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SHORT COMMUNICATIONS

A NOTE ON THE REPARAMETRIZATION OF AN EXPONENTIAL
FAMILY

By MICHAEL S. WATERMAN

Idaho State University

1. Introduction. The exponential family is one of the more important classes of
distributions considered in statistics (see [1] or [5]). In this note we restrict attention
to one-dimensional exponential families. For u, a o-finite measure on R, we define
a = inf {x:u([x, x+¢&)) >0 for all ¢ >0} and b = sup {x:u((x—e¢, x]) >0
for all ¢ > 0}. If @ and b are finite, we define A(u) by A(u) = [a, b]. If a or b are
infinite, we use open or half-open intervals. The parameter space of u, Q(u), is
defined by

Qu) = {w:0 < [e**du(x) = B(w) < + 0}

For each w € Q(u) we define a probability measure by

P,(A) = (B(w))™" [4 e du(t).

The collection {P,(:):w € Q(n)} is known as the exponential family generated by
u. (For a more general definition see Lehmann [5].) Also let m(w) = [ xdP,(x).
It is well known [5] that Q(u) is a convex set, all moments of P, exist, and
dm(w)/dw = ¢*(w), the variance of P,. Suppose Q(u) # ¢. Then the u-measure
of any bounded measurable set is finite. It is also easy to see that b < + oo implies
Q(u) unbounded on the right and — o0 < a implies Q(u) unbounded on the left.

It is clear that A(u) contains the range of the mean m(-) and that m(-) is strictly
increasing whenever a # b. Guthrie and Johns [4] assume there exists a function
() such that m(w(A)) = A for each A € A(u). Using methods distinct from ours,
Girshick and Savage [3] show this property holds whenever A(u) = [0, b],
b < +o0. This note extends their result and characterizes measures such that the
associated exponential families permit reparametrization in terms of the mean.

2. Reparametrization. The technique employed in the proof of our theorem is
motivated by Laplace’s method ([2] page 36). The statement of our theorem
concerns the interiors of A(u) and Q(u) since measures with the same A(u) can have
open, half-open, or closed parameter spaces (see example E in Section 3). We will
use Int (A) to denote the interior of A.

THEOREM. Let pu be a o-finite measure such that Int A(u) # ¢ and Int Q(u) =
(wg, ;) # ¢. Then w(-) = m~(-) exists on Int A(u) and therefore

{Po(-):weIntQu)} = {Pyu(-): 4 €Int A(u)}
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unless
(i) o, < + o0 and x e®* € L,(n), or
(i) —o0 < w, and x e € L,(n).

PROOF. Since m(-) is strictly increasing, we need only show that the range of the
mean contains Int A(u). It is sufficient to consider only the right-hand end points,
b and w,. We must consider several cases. First, suppose w, = + oo. Then, for
any A < b,

§ la,c0) X" €7 dpu(x)

- n X = 1’
+°°I[A,oo)x e“* dp(x)

lim
for n = 0, 1. Thus

Jta.) X € dp(x)

W= 0 z A,
§[A,w) e“*du(x)

lim,,_, , m(w) = lim

and we have lim,,_, , m(w) = b.

Nextassumew, < +00. Wethenhaveb = +o00.If x e** ¢ L,(1) and w, € Q(u),
the result is obvious. If x e®** ¢ L,(u) and w, ¢ Q(u), the above technique yields
lim,.,,- m(w) = + © = b. The only case left is (i) in which lim,_,,, - m(w) <
+ oo = b.

3. Examples. The following examples exhibit w = m~! for some simple cases.
The form of w(-) in (B), (C), and (D) can be obtained as a direct application of
Guthrie and Johns [4].

(A) Let u be Lebesgue measure on R*. Then w(d) = —1/4 for A e Int A(p) =
(0, o0). Thus P, (+) is the distribution of an exponential random variable with
parameter 1/A.

(B) Let p be counting measure on the nonnegative integers. Then w(1) =
In (A/(1+2)) for 4 € (0, ) and P,;,(+) is the distribution of a geometric random
variable with parameter A/(1+A). ,

(C) Let u({k}) = (), k =0,1, -, n. Then w(d) = In (4/(n—2)) for A€ (0, n)
and P,;, is the distribution of a binomial random variable with parameter A/n.

(D) Let u({k}) = 1/k!, k=0,1,---. Then w(d) =1InA for A1€(0, ©) and
P 1 is the Poisson distribution with parameter 4.

(E) Finally, to illustrate (i) of the theorem, we consider u({k}) = ((k)'*+%“**)~1,
k=1,2,-.1f6 >0,Qu = (—00,w]. If § = 0,Q) = (— 0, w,y). Thus it is
clear that we cannot always expect to map A(x) 1 —1 onto Q(y). P, has exactly n
moments if n < § £ n+1 so (i) holds if 1 < 4.
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