,8,,""",8&),

where x; = (x5, X, ***, X;n) and &; = (&1, €12, "5 En)-

The elements of the design error matrix & consist, then, simply of the factor errors
&;,. We assume that

(4.1.4) E[e;,] =0,
E[e;¢5.] = o/, i=ju=uv,
(4.1.5) = p;;0;0;, i#j,u=v.
=0, u#v,

ihj=1,2,,k;u,v=12,---, N. We also assume that the factor errors are
uncorrelated with the observational errors ¢, on the response. That is,

(4.1.6) E[ey,¢,,] =0, ali i,u,v.

4.2. The bias term and the matrix ¥. We first note that the bias portion G =
B’ AB of G, where A is defined by (3.7) is unaffected by choice of the design. In
general, A is a (k+1) x (k+ 1) matrix with (i, j)th element

(4.2.1) j"! = E[B,-'X(X'X)_ IX'ej]
= tr X(X'X) " 'X'E;, i,j=1,2,"k,

where g, is the ith column of ¢, and X, is the N x N covariance matrix of the random
vectors g; and ;. From (4.1.5)

4.2.2) T, =071, i=j,
= p;j0;0;l, i #J.

Hence
by = (k+ Do, i=J,
4.2.3) =(k+1)p;jo;0;, i#J,
=0, iorj=0.

Thus we see that G does not depend upon the selected factor levels. We may thus
attempt to minimize G in (3.6) with respect to the selected design by minimizing
Gy = 0,2 tr M~ ¥, the variance portion of (3.6), alone.
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Gy contains the (k+1) x (k+1) matrix &'¢ whose (i, j)th element is &, &;. Hence
the (i, j)th element of E(¢'¢) is 0;; = trX;;. From (3.9) and (4.2.2),

(0 0 0 0
0 ,’ P120102 " P 010y
(4.2.4) ¥=|0 p0,0, a,’ *tt P02 0y
[0 p1010 P00, - o’

4.3. The case of uncorrelated errors. We now assume that the factor errors are
uncorrelated; i.e., Ele;,€;,] =0, i # j. Thus

(4.3.1) ¥ = diagonal (0,0,2,0,2, -, 0,%)
and
4.3.2) Gy = 0',,2 trM~ ¥

=0,2) i1 by o’
where b;; is the (7, /)th element in M~ !, and M is the moment matrix
1 ) @ - (K
I ay a2 - {1k
(4.3.3) M=|2 (120 220 - (2k)

-

(k) (k) (@k) -+ (kk)

where (i) =Y N_; x;,/N, (i) =YN_,x2/N, and (i) = Y01 x;X;/N, i#j. Our
object is to determine what designs will minimize G,. We restrict our attention to
choosing the odd moments (i), (ij), i #j, while holding the even second order
moments (if) fixed at specified values. This sort of procedure is adopted because a
more “spread-out’ design, i.e., a design which covers a greater portion of the region
of interest, will always reduce G,. What we seek, however, are the relationships
between design moments when the “spread” of the design is fixed. The whole
design can always be expanded later to further reduce the value of Gy, if this were
desired.

For the case k = 1, where we have only one independent factor x, there are no
(if) moments and Gy is simply o,2/{(11)—(1)?}. This is obviously minimized by
setting (1) = 0. The best class of designs with respect to the odd moments when
k =1 then, consists of those for which the x’s sum to zero.

For k = 2, we can proceed in a manner equivalent to the method used by Box
(1952) for minimization of the diagonal elements of (X’ X)~'. Let the determinant
of M be expressed by the Cauchy expansion, that is,

M| = |D,| [(i))—s,/ D5 s,
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where D;; is the matrix obtained by deleting the ith row and column from M,
D, is the determinant of D;;, and s; = [(i), (14), (20), ---, (i=1,0), ((+1,8),
(ki)]'. Tt follows that

(4.3.5) by = 1/{(i)—s/ Dy ' s;}.

Since M = (X’ X)/N is positive definite, any principal submatrix D ; is also positive
definite. Hence, b;; is minimized when's; = 0, fori = 1, 2, - - -, k. It follows directly
that (4.3.2) is minimized by setting all s; = 0, i.e., by setting equal to zero all first
and odd second order moments of the design. The minimized value of G, is then

(4.3.6) 0,2 Y5 [02/GD)]

4.4. Correlated factor errors: first order moments. In Section 4.3, we assumed
that the factor errors were all uncorrelated with one another. If this is not so, the
form of Gy, is still Gy = ¢,> trM ™' ¥, but ¥ is now defined by (4.2.4). Let

1 s
4. M= ,
4.4.1) [S Mzz]

where s is a k x 1 vector of first order moments, and M, is a k x k positive definite
matrix of second order moments. Similarly, let

o o
4.4.2 Y = ,
@42 o ..
where ¥,, = Y'V_, E[e,e,//N], and e, = (e1,, €2,, """, €)' . Then
(4.4.3) MY = E[YY_, e/(M,, —s5) " le,/N].

Now since M is positive definite, (M,,—ss’) is positive definite, and hence
(M,,—ss')"! = M7 + )72, (M35 ss')" M3, . The positive definite quadratic form
in (4.4.3) may now be written

(4.4.4) e,/ Mjle,+e,/[Y2 (Ms,'ss'YM3; Je, > 0.

The matrix in the second term of (4.4.4) however, is symmetric and at least positive
semi-definite. Therefore, (4.4.4) is minimized when the second term is zero. This is
accomplished only when s = 0, i.e., only when all the first order moments are equal
to zero.

4.5. Correlated factor errors: odd second order moments. For k =2, when
(1) = (2) =0, G, is minimized when

4.5.1) (12) = {4—[4? —BX(11)(22)]*}/B
where 4 = (22) 0,2 +(11) 0,2, B=2pa,0,. For k > 2,
(4.5.2) Gy = ayz[Z{'C= 1 IDiil 0'12 +2ZZi<j(— 1)i+j IDijI Pij0i o'j] IM_ 1‘,

where |D;j| is the minor of the (i, j)th element of M. We wish to find the values of
the ¢ = k(k —1)/2 odd second order moments which minimize G. Unfortunately,
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even for k =3, the problem is cumbersome and numerical solution appears
necessary. For this reason, we now turn our attention to some special cases for
which ana ytic solutions can be obtained.

Special case 1. All factor error correlations equal. For the case p;; = p # 0,

(fy=c,0;,=0,and (jj)=x,i#j=1,2, -, k, we find that G, is minimized for
L _ =1+ =1+ (k= 1Dp])]

(k=2)—(k—1)p ’

_o(k—2) b

p # (k—=2)[(k-1),

where —1/(k—1) < p < 1.
Special case 2. Groups of factor errors: correlations zero between groups, equal
within groups. Let the factor errors be grouped such that

0, i. =0, if i, and j; belong to different groups, r and s,
=P, if r = s and i,, j, belong to group r,

=12k, Yreik, =k, and r#s=1,2,---, m. That is, we now have k
factor errors divided into m groups of errors which are uncorrelated between groups,
but are identically correlated within each group.

We further require that o, =o,, (i.i,) =c, (i,j,) =X, I, #Jj., and (i.j) =0,
r # 5. Under these conditions, G, is minimized for

X, = Cr[_ 1+ {(1 _pr)[l +(kr_ 1)pr]}i]

pr # (kp—=2)[(k, = 1),

’ (k,~2)—(k,— 1p, ’
k,—2
- ng’_ l;’ pr = (k,—2)/(k,— 1),

—1jk,—D) <p, <Lk, >1,r=1,2,,m.

Special case 3. Two groups of errors: correlations zero within groups, equal between
groups. Let the factor errors belong to two groups, denoted by I and II, of size k,
and k, respectively, such that

E[g¢;] = 0,7, i =j belongs to I,
=0,", i = j belongs to II,
= po0,, i belongs to I, j belongs to II,
=0, otherwise.
Furthermore, let
(ii) = ¢4, i belongsto I, i=1,2,--",k,,
= ¢,, ibelongstoIl,i=1,2, - ,k,,
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and
(ij)=x, i belongs to I, j belongs to II,
=0, i,j belong to same group.
Under these assumptions, G is minimized for
x=[c,0.%°4¢;0,>—{c,0,*+26,%0,%¢c; c,(1 =2k, k, p?)
+c¢,06,*}/[2k, k, poy o,],
where 0 < p? < (kyk,) ™"

4.6. Examples. Table 1 and Table 2 show best moment values derived from the
foregoing work for the situations specified. The moments in Table 2b were ob-
tained by numerical minimization of tr M ™! ¥, and the others were evaluated from

TABLE 1
Case k =2, p# 0, (ii) = 1: odd second order moments and percentage reduction for a
first order model
@) 6,2:0,2=1:1 ) 6,%:0,2=1:4
p (12) R r a2 K
+.2 +.101 1.0 +.2 +.081 0.6
+.3 +.153 2.3 +.3 +.122 1.5
+.5 +.268 6.7 +.5 +.209 4.2
+.7 +.408 14.3 +.7 +.306 8.6
+.9 +.627 28.2 +.9 +.425 15.3

formulasin Section 4.5. The R-values show the percentage reduction 100(F, — F,,)/ Fy,
where F,, is the appropriate minimizing value of G, and F, is the value of G,
for an orthogonal design, i.e., (4.3.6). We see that R increases with |p| and, for
given p, is higher when all variances are equal. Thus, when |p| is high, a worthwhile
improvement in G, can be obtained by choosing a non-orthogonal design rather
than an orthogonal one, but for small lp , it is clear that the orthogonal design is
robust.

Table 3 shows, for the two factor situations specified, best values of a, b, ¢, and
d for the four point design (—a, —b), (¢, —d), (—c, d), (a, b). These points, whose
coordinates are chosen to satisfy the required moment conditions, are simple
amendments of the 22 factorial points. Table 4 shows, for the three-factor situa-
tions specified, best designs which are similar amendments of the 23 factorial. For
additional examples, see Beggs (1969).

Acknowledgment. The authors greatly appreciate the constructive comments of a
referee.
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TABLE 2

57

Case k=3, piy=p #0, (ii) = 1: odd second order moments and percentage reduction for a

@) 0:2:0,%:032=1:1:1

p (12)=(13)=(23) R p 12) (13) =(23) R
-4 —.262 12.0 -4 —.336 —-.179 8.0
-2 —.108 2.3 -2 -.119 —.083 1.6

2 .097 1.8 2 .091 .079 1.3
4 .196 7.1 4 174 .160 5.0
.6 310 16.1 6 .250 250 11.1
.8 465 30.2 8 337 .356 20.1
TABLE 3
Case k =2, (11) = (22) = 1: amended 2? factorial poirt coordinates
(@) 0:®=0,? (b) 40,* =0,

p* 12 a=b c=d p 12) a b c d
2 .101 1.05 95 2 081 1.03 1.05 097 095
5 268 1.13 .86 -2 —.081 097 095 1.03 1.05
9 .627 1.28 .61 5 209 1.08 1.11 091 0.87

-5 =209 092 086 1.07 1.12
* When p is the negative of the values 9 425 117 122 080 0.71
shown, change the sign of (12) and switch -9 —425 084 0.67 1.14 1.24

the headings “a = b’ and “c =d”.

first order model

(b) 012:0:%:032=1:1:4

TABLE 4

Case k = 3, (11) = (22) = (33) = 1: amended first order designs

@) 0'12:0'2230'32 =1:1:1,
P12 = P13 = P23 =04,
(12) = (13) = (23) = 0.196

b) 012:0,%:032=1:1:4,
P12 = P13 = P23 =04,
(12) = 0.174, (13) = (23) = 0.160

X1 X2 X3 X3 X2 X3
—1.180 —1.180 —1.180 —1.215 —-1.215 —1.013
0.802 —0.991 —0.991 ' 0.756 —1.062 —1.000
—0.991 0.802 —0.991 —1.062 0.756 —1.000
0.991 0.991 —0.802 0.909 0.909 —0.987
—0.991 —0.991 0.802 —0.909 —0.909 0.987
0.991 —0.802 0.991 1.062 —0.756 1.000
—0.802 0.991 0.991 —0.756 1.062 1.000
1.180 1.180 1.180 1.215 1.215 1.013
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