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LINEAR SPACES AND MINIMUM VARIANCE
UNBIASED ESTIMATION!?
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Consideration is given to minimum variance unbiased estimation
when the choice of estimators is restricted to a finite-dimensional linear
space. The discussion gives generalizations and minor extensions of
known results in linear model theory utilizing both the coordinate-free
approach of Kruskal and the usual parametric representations. Included
are (i) a restatement of a theorem on minimum variance unbiased
estimation by Lehmann and Scheffé; (ii) a minor extension of a theorem
by Zyskind on best linear unbiased estimation; (iii) a generalization of the
covariance adjustment procedure described by Rao; (iv) a generalization
of the normal equations; and (v) criteria for existence of minimum variance
unbiased estimators by means of invariant subspaces. Illustrative examples
are included.

1. Introduction and summary. Consideration is given to minimum variance
unbiased estimation when the choice of estimators is restricted to a finite-
dimensional linear space of rv’s (random variables). The results form a continuation
of an enquiry on unbiased estimation in Seely [10] and the terminology introduced
in [10] is used throughout. Each section {(except Section 2) is based on a minor
extension or a generalization of a known result in linear model theory and examples
are included for most results. It is hoped that the following will allow a more
convenient and direct usage of linear model theory (e.g., Examples 2 and 8) when
considering linear spaces of rv’s other than linear combinations of a random
vector, and that the examples on b.l.u. (best linear unbiased) estimation for the
fixed and mixed linear models will be of interest.

In Section 2 the basic groundwork additional to that-in [10] is discussed as well
as the fixed and mixed linear model as interpreted in this paper. A theorem due to
Lehmann and Scheffé [5] which states that an estimator is a uniformly minimum
variance unbiased estimator if and only if the estimator has zero covariance with
the unbiased estimators of zero is stated in the context of this paper in Section 3.
This theorem is especially useful for verifying results in later sections and at times
may be used directly to obtain minimum variance unbiased estimators.

For a linear model Y = XB+e with covariance matrix ¢V, a theorem due to
Zyskind [14] states that @'Y is a b.L.u. estimator if and only if Va € R(X). A minor
extension of this theorem is given in Section 4 and two examples are included. One
example extends the result of Zyskind to the mixed linear model and the other
illustrates very concisely the notions of linear model theory as applied to the
multivariate linear model.
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Theorem 3 is the main result in Section 5. This theorem may be viewed as a
generalization of the covariance adjustment procedure given by Rao [7] in the
sense that Rao’s procedure may be obtained as a special case of the necessity
portion of the theorem. Two rather interesting examples concerning b.l.u. esti-
mation in a fixed linear model are also given in Section 5. In Section 6 a generali-
zation of the normal equations in linear model theory is given, and necessary and
sufficient conditions are obtained for when these generalized equations give best
estimators. Examples are given showing the generality of the normal type equations
as applied to obtaining b.l.u. estimators in a fixed linear model situation for all
linearly estimable parametric functions (Example 5) and for subsets of the linearly
estimable parametric functions (Example 6). The last section characterizes, via
invariant subspaces, when minimum variance unbiased estimators exist within an
arbitrary linear space of rv’s. The approach taken in the last section is similar to
that used by Kruskal [4] and Zyskind [14] and more recently by Eaton [3]. Examples
illustrating the invariant subspace notion as applied to the mixed linear model and as
applied to a simple situation involving quadratic estimators are given.

2. Preliminary notions. The contents of Section 2 in [10] are assumed in the sequel.
Thus, <7 is a linear space of rv’s of the form {(a, Y):a e o/} where (&, (—, —))
is a real finite-dimensional inner product space and Y is a rv from a measurable
space (%, S) into &/. Assumptions additional to those in [10] are (i) each a € ./ is
P-square integrable with respect to all P € & and (ii) there is a function Var on
o/ xQ by which the variance of an element in .o/ may be characterized over the
class #. Concerning additional notation, the covariance operator of Y with
respect to 6 € Q is denoted by X,, i.e., X, denotes the unique linear operator on
& such that

a,be s/ = Cov(a Y) (b Y) ] 01 = (a, Eyb).

Also, the notation £ = 0 means that X is a nonnegative linear operator and the set

sp {Xy:0 € Q} is denoted by ¥~

DEFINITION 1. An element 7 € &7 is said to be .27-best for a parametric function g
if and only if 7 € &7, and

he,= Var[i| 0] < Var[h| 0] forall OeQ.

The statement that 7 is an .<7-best estimator implies that 7 is Z-best for g(0) =
E[i | 6].

DEFINITION 2. Let £ = 0 and let g be a parametric function, then ¢ is said to be
Z-min for g if and only if # € &/, and

inf {(a, Za):a e A} = (t, Et).

The statement that ¢ is a X-min element means that ¢ is X-min for g(6) = (¢, ).
The notion of a X-min element is similar to the idea of a locally best estimator
as used by Barankin [2] and Stein [12]. Moreover, (¢, Y) is .<Z-best for a parametric
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function g if and only if ¢ is X,-min for g for all § € Q. Thus, <7-best estimators
may be investigated via X-min elements and since X-min elements are easy to
work with much of the following is devoted to X-min elements.

The notation Y ~ F(XB, Y ™, v;V;,Q) is used to indicate that Y is an nx1
random vector with expectation Xf and covariance matrix ) /=, v;¥; where X
is a known n x p matrix, each V; is a known nx n symmetric matrix, and Q =
{(B, v)} is a subset of R? x R™ which describes the ranges and relationships of the
parameter vectors f = (B, -+, §,)" and v = (vy, -, v,))". The notation

Y ~ F(XB, Z?:l viVi, Q)

describes what is often referred to as a mixed linear model and this terminology,
i.e., mixed linear model, is employed in the following sections. When m = 1 the
term fixed linear model is used and the covariance matrix for this case is denoted by
o2V. The term linear model is used to indicate either a fixed or a mixed linear
model and for a linear model the sets Q; and Q, denote, respectively, the range of
p and the range of v.

When Y ~ F(XB, Y7, v;V;,Q) and interest is in the linear space of rv’s
Z = {ad'Y:ae R*}, we assume that ¥ = R" with the usual inner product
(a,b) = a’b. For this situation observe that & =sp {Xp:eQ,}, ¥ =
sp {d 7, v;Vi:veQ,}, and that a natural y, = HE, representation is given
by H = X, &, = B, # = RP with the usual inner product, and Qg = Q.

The main emphasis is on the fixed linear model with f restricted only through
the covariance matrix. This statement is taken to imply that Y~ F(XB, 62V, Q)
where Q is any parameter space consistent with

@.1) Q, = {5:C'Xp = CY, R(C) = N(V)},

and it is tacitly assumed Q, # {0} so that ¥~ = sp {V}, although ¥ may be any
positive semidefinite matrix. Concerning (2.1) suppose Z ~ F(UB, 20, Q) with
Q nonsingular and with B restricted by k consistent equations Af = c, then

under the setup
0 0
V = = k
[0 ol n=q+k,

2.2 Y~Z X—U
o [} =[4

the expression for Q, in (2.1) is equivalent to the restrictions Af = c. In the usual
sense, however, (2.1) does not constitute a parameter space, i.e., Q, is dependent
upon the observed outcome of the vector Y. Nevertheless, since C'Xf = C'Y with
probability one, the parameter space for f is taken as in (2.1). Also note that with
probability one the equations C'Xp = C'Y are consistent. In the following the
repetitious *“‘with probability one’’ is usually omitted and C’Y is treated as a
constant vector with the property that C'Y € R(C'X).

The mixed linear model with B restricted only through the covariance matrix is
also used for illustration purposes. By such a linear model we mean that

Y ~ Fn(Xﬁ» Z;n=l viVbQ)
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where Q is any parameter space consistent with
(23) Q= {B:C'XB=CY,RC) = 1oy NMT)}.

The comments concerning ; in the previous paragraph apply here also and in
addition we assume

2.4 Vo =sp ) viViiveQ,} =sp {Vy, -, Vil

By assuming (2.4) most statements concerning ¥~ may be formulated in terms of
Vi, Vy, -+, Viy for example, in (2.3) the condition on C becomes R(C) =

L1 N(V;). The assumption in (2.4) is satisfied in most commonly used linear
models; however, if (2.4) is not satisfied any spanning set for ¥~ may be substituted
for {V,, -+, V,,} in the sequel.

3. Lehmann-Scheffé theorem. A useful starting point for characterizing .o7-best
estimators is Theorem 5.3 in Lehmann and Scheffé [5]. In the present context, this
theorem is essentially Corollary 1.1 below except that Corollary 1.1 is stated with
an arbitrary spanning set for #” instead of the particular spanning set {X,:0€Q}
used in [5]. A proof for the following theorem from which Corollaries 1.1, 1.2, and
1.3 follow immediately may be constructed from Theorem 5.3 in [5].

THEOREM 1. Let £ = 0, then t € &/ is a X-min element if and only if (t, Xz) = 0
forallze st .

COROLLARY 1.1. Let ¥", be any spanning set for ¥". For t € of therv (¢, Y) is an
ol -best estimator if and only if (t,Tz) = O forallze s/ yand allT € V",.

COROLLARY 1.2. Let £ = 0, then X-min elements are unique if and only if
NE)NAL, = {0}.

COROLLARY 1.3. An Z-best estimator is unique if and only if te N(Zg)Nnef
for all 6 € Q implies that (t, Y) is the zero function.

Suppose Y ~ F,(XB, 6*V,Q) and that (2.1) describes Q;, then the subspace
&, corresponding to the zero estimators in 2 is

Lo = {XB:peQ}t = {XB:fefo+N(C'X)},

where R(C) = N(V) and B, is such that C'Xf, = C'Y. If ae N(V)nZ ,, then
a = Cp for some p and @’ X, = 0 so that

(a, Y)= p'C'Y = pC'XBy = a’XBy = 0;

and hence Corollary 1.3 implies b.l.u. estimators are unique. Generally this
uniqueness is only with probability one; however, when C’Y is actually a constant
vector (e.g., the setup in (2.2) with Q invertible) the phrase with probability one
may be omitted. Thus, for the fixed linear model (also for the mixed linear model)
with p restricted only through the covariance matrix any uniqueness statement
concerning b.l.u. estimators should be interpreted according to the behavior of
the vector C'Y.
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For a nonnegative linear operator X on &, let 2 (X) denote the set of X-min
elements. Clearly, from Theorem 1

(3.1 - A(T) = I,

and thus finite linear combinations of X-min elements are X-min elements. More-
over, finite linear combinations of &7-best estimators are also «Z-best estimators
since the set /" of elements ¢ such that (¢, Y) is an </-best estimator is the inter-
section over Q of all subspaces ) (X,). Also (3.1) implies that A () + o/, = &,
and this observation with Theorem 1 in [10] establishes the existence of a X-min
element for each .&7-estimable parametric function.

4. The condition Xt € &. For a fixed linear model with f restricted only through
the covariance matrix, Zyskind [14] shows that a’Y is a b.l.u. estimator if and only
if Va e R(X). (A slightly stronger statement is actually given in [14] in the sense
that only a certain structure need be inferred about V.) The following theorem
states this result under the present formulation and shows (Example 1) that
R(X) in Zyskind’s statement could possibly be replaced (depending upon V) by
other sets in R". As a corollary to the theorem a characterization for .o7-best
estimators is given and the corollary is applied in Example 1 to extend the result of
Zyskind to a mixed linear model.

THEOREM 2. If £ = 0 and A/ is any subset of s/ such that #/NR(E) = ENR(Z),
then a necessary and sufficient condition forvt to be a X-min element is that Xt € M.

ProoF. It follows from Theorem 1 that ¢ is a X-min element if and only if
Lt € &. The result follows by observing

Yteb < Xte R(E)NE < Zte R(E)NM < Zte .

COROLLARY 2.1. Let ¥"| be a spanning set for ¥~ and let M be such that
RN = R()NE for each T € . A necessary and sufficient condition for
(¢, Y) to be an s7-best estimator is that £t € M for all Z € ¥",.

ExampLE 1. Consider a mixed linear model with f restricted only through the
covariance matrix and let C be such that R(C) = [\ N(V;). Suppose Xp € R(V)),
then p € N(C'X) which implies Xp € & and hence R(X)NR(V;)cENR(V,). Thus,
R(X)NR(V) = EnRV)) fori=1,2,---,m. Let ¥y = {V, V,, -, V,,} and let
A be such that R(V)nécM =R(X) for i = 1,2, ---, m. From Corollary 2.1 it
follows that ¢’ Y is a b.l.u. estimator if and only if Viae # fori =1,2,---, m. By
selecting # = R(X) when m = 1 the result of Zyskind is obtained.

Eaton [3] and Rao [6] consider the multivariate linear model very conveniently
from the ideas and notions of fixed linear model theory. The following example
further exemplifies this correspondence and illustrates an application of Corollary

2.1.
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EXAMPLE 2. Let (&, (—,—)) denote the inner product space of all nxk real
matrices with the trace inner product, i.e., (4, B) = tr (4'B) for all 4, Be «.
Suppose Y is an nx k random matrix composed of rows of independent random
vectors with a common unknown covariance matrix ® and with expectations such
that E(Y) = XB where X is a known nx p matrix and B is an unknown pxk
matrix. Let o/ = {(4, Y):4 € o/}. Then for 6 = (B, ®) it is clear that

(@) pg = XPB where py = pg,

(b) Ae Z = Xp4 = AD where Z, = L,,

(¢) & = {XG:G an arbitrary p x k matrix}, and

(d) ¥7 =sp {Xp:®@ = 0}.
Let (##, < —, — >) denote the inner product space of real p x k matrices with the
trace inner product and define H from 5# into & by HA = XA for all A e /.
For {5 = B we have a u; = H¢p representation. Observing that H¥*4 = X'4 and
applying Theorem 2 in [10] we obtain the following:

The parametric function tr (A’p) is .«Z-estimable if and only if
there exists a C such that X'C = A.

From Corollary 2.1 it is clear that (4, Y) is an .&/-best estimator if and only if
D=20=>X,4 =ADed.
Thus, the following conclusion may be drawn:

The rv (4, Y) is an o7-best estimator if and only if there exists
a G such that 4 = XG.

If B is restricted by a consistent set of matrix equations A’ = I' and if .7 is the
linear space spanned by the constant function and all rv’s of the form (A4, Y), then
Corollary 2.1 establishes the following statement:

The rv (4, Y) is an &/-best estimator if and only if there exists a
G such that 4 = XG and A'G = 0.

From this statement it is easily verified that the random matrix X = QY+
(I—-Q)XP, (Q is the symmetric idempotent matrix such that R(Q) = X[(NA")]
and B, is such that A’B, = I') is such that (4, X3) is the .«Z-best estimator for the
parametric function (4, XB) for arbitrary A € «/. Other analogies with the fixed
linear model may be made in a straightforward manner. One final comment is
perhaps worth noting. Assuming a multivariate normal distribution for the rows
of Y the pertinent matrices regarding a hypothesis of the form A’ = I' may be set
up directly without any assumption of estimability, i.e., without assuming
R(A) = R(X'). To see this let P denote the symmetric idempotent matrix such that
R(P) = R(X), then

Ry = (Y- XBo)(P—O)(Y—-XBo) and R, = Y'(I-P)Y



LINEAR SPACES AND MVU ESTIMATION 697

have independent Wishart distributions and under the null hypothesis both have
central Wishart distributions so that the usual tests (e.g., see Rao [6]) may be used.
When R(A) = R(X") it may be noted that a matrix A exists such that X'4 = A
and R(4) = R(P— Q) so that R, may be written in the more familiar form

R, = (AB-T)(A'4)~(A'B-T),
where B is such that X' Xp = X'Y.

S. X-min elements via .« ,. For £ > 0 the expression in (3.1) implies that 7 is a
Z-min element if and only if ¢ is orthogonal to 7, with respect to the quasi-inner
product (a, b); = (a, Zb). Thus, by modifying a procedure such as a Gram-—
Schmidt process, an element ¢ € 27, may be adjusted to a new element 4 € o, such
that /2 is a Z-min element. The following lemma (a proof is given in [8]) is useful

in the next example for illustrating this adjustment procedure.

LEMMA 1. Let .4 be a subspace of R" with the usual inner product, let T be a real
nXxn positive semidefinite matrix and let k = dim T[.#]. There exists a matrix Z
such that

Z'TZ =1, and M = R(Z)®D NT)nA.

Moreover, for such a Z the matrix ZZ'T is the projection on R(Z) along N(Z'T) =
T = T 'L

ExaMpPLE 3. Consider a fixed linear model with f restricted only through the
covariance matrix and let Z = (z, z,, -+, z,) be a matrix as described in Lemma 1
when # = £,, V =T, and k = dim V[%,]. For t e R"it follows from Theorem 1
that

=Yk (1, Vz)z; = I-ZZ' V)t

is a V-min element, and since ¥~ = sp {¥} it is clear that t'(/—VZZ')Y is a b.l.u.
estimator for #"Xf. In addition the matrix (/—ZZ'V) projects onto

NZ'V) = VIZo]" = VINX)I* = V7 RX)];

and so Example 1 also verifies that t'(/— VZZ") Y is a b.l.u. estimator. Note that the
matrix Z may be obtained using.# = N(X’). This follows since a matrix Z satisfies
Lo = R(Z)® NV)NZ, if and only if Z satisfies N(X') = R(Z) @ N(V)nN(X").

The following theorem is the main result in this section. The essential part of the
theorem is similar to a covariance adjustment procedure (Rao [7]) or a Gram-
Schmidt process in that an element 7 € &7, may be adjusted to a new element in
&/, in such a way that the adjusted element is a X-min element.

THEOREM 3. Let A and N be linear operators from finite-dimensional inner product
spaces into f such that R(N) = o/, and R(A*N) = R(A*) and let £ = 0. A4
necessary and sufficient condition for E[sf ] = R(A) is that t—Np be a EX-min
element whenever t and p are such that A¥*Np = A*t.
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Proor. Note that E[«/,] < R(A) is equivalent to N(A*) = H#(E). If N(A*) <
A (X) and A*Np = A*¢, then 1—Np e N(A*) = A#'(E). Conversely, if 1 € N(A*),
then t € 2 (X) since p = 0 satisfies A*Np = A*¢ = 0. Thus, the proof is complete.

COROLLARY 3.1. Let A and N be such that R(N) < o, and T[] = R(A) for
all T in some spanning set for ¥". For any t and p such that A*Np = A*t, the rv
(t—Np, Y) is an of-best estimator for the parametric Sfunction g(0) = (2, uy).
Furthermore, if R(A*N) = R(A*) then to any te o, for an sl-estimable g there
exists a p such that A*Np = A*t.

Theorem 3 is stated as an if and only if condition. The main interest, however,
centers upon two linear operators A and N satisfying R(N) < «/,, R(A*N) =
R(A*), and Z[«/,] = R(A). A convenient way to select A is to choose A = IN.
If A is selected in this fashion, it is easily seen that the above three conditions on A
and N may be replaced by the condition that N satisfy

(5.1 R(N) = &y = RIN)+N(Z).
To illustrate this condition and Theorem 3 we consider the following example.

ExaMPLE 4. Consider the situation and notation in Example 3. Let N be selected
to satisfy (5.1), i.e., choose N such that

R(N) = £ < RIN)+N(V).

Two particular choices worth noting for the matrix N are N = Z and choosing N
such that R(N) = N(X’'). That R(N) = N(X’) will suffice follows from the
observation £, = N(X')+(XBo)*nN(V). The matrices N and 4 = VN satisfy
the conditions in Corollary 3.1; thus, we obtain the following:

For ¢t € R" there exists a p such that N'VNp = N'Vt, and for any
such ¢ and p the rv (t—Np)' Y is a b.L.u. estimator for the parametric
function ¢’ XB.

Further, if Bis such that N'VNB = N'V, then the random vector X = (I—NB)'Y
has the property for arbitrary ¢ that ¢'Xj is a b.lL.u. estimator for ¢’ Xp. Other
interesting results may be obtained in a straightforward manner from these
“error normal equations.”

6. The normal equation approach. For a fixed linear model with B restricted
only through the covariance matrix, various equations which depend upon ¥ may
be solved to obtain b.l.u. estimators for parametric functions of the form A’f.
When V' = I the normal equations X' X = X'Y may be used; when V is non-
singular the equations X'V ~'XB = X'V ™'Y given by Aitken [1] may be used;
and for arbitrary V the equations X'V~ Xf = X'V~ Y given by Zyskind and
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Martin [16, 17] where V'~ belongs to a particular subset of the g-inverses of ¥ may
be used. In each of these results the following characteristics are common:

(a) There exists a  satisfying the equations.
(6.1) (b) If B, and B, satisfy the equations, then X, = XB,.

(c) If 2 € R(X’)and f satisfies the equations, then A'f is a b.l.u. estimator for

AB.

Using these properties as a basis, a generalization of the normal equations is given
in the following corollary in terms of X-best estimators, i.e., estimators of the form
(¢, Y) where ¢ is a X-min element. The theorem is given in terms of two linear
operators W and H and the condition R(W) @ N(H*) = & is based upon (6.1a)
and (6.1b), i.e., this condition is equivalent to the statements that R(W*H) =
R(W*) and that W*Hp = W*HJ implies Hp = HJ.

THEOREM 4. Let X = 0 and let W and H be linear operators from finite-
dimensional inner product spaces into o/ such that R(W) @ N(H*) = of. The
conditions

(6.2) RW) ¢ #(X) and & < R(H)

are satisﬁed if and only if to each t the rv (t, HE) is E-best for g(6) = (1, Up) Whenever
the rv ¢ from U into the domain of H is such that W*HE = W*Y.

PROOF. Assume (6.2) and suppose ¢ € o/ and that & satisfies W*HE = W*Y.
Let t = Wp+f where fe N(H*), then (¢, HE) = (Wp, ¥) and (Wp, yp) =
(Wp+f, ug) imply the desired result. Conversely, let & satisfy W*HE = W*Y.
Since (Wp, HE) = (Wp, Y) must be E-best for (Wp, p,), it is clear that R(W)
A (X). If fe N(H*) then (f, HE) is I-best for (f, u); however, (f, HE) is the zero
function so that (f, us)'= 0 for all # € Q, which implies that fe «/,. Thus, the
proof is complete. '

In Theorem 4 if X is such that N(Z)n&Z, = {0}, then the hypothesis R(W) @
NMH?*) = & and the conditions in (6.2) are equivalent to

R(W) = #(Z) and R(H) = &.

A particular case for which this situation applies is when X is nonsingular so that
W must satisfy R(W) = R(Z~'H). Thus, an obvious choice is W = L~ 'H so that
W*H = H*Z™'H which is an expression analogous to the equations given by
Aitken.

COROLLARY 4.1. Consider a p, = HE, representation and let £ =2 0. If W is a
linear operator into s such that

6.3) RW)® NH* = o and RW) < #(Z),
thenA to any rv & such that W*HE = W*Y and to any e R(H*) it follows that
(A, &> is E-best for the parametric function {1, &> = g(0).

In Theorem 4 and Corollary 4.1 the condition R(W*H) = R(W*) is impcsed to
assure the existence of a ¢ satisfying W*H¢E = W* Y. However, such a rv will exist
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provided the range of W* Y is a subset of R(W*H). Thus, Theorem 4 or Corollary
4.1 may be restated in a slightly more general setting. For example, in (6.3) replace
R(W) @ N(H*) = o/ by

6.4) RW)+ NH*) = o and {W*Y(w):ue¥} <« R(W*H),
and the corollary still remains true.

ExaMPLE 5. Consider a fixed linear model with f restricted only through the
covariance matrix. It is easily verified that a matrix W satisfies R(W) @ N(X') = R
and R(W) = V~![&]if and only if W is such that

(6.5) ‘ R(VW) < R(X) and r(W'X)=r(W) = r(X).

If W satisfies (6.5), then Corollary 4.1 implies that a b.Lu. estimator for an
P-estimable 1’ (A'f is P-estimable if and only if 1 € R(X"))is given by A'B for any
p satisfying W' X = W'Y. Of the matrices W satisfying (6.5) the subset composed
of matrices of the form V'~ X has been investigated by Zyskind and Martin [17].
It may also be noted that Y is in R(X)+ R(V) with probability one and thus
(6.4) is satisfied with probability one if r(X'W) = r(X) and R(VW) = R(X).
Thus, the conditions in (6.5) could be relaxed to R(VW) <« R(X) and r(W'X) =
1(X).

ExampLE 6. Consider the situation in the previous example and suppose X
is partitioned in the form X = X,f; + X,f, and that interest is in b.L.u. estimators
for parametric functions of the form A'$,. Let T be any n x k matrix such that
R(T) = N(X,),let € = R, let € = {p'T'Y:p e %}, and note that

T/Y ~ Fk(TIXzﬂz, O'ZT/VT, Q).

The choice of the matrix 7T leads to two interesting implications concerning the
linear space Z. First, it is easily seen that A'f, is @-estimable if and only if
J € R(X,’T) and thus if and only if 2’8, is P-estimable. Second, from Theorem 2
it follows that p € € is a T'VT-min element if and only if T'VTp € T'[£]; and if this
last condition is true, then

VTp e R(X,)+& = R(X).

Thus, Example 1 implies that @-best estimators are in fact b.l.u. estimators.
Therefore, the linear space € may be used for obtaining b.lL.u. estimators for
P-estimable functions of the form 1’'8,. For example, using Corollary 4.1 as in
Example 5 let W satisfy

RTVIW) c RT'X,) and r(W)=rT'X,) = r(WTX,).

It follows that '8, is a b.l.u. estimator for any Z-estimable 1’8, provided that
W'T'X,p, = WT'Y.In the event that p(T"V) = r(T) the matrix W may be taken as
(T'VT)"T'X, and the equations reduce to

X, TTVT) T'X,B, = X, TT'VT) T'Y.
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It may be noted when V = [ that T(T'T)" T’ is the projection on N(X,") along

R(X,) and that these last equations agree with those given for the same situation
by Zyskind et al. [15].

7. of-best estimators. Kruskal [4] and Zyskind [14] both use the notion of in-
variant subspaces for investigating when simple least squares estimators (i.e.,
b.l.u. estimators when V = ) are also b.lL.u. estimators. Thomas [13] uses an
equivalent notion to describe necessary and sufficient conditions under which b.l.u.
estimators are the same for two different nonsingular covariance matrices. This
question of when b.l.u. estimators are the same under different covariance structures
is basically the same question as asking when .7-best estimators exist, and the
results in [4] and [14] provide the basis for the present section. Additionally,
Eaton [3] recently discussed when GM estimators (see [3]) exist for a multivariate
linear model situation in essentially the same manner as pursued in this section, and
Theorem 1.2 in [3] with slight modifications is the same as Corollary 5.2 below.
We begin by stating the following lemma, the proof of which is obvious.

LEMMA 2. Two linear operators T and X on of and a subspace M of o/ are such that
T[A] <« £~ [ M) if and only if M is an invariant subspace of the linear operator
XT.

Lemma 2 is quite interesting. For example, suppose .# is a subspace of &7 such
that R(X,) " < & for all B € Q and that T is a linear operator on &. If 4 is an
invariant subspace of X,T, then

T[] < £, M] = T, ' [R(E,) nM] < E,71[6];

and so, T[#] = A#(X,). Thus, if .# is an invariant subspace of X,T for all 6 e Q
it follows that T[.#] = 2. This last observation and what may be considered as a
partial converse are given in the next theorem.

THEOREM 5. To each subspace € = A~ there exists a linear operator T such that
T[E1® €N, = € and such that & is an invariant subspace of I'T for allT e V.
Conversely, if M is a subspace of o/ and T is a linear operator on o such that
RIT)YNM < & for all T € ¥ (¥, forms a spanning set for V") and such that M is
an invariant subspace of I'T for allT € V", then T[M#] < A .

Proor. To establish the first statement let & be a subspace such that € =
AoNE D B. Assume B # {0}(# = {0} is trivial) and let {z;} be a basis for £.
For each i let ¢; = x;+z; where x;€& and z;€ &/, and let {x;} be such that
{x;, x;'} forms a basis for &. Let T be any linear operator on & such that Tx; = t;
and Tx; = 0 and note that T[] = #. For 0 eQ and x = Y ox;+) ;B;x/ it
follows that

TTx = Y o,y Tx;+Y 8,5, Tx; = Y o, Zot;.

Since (¢;, Y) is «Z-best it follows that X ¢; € &. Thus, & is an invariant subspace of
Z,T for all 6 €Q and hence & is an invariant subspace of I'T for all I € #". The
converse follows immediately.
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COROLLARY 5.1. To every o/-estimable function there exists an <-best estimator
if and only if there exists a linear operator T such that T[]+, = o and such
that & is an invariant subspace of I'T for all T in some spanning set for ¥ .

COROLLARY 5.2. Suppose there exists I'y e ¥~ such that T'y 2 0 and such that
L, is invertible. To every of-estimable function there exists an <Z-best estimator
if and only if & is an invariant subspace of YT~ * for all T in some spanning set for ¥".

To illustrate the preceding, two examples follow. The first example considers
when b.l.u. estimators exist in a mixed linear model situation and the second
considers a relatively simple situation involving quadratic estimators. For the
second example, i.e., Example 8, a more complete discussion may be found in
[11] and for results under more general circumstances see [9]

ExampLE 7. Consider a mixed linear model with f restricted only through the
covariance matrix and suppose there is a positive definite matrix ¥V, € ¥". Clearly,
& = R(X) and Corollary 5.2 implies that to each .o/-estimable 1’'f there exists a
b.l.u. estimator if and only if R(X) is an invariant subspace of V,V,~' for
i=1,2, -, m

ExAMPLE 8. Suppose U is an nx 1 random vector distributed according to a
multivariate normal with zero mean and covariance matrix vV +¢2/. Assume that
Q = {(v, %)} contains a non-void open set and that vV +¢?/ is nonsingular for
each 0 € Q. Let (o, (—, —)) denote the inner product space of n X n real symmetric
matrices with the trace inner product and let Y = UU’ so that <7 is the linear space
of quadratic estimators. For 6 = (v, ¢) note that y, = vV +¢*I and that

Acsod = LyAd = 26°A+ 2962 (VA+AV)+ 2V VAV.

Clearly, & =sp{V,I} and ¥ =sp{I';,I',,I';} where T''4d = A4,T,4 =
VA+ AV, and I'34 = VAV for all 4 € /. Since I'; is the identity operator,
Corollary 5.2 implies that to each /-estimable function there exists an .7-best
estimator if and only if & is an invariant subspace of I';, and I';. This condition is
easily seen to be equivalent to V2 € &. Moreover, it may be verified that V2 e &
if and only if ¥ has no more than two distinct eigenvalues. Therefore, a necessary
and sufficient condition for an .o/-best estimator to exist for each .Z-estimable
function is that V% € & or equivalently that the matrix ¥ have no more than two
distinct eigenvalues.
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