## A NOTE ON CONVERGENCE OF MOMENTS

By B. M. Brown

La Trobe University

In this note, some results in [4] on convergence of even-integer moments in a central limit situation are extended in Theorem B, Section 2 to cover the case of non-even-integer absolute moments. In Section 1 we note that related results of the author ([2], [3]) were first proved by S. N. Bernstein [1], a long time ago.

1. Results of Bernstein. Let  $X_1, X_2, \cdots$  be independent random variables (rv's) with  $EX_n = 0$ ,  $EX_n^2 = \sigma_n^2 < \infty$ ,  $S_n = X_1 + \cdots + X_n$ , and  $s_n^2 = ES_n^2$ , for  $n = 1, 2, \cdots$ . Among the results in [2] and [3] is the following

THEOREM A. For each v > 2, the condition

(1) 
$$\lim_{n \to \infty} s_n^{-\nu} \sum_{j=1}^n E|X_j|^{\nu} = 0$$

is necessary and sufficient for

$$\mathcal{L}(S_n/s_n) \to N(0, 1) \quad as \quad n \to \infty,$$

$$\lim_{n \to \infty} s_n^{-2} \max_{j \le n} \sigma_j^{\ 2} = 0 \qquad and$$

$$\lim_{n \to \infty} E|S_n/s_n|^{\nu} = (2\pi)^{-\frac{1}{2}} \int_{-\infty}^{\infty} |x|^{\nu} \exp(-\frac{1}{2}x^2) dx.$$

- Dr. G. K. Eagleson has pointed out that this theorem is by no means new; in fact it was proved by S. N. Bernstein [1] fully thirty years ago, using symmetrization methods which do not rely on characteristic functions (ch.f's) as in [3]. The condition (1), called a *Lindeberg* condition of order  $\nu$  in [2] and [3], was given the possibly more apt name of "convergence to zero of the *Liapounov* parameter of order  $\nu$ ," by Bernstein in [1]. The question of nomenclature is avoided in the present work by referring to such conditions simply as " $L_{\nu}$ ".
- **2. Convergence of moments.** Following the notation of [4], let  $X_{n1}$ ,  $X_{n2}$ , ...,  $X_{njn}$ ,  $n = 1, 2, \cdots$  be an elementary system of zero mean independent rv's, i.e., each  $X_{nj}$  has mean zero, distribution function  $F_{nj}(\cdot)$ , and variance  $DX_{nj}$ , with

$$\lim_{n\to\infty} \max_{i} DX_{ni} = 0,$$
 and

(2) 
$$\sum_{j} DX_{nj} \leq \text{ some } C < \infty \qquad \text{for all } n = 1, 2, \dots$$

Let  $S_n = \sum_j X_{nj}$ . We assume throughout that  $S_n$  converges in law as  $n \to \infty$  to an infinitely divisible rv.  $T_0$  with ch.f.  $\phi_0(\cdot)$  given by

$$\log \phi_0(t) = \int_{-\infty}^{\infty} (e^{itx} - 1 - itx) x^{-2} dG_0(x),$$

Received June 22, 1970.

where  $G_0(\cdot)$  is a non-decreasing function of bounded variation. A necessary and sufficient condition for the convergence in law as  $n \to \infty$  of  $S_n$  to  $T_0$  is

(3) 
$$G_n(\cdot)$$
 converges weakly as  $n \to \infty$  to  $G_0(\cdot)$  where  $dG_n(x) = \sum_j x^2 dF_{nj}(x)$ . We note that  $T_0$  has  $r$ th cumulant  $K_r(T_0)$ , where  $K_1(T_0) = 0$  and for  $r = 2, 3, \cdots$ 

$$K_r(T_0) = \int_{-\infty}^{\infty} x^{r-2} dG_0(x).$$

LEMMA 1. (Theorem 3 of [4]). Let (3) hold and let  $ET_0^{2k} < \infty$  for some  $k = 1, 2, \dots$ . Then the condition

$$\lim_{n\to\infty} \sum_{j} E X_{nj}^{2k} = K_{2k}(T_0),$$
 i.e., 
$$\lim_{n\to\infty} \int_{-\infty}^{\infty} x^{2k-2} dG_n(x) = \int_{-\infty}^{\infty} x^{2k-2} dG_0(x),$$

is necessary and sufficient for  $\lim_{n\to\infty} ES_n^{2k} = ET_0^{2k}$ .

Following [4] we can define the vth absolute cumulant of  $T_0$ , for  $v \ge 2$ , as

$$B_{\nu}(T_0) = \int_{-\infty}^{\infty} |x|^{\nu-2} dG_0(x).$$

The condition  $L_{\nu}$  is said to hold if in addition to (3),

$$\lim_{n\to\infty} \sum_{i} E |X_{ni}|^{\nu} = B_{\nu}(T_0) < \infty$$

or equivalently

where

(4) 
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} |x|^{\nu-2} dG_n(x) = \int_{-\infty}^{\infty} |x|^{\nu-2} dG_0(x).$$

THEOREM B. Let (3) hold and let  $E|T_0|^{\nu} < \infty$  for some  $\nu \ge 2$ . Then the condition  $L_{\nu}$  is necessary and sufficient for

$$\lim_{n\to\infty} E|S_n|^{\nu} = E|T_0|^{\nu}.$$

The details of the proof will follow those of the proof of Theorem 5 of [3] provided the following modifications are made: replace Theorem 1.1 of [2] with our Lemma 1, replace the Lindeberg condition of order 2 (i.e. the CLT) by our equation (3), and replace the sequence  $X_1s_n^{-1}, \dots, X_ns_n^{-1}$  with  $X_{n1}, \dots, X_{nj_n}$ . To finally ensure that the proof can be followed exactly, it remains to check two items, namely

- (i)  $L_{\nu} \Rightarrow L_{a}$  for  $\nu \ge \alpha \ge 2$ . This follows from (4), which holds together with (3).
- (ii) As an analogue of Lemma 2 of [3], establish the following

Lemma 2. Let v > 2 be not an even integer, with

$$V(n,\varepsilon) = \sum_{j} E |X_{nj}|^{\nu} A(\varepsilon |X_{nj}|),$$
  

$$A(x) = (-1)^{\lambda} \int_{0}^{x} \mathcal{R} l f_{m-2}(u) u^{-(\nu-1)} du,$$
  

$$f_{n}(u) = e^{iu} - \sum_{j=0}^{n} (iu)^{j} / j!,$$

and where m,  $\lambda$  are the greatest integers which are (strictly) less than  $\nu$  and  $\frac{1}{2}\nu$ , respectively. Let (3) hold. Then  $L_{\nu}$  holds if and only if

(5) 
$$V(n, \varepsilon) \to 0 \text{ as } \varepsilon \to 0 \text{ uniformly in } n = 1, 2, \dots$$

PROOF. 
$$V(n, \varepsilon) = \sum_{j} \int_{-\infty}^{\infty} |x|^{\nu} A(\varepsilon|x|) dF_{nj}(x),$$

$$= \int_{-\infty}^{\infty} |x|^{\nu-2} A(\varepsilon|x|) dG_{n}(x),$$

$$= (-1)^{\lambda} \int_{0}^{\varepsilon} t^{-(\nu-1)} dt \int_{-\infty}^{\infty} \mathcal{R} lf_{m-2}(tx) dG_{n}(x),$$

by interchanging the order of integration, a justifiable step since the integrand is of constant sign. Therefore the condition (5) is necessary and sufficient for the convergence to zero as  $\varepsilon \to 0$  of the right-hand side of (6), uniformly in  $n = 1, 2, \dots$ . But this latter condition is necessary and sufficient for

$$\lim_{n\to\infty} \int_{-\infty}^{\infty} |x|^{\nu-2} dG_n(x) = \int_{-\infty}^{\infty} |x|^{\nu-2} dG_0(x)$$

(which is  $L_{\nu}$ ) by noting that (3) holds and applying Theorem 4 of [3], which can be used here because of (2), which implies that

$$\int_{-\infty}^{\infty} dG_n(x) \le C < \infty, \qquad \text{all } n = 1, 2, \dots$$

The lemma, and hence the theorem, is proved.

## **REFERENCES**

- [1] Bernstein, S. N. (1939). Several comments concerning the limit theorem of Liapounov. Dokl. Akad. Nauk. SSSR. 24 3-7.
- [2] BROWN, BRUCE M. (1969). Moments of a stopping rule related to the central limit theorem. Ann. Math. Statist. 40 1236-1251.
- [3] Brown, B. M. (1970). Characteristic functions, moments and the central limit theorem. Ann. Math. Statist. 41 658-664.
- [4] Brown, B. M. and Eagleson, G. K. (1970). Behaviour of moments of row sums of elementary systems. Ann. Math. Statist. 41 1853–1860.