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COMPARISON OF SEMI-MARKOV AND MARKOV PROCESSES!

By THomas G. KuUrTZ
University of Wisconsin

Conditions are given under which a semi-Markov process Z(¢) can be
obtained from a Markov process Y(¢)by a time change (i.e. Z(t) = Y(y(1))).
Estimates are given for P{sups<¢|s—y(s)| > ¢} and the construction is
used to give conditions under which a sequence of semi-Markov processes
will have the same convergence properties as the corresponding sequence
of Markov processes.

1. Introduction. In the study of jump Markov processes, the fact that the waiting
time between jumps is exponentially distributed ordinarily plays a major role.
However, if the process proceeds by a series of small, rapid jumps it is reasonable
to expect (from law of large number considerations) that the importance of the
distributions of the waiting times is minimized at least as far as they affect the
finite dimensional distributions of the process. We will demonstrate that this is in
fact the case, by showing under reasonable assumptions that a semi-Markov
process (roughly, a process that behaves like a Markov process except that the
waiting times are not exponentially distributed) is “close’” to a corresponding
Markov process provided the expected waiting time in each state is small.

We consider semi-Markov and Markov processes of the following type: let
X(0), X(1), --- be a stationary discrete parameter Markov process with state space
(E, #) and transition function

w(x, T) = P{X(k+1)e T | X(k) = x}, xeE, Te®,
and let 7, 7, --- be nonnegative random variables satisfying
P{t, £ 1] X(0), X(1), -+, X(k), X(k+1), To, Ty, =+, Tymy}
= F(¢t, X(k), X(k+1)).

In addition, we suppose

(1.1) 0 < h(x,z) = E(ty4 | X(k) =x, X(k+1) =z) < 0
and
(1.2) 0 < h(x) = E(z, | X(k) = x) < .

We define a semi-Markov process Z(t) by
(1.3) Z()=X(k) if Yfdust<Yioor.

Received February 13, 1970; revised December 2, 1970.
! Research supported in part by the NIH at the University of Wisconsin.

991

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IIEGIE ®

Www.jstor.org
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Of course Z(t) is defined only for

1<Y 2ot

Let Ay, Ay, --- be independent exponentially distributed random variables with
E(A;) = 1 which are in addition independent of X(0), X(1),:--. We note that
h(X(k))A, satisfies

P(R(X(K)A, < t] X(0), -+, X(k), Ag, -+, A1) = 1—exp [~ 1/h(X(K))],
and we define a Markov process Y(¢) by

(L4) V() =X(k) if YA hXD)A S 1 < T o hXD)A,.
As before, Y(¢)is defined only for
£ < Vim0 H(X(D)A:.

We are interested in the relationship between semi-Markov processes of the
type defined in (1.3) and Markov processes of the type defined in (1.4).

More precisely, let (Q, &) be a measurable space, %, k = 0, 1, 2, --- g-algebras
with #, €« #,,, = & and let P, _, x, z = E be probability measures on &#. Let
X(0), X(1), --- be E-valued random variables and suppose

P, {X(0) = x, X(1) =z} = 1,
Px,z{X(k) € FO’ X(k+1) € r15 ) X(k+n) € rn i tgjk+1}

= PX(k),X(k-!—l){X(O) elg, X() ey, -+, X(n)eT,}
and
P, {X(k+1)eT | #} = u(X(k),T) for k= 1.

Defining P,(A4) = _[E P, (Au(x, dz) for all A € Z, it follows that

P {X(0) =x} =1
and
Px{X(k) € rOa X(k+1) € rh Ty X(k+n) € 1—‘n | ,971(}

= PX(k){X(O) € r05 X(l) € rla B X(n) € rn}'
Suppose there are random variables Ay, Ay, -+ defined on (Q, &) such that
Px,z{Al > t} = e_t

and A, A4, -+ are mutually independent-and independent of X(0), X(1), --- for all
of the probability measures P, ..

Let m(t) satisfy
SO R(X)A S £ < X7 RXD)A,
and define
Y(t) = X(m(t))
and

&(r) = (X(m(1)), X(m(1) +1)).
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Let
N =g o(m(t), Ao, oy Apy—1, X(0), -, X(m(t)))lP*"z

and
r//t = Ny,z O'(I’Vl(f), A()a ) Am(t)—l’ X(0)> ) X(I’}’l(f)), X(HT([)-i— 1))’Px’z

where a( )|P"’z denotes the completion of the g-algebra with respect to P, .. We
have
PA{Y(t+s)el | N} = Pyp{Y(s)e '}
and
Px,z{é(t-l_s) el xI, l My = Pé(t){é(s) el x T}
That is, Y(¢) is a Markov process with state space (E, %) and £(¢) is a Markov

process with state space (Ex E, # x %).

In Section 2 we show that we can define a version of Z(¢) on (Q, #, P,) for all
£ e Ex E and hence on (Q, &, P,) for all x € E, and that in fact the version can be
written as

Z(t) = Y((1))
where (1), while not in general a stopping time for {47} is a stopping time for
{A,}.

In Section 3, we examine the relationship between ¢ and y(¢), which allows us,
in Section 4, to draw a number of conclusions about the behavior of sequences of
semi-Markov processes based on knowledge of the corresponding Markov

processes.

2. The time change. We will need the following lemma.

LeEMMA 2.1. Let A be an exponentially distributed random variable with E(A) = 1,
and let F(t) be a right-continuous distribution function. Then there exists an increasing
right continuous function G(u) such that

P{G(A) = t} = F(1).
Proor. Take
G(u) = inf {s: —log (1 —F(s)) > u}.
Then
{A < —log(1-F(1))} = {G(A} = 1} = {A £ —log (1-F(1)},

and
P{A < —log(1—F(1))} = P{A = —log (1-F(t))} = F(1).
By Lemma 2.1 there exist functions G(u, X, z) such that
P{G(A, x, z) £ t} = F(th(x, 2), X, z).

If we define
7, = h(X(k), X(k+1)G(A, X(k), X(k+1)),

we see that
P, < t] X(0), X(1), -+, X(k), X(k+1), To, Ty, -+, Ty—y}
= F(t, X(k), X(k+1)),
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and hence we can define a version of Z(f) on the probability space (Q, &, P;).
We also note that
EAG(A, X(k), X(k+1)) | X(k), X(k+1)) = 1

where E; denotes the expectation with respect to P;.
Let /(¢) and m(t) be the integers that satisfy

YIS (X (K), X(k+1))G(A X(k), X(k+1)) < t < YO0 h(X(k), X(k+1))

“G(A, X(K), X(k+1)),
and
SO (X (K)A, < t < YO h(X(K))A,

We note that Z(¢t) = X({(z)) and Y(¢) = X(m(1)).
We want to prove the following:

THEOREM 2.2. The semi-Markov process Z(t) may be represented as Z(t) = Y(y(t))
where, for each t, y(t) is a stopping time for {M,}.

Proor. We want to find y(¢) such that I(t) = m(y(¢)) and {y(t) £ u} € A, for
all u = 0. In order that /(z) = m(y(¢)) we must have

y()es = {s: Y, <t < Y i)

Ma = (u =28 h(X(K)AN (X (m(u))).
By the definition of m(u), A,y > 7, Let
Lo = W(X(m(w), X(m(u) +1)G(n,, X(m(w)), X(m(u)+1)).

Since G need not be strictly increasing we can only say

Let

Tm(u) g Cu'
57 — {S.Zm_(s) 1. LSt <Zm(s) ITk‘I'Cs}-
We have 7, < &, and, since Y 7)™ ! 7, and {, are 4, measurable

{(Z.N[0,u]l # Fye M,

Let

Define

Il

inf{se?,} if & #
=inf{se&,} if &, =dg.
Observe that %, = @& implies Ay is a discontinuity point of G(-, X(/(1)),

X(I(t)+1)). Consequently the event {&, = @&} has probability zero for all P,
and is in . Therefore

O 2uy={H) Su, P # Syolyt) Su, 7, = &}

= {700, u] # SYoly(t) Su, S = Byed,
and y(¢) is a stopping time for {/Z,}.

(1)
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3. Comparison of ¢ and y(7). We know that

(3.1 YOS R(X(k)A, < 9(1) < Yi2% h(X(K))A,
and
(3:2) Yol St< ZII((QO 2

We want to find a bound on P.{sup,<, |y(s)—s| > &} for § > 0. We will do
this by comparing the sums in (3.1) and (3.2) to sums of A(X(k)). First we will
prove the following lemma.

LEMMA 3.3. Let a, and Z, be random variables on (Q, #, P;) with a, = 0. Let
{9} be an increasing family of g-algebras, 9, = &, such that a,, -+, a,., and
Zy, -+, Z, are G -measurable. Suppose there exist a constant n and a function F(t)

satisfying
lim,,, F(t) =0

and
|J& tdF(1)] < oo
such that
P{Zii| > 1] %) £ F(t) as.
and
a, < na.s.
and that

E(Zy+y |gk) = 0.
If there exists an M such that Y i _, a, < M, then

P{supy, |Yfoy aiZ)| > 2e} < c/l—c
where
c= MC(e,n, F)

and C(g, n, F) is a function depending only on ¢, n, and F with
lim, ., C(e,n, F) = 0
forfixede and F.

Proor. The lemma follows from a lemma of Skorokhod (see Breiman [2],
page 45 for a proof in the case of sums of independent random variables that can
easily be generalized to the present case) provided we can show that

supg<, P{|Y1ois1 aiZ)| > |9} Sc as.
To see this consider
IE(eXp{iBZf;kH aZ}p-1 I(gk)I S EQu-k+1 |E(exp{i90,Z,}—1 Igl—l)l ng)
Since E(Z,|%,_,) = 0 and a, is %,_,-measurable
IE(CXP {i0aZ,} —1 l gzq)l
= |E(exp {i0a,Z,} —i0a,Z,— 1| %,_,)|
= KIE(IBGIZII; |le > 1/a; l YD)+ KE(0%a°Z?; IZII < a I Y1),
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where
e —ix— ll
K, = sup, |———
and
e“‘—ix—l'
K, = sup, |———
X
It follows that

|E(exp{i0a,Z,} —1|%,- )| £ K,|0a,| [, udF(u)| + K,0%a;sup, <, fo/*au? dF(u)
= alK(eorlaF)’
Note that
lim, o K(0,n, F) = 0.
This gives
IE(exp {i9 Z?:k+1 a,Z,} -1 |gk)l = E(Z;’=k+ 1 alK(Ba n, F)) < MK((), n, F).
The rest follows from standard inequalities involving characteristic functions.
THEOREM 3.4. Let F(t) be a function satisfying
(3:5) (1) 2 sup, max (P{|to/h(x) = 1] > 1}, P{|ta/h(x) = Ao| > 1}),

and let

n = sup, A(x).
Supposen < oo and
|Je t dF(1)| < o0.

Then there exists a function B(e, n, t, F) such that

Pé{supsgt I'))(S)—SI > 38} < B(89 f], to F)
and
lim, o B(e, n, t, F) = 0.

Proor. Let n(t) satisfy
A5 h(X () £ € < Y0 h(X(K)).

Define
Gy, = a(Ag, -+, Ay, X(0), -+, X(k+1))
a, = h(X(k)) k= n(t)
=0 k > n(t),
Z, = 1/ X(k)—1.
Noting that

Yi—oap St
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we apply Lemma 3.3 and obtain

06 P [Tl > 2) s (LR
Keeping ¥, and a, the same, but defining
Z, = 1 /h(X(k))—A,
we obtain
(t+n)C(e, n, F)

(37)  P{suprcn |2hoo (= h(X(K))A)| > 2} < = xnCen F)
Observe that
{1(1) > n(t+2e)} = 3R46* e < 1)
= {02 (= h(X(K))) = 1= 3345 h(X(K))}
< {06829 (1, — h(X(k))) < —2¢}.
Consequently by (3.6)

(t+2e+n)C(e, n, F)
1—(1+2e+n)C(s, n, F)

(3.8) PAI(t) > n(1+2e)} <

A small amount of calculus yields

P.g{maxkgn(r) h(X(k)A, > e}

(3.9 = E(1— i<y (I —exp {—e/h(X(k))}))
< 1—exp {a(e, n) In (1 —exp {—a(s, NNt +n)/e}
= D(e, n, t),

where a(e, n) = max (¢/y, In 2). We note that
lime,, xIn(1—e™¥) =0,
and hence
lim,. o D(e, n, t) = 0.
Consider the event
{SUPk<n(r4 200 iZf(:O(Tk—h(X(k))Ak)l < 2efn{I(1) = n(t+2e)}
N{max, <+ 20 MX(K)A, < &}

Using (3.2), we see that in the above event
YO (X (K)A =28 < t < Y0 h(X(k))A+2e,  all s<t.
Comparing this with (3.1) and using the fact that 2(X(/(s)))A,,, < & we have

sup,<  [7(s) s = 3e.



998 THOMAS G. KURTZ

Therefore combining (3.7), (3.8) and (3.9) we have

(t+2e+n)C(e, n, F)
2 D(e, n, t+2
1—(t+2e+n)C(e, 1, F)+ (e, 1, 1+2¢)

= B(e,n, t, F).

IA

P.{sup,<, |7(s)—s| > 3¢}

4. Comparison of Y(¢) and Z(z). It is easy to check that if
(4.1) P{t, < t| X(0), -+, X(k), X(k+1), Ty, -+, w1} = F(t, X(K)),

(that is 7, depends only on X(k), not X(k+1)), then y(¢) is a stopping time for Y.
If in addition E,(y(¢)) < co then by Dynkin’s formula

E(f(Y((0)) =f(y) = E,([§” Af(Y(s))ds)
for every € 2(4y), and hence
(4.2) E(f(Z()) - E,(f(Y(1)) = E,(JI” Af(Y(s)) ds).
REMARK. If f€ @(A4y) then

Ayf(x) = [£(f @) =fG)nulx, d2)/h(x).
If

P20 XA, = o0} =1
then
@(A) = { f:f bounded, measurable, sup, || (f(2) —/())u(x, dz)/h(x)| < 0}

This expression gives one means of comparing the behavior of a sequence of
semi-Markov processes with that of a sequence of Markov processes. The results
of the last section can be applied using the following:

THEOREM 4.3. Assuming (4.1), for every f e D(Ay) and every & > 0,
sups< ¢ | E,(f(Z(5)) = E,(f(Y(s))]
< Q| f | +1] Axf PPy fsupes [v()—s] > &} +e Auf |-

PROOF. In order to avoid the assumption E,(y(s)) < oo, let T = y(s) A (s+e&).
Then

|E,(f Z(5)))— E,(/(Y(5)))]
< 2| f|Py{v(s)—s > &} +|E,(f(Y () — E,(f(Y(5)]
= 2| f|Py{v()—s > &} +|E,(J5 Ayf(Y(w)) du)
< 2| /Py {v()—s > &} +el| Ayf | +5|| Ay [ PLs—1(s) > e}

In the general case we have the following theorem relating the behavior of a
sequence of semi-Markov processes to the corresponding sequence of Markov
processes.
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THEOREM 4.4. Let {Z, (1)} be a sequence of semi-Markov processes of the type
defined in (1.3) taking values in a separable, locally compact, Hausdorff space E,
and let {Y, (1)} be the related pure jump Markov processes. Let h,(x) be the waiting
time expectation function and A, the weak infinitesimal operator for Y,. Suppose
there exists a single function F(t) satisfying the conditions of Theorem 3.4 for all pairs
(Y, (1), Z,(1)) and that

lim,, »#, = lim,_,_ sup, #,(x) = 0.

Then the following hold:
(a) If the sequence {Y,}is tight inthe Skorokhod topology on DI0, T] for every
T >0 then {Z,} is also tight. (D[0, T] is the space of E-valued right continuous
Sfunctions on [0, T] having left-hand limits. See Billingsley [1] or Parthasarathy [4].)
If, in addition P {t," > 0} =1 for all k and n, where 1" is the kth waiting time
for Z,, then tightness of {Z,} in D[0, T] for all T > O implies tightness for {Y,}
(b) Let p(x,y) be a metric on E. Suppose for all ¢,0 > 0 and x € E there are
Sox € Z(A,) such that

—d=fo )= 1 forall y,
fox() 2 1=6  for p(x,y) < ¢/4,

Sox(y) =6 for p(x,y) = ¢/2,
and that
sup [ 3] < 0.

Then, if the finite dimensional distributions (f.d.d.) of {Y,} converge weakly to the
f.d.d. of a process Y, the f.d.d. of Z,, converge to the f.d.d. of Y.

REMARK. We observe that the conditions of part (b) are satisfied if the closure of
{f:sup, |4,/ | < oo} contains the continuous functions with compact support.

Proor. (a) A sequence of stochastic processes { W, } is tight in D(0, T]if and only
if

(i) for every n > O there is a compact set K such that P, {W,(1) e Kallt £ T} >
1 —n, for every n = 1, and

(ii) for all ¢ > 0 and # > O there isa § > 0 and an integer N such that
P{w' (0, T, W,) 2¢e} <n forevery n= N,

where w'(0, T, y(+)) is defined as follows: |
Let S5(T) = {{t;}:0 =ty <t; < <t,=T,t;,,—t; >} Then

@'(0, T, y(+)) = infy,y e, max;sup, < <, P((s), ¥(1))-

Let y,(7) be the stopping time satisfying Z,(1) = Y,(7,(1)). Theorem 3.4 implies
foreverye > 0

4.5)  lim,., P{supq |p(1)—1] > 3¢} < lim,., Ble.n,. T, F) = 0.
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Consequently, if condition (i) holds for {Y,} and every 7 > O then it holds for
{Z,} and every T > 0. Since Z,(1) = Y,(y,(1)) it follows that

w6, T,Z,) £ w@35, T+0,7Y,)

on the set {Sup,<1 4 |7a(s)—s| < d}. Consequently, (4.5) implies that if condition
(ii) holds for { ¥, } and every T > 0 then it holds for {Z,} and every T > O.

Assume now that P {t," > 0} = 1 for all k. This is the same as assuming
that Z, has the same sequence of states as Y,. It follows from the definition of’
7.(t) and the assumption that P ,{r,” > 0} = 1, that

(4.6) Pk 0 ") = D=0 (X, (kDA
Defining
Puls) = mf {r:y,(1) = s},
it follows troni (4.6) that
?n(Z:\ =0 (X, (K))A,) = ZIA 0Tk
and since §,(s) is monotone
4.7) Y,(s) = Z,(7.(s)).
Noting that sup,<y 25 |7a(5)—s| < & implies sup, <4 [9,(s)—s| < 5, we have
', T,Y,) =3, T+0,2Z,)

on the set {sup,<s+ 25 [y,,(s)—s[ =< 4}, and hence if condition (ii) holds for {Z,}
and every T > 0 then it holds for {Y,} and every T > 0.
(b) We first prove the following lemma:

LEMMA 4.8. Under the conditions of part (b)
lim,_ o limsup,._, . sup,sup, P {Y,(1)eK, SUP<gcrty P(Y(1), Yo(s)) > ¢} =0
for every compact set K.

Proor. Given ¢,6 > 0 and xe E, let 7 = inf {t:p(Y,(0), Y, (¢)) > ¢}. By
Dynkin’s formula we have

~

o) = Ef(fu (Yt AD)) = —Effo"" Af, ((Y,(5)) ds).
Hence for p(x,y) < ¢/4
—E(J§N A Sy (Yy(s)) ds) Z 1=0—P,{t > 1} —0P,{t < 1}.
Therefore
A0

Pt =1 s~
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forevery y such that p(y. x) < ¢/4. Since any compact set can be covered by a finite
number of spheres of radius ¢/4, for every compact set K and any § > 0 there is a
constant M (K, o) such that

tM(K, 0)+6

SupyeKPy{Tét}g [

The lemma follows, using the Markov property.

A similar argument gives

LEMMA 4.9. Under the conditions of part (b)

lim, o lim sup,,, sup, P {inf, _« p(Y,(t—n), x) > ¢, Y, (1) c K} =0,

Jorevery compact set K.

ProoF. Suppose p(x,y) > ¢and let

T, = inf {r:p(x, Y, (1)) < ¢/4}.
Observe that
(1=0)P {1, = 1} S E(/, (YU Ao +6 < 5+ A1,

Since K is compact there are x,, -+, x, € K with K < Ui, {z:p(x,. 2) < ¢/4).

We note that
k
PJ‘{inf‘ch\’p(Yn(t_’])"\') > ¢, Y"(I)GI\/} é Z P}'{infxer(Yn(t_”)’x) > e, Tx, é ”}
i=1

=1 I=o 7

and the lemma follows.
Combining the results of these lemmas with (4.5) gives

(4.10) lim,_.. P{Y,(1) € K, p(Y,(1), Z,(1)) > &} =0,
and part (b) follows.

REMARK. Theorem 4.4 extends much of the work that has been done on limits of
sequences of pure jump Markov processes to sequences of semi-Markov processes.
For examples of the work done on Markov processes see Trotter [6]. Stone [5], or
Kurtz [3]. In each of these papers sequences of jump Markov processes (either
discrete or continuous parameter) are shown to converge to diffusion processes
(in the case of [3] to solutions of ordinary differential equations). Theorem 4.4
shows that altering the shape of the waiting time distributions of the approximating
processes (within the restrictions of Theorem 3.4) does not affect the nature of the
convergence.
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