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ON A ¢-SAMPLE TEST BASED ON TRIMMED SAMPLES
By Ryos1 TAMURA!

Kyushu Institute of Design

Let X;y <+ < Xiu(i=1,---,¢) be the order statistics from an
absolutely continuous cdf F,(x) = F(x—60;) where F(x) has symmetric
density. The problem of testing the hypothesis Ho:0, = -+ = 0., which

has been discussed by many authors, will be considered in this paper.
We are concerned with the tests based on only the middle #;— 2k; random
variables Xy, 41 < *** < X, i, Where k; = [ma] is the largest integer not
exceeding n;o forany o, 0 < o < 4.

A test of Bhapkar’s type [Bhapkar, V. P. (1961). A nonparametric
test for the problem of several samples. Ann. Math. Statist. 32 1108-1117]
is proposed for this problem and it is shown that, for some distributions
with heavy tails, the asymptotic relative efficiency of the proposed test
relative to Bhapkar’s test, which is based on the complete samples, is
larger than one. The work presented in this paper is an attempt toward
generalizing Hettmansperger’s results [Hettmansperger, T. P. (1968). On
the trimmed Mann-Whitney statistics. Ann. Math. Statist. 39 1610-1614]
to the c-sample problem.

1. Introduction. Hettmansperger [4] has recently shown that we can increase
the asymptotic relative efficiency in Pitman’s sense of the Mann-Whitney test for
some distributions with heavy tails by using the trimmed samples instead of the
complete samples. In this paper, we have an attempt toward generalizing his results
to Bhapkar’s test [3] for the c-sample problem. We here consider the following
c-sample problem. Let X;; < -+ < X, be the order statistics from absolutely
continuous distributions F;(x) = F(x—@0,), i = 1, ---, ¢, where F(x) has symmetric
density f(x) of unknown functional form. We further assume for 0 < o < % that
(x) is continuously differentiable in some neighborhood of the unique population
quantiles b, and b, _, of order « and 1—ua, respectively. The hypothesis H,, to be
tested, is specified by 0, = --- = 0, against the alternative that not all 6’s are equal.

For this problem, the test statistic ¥, which includes Bhapkar’s as a special case,
will be proposed on the basis of only the middle n;,—2k; random variables
Xi+1 <+ < Xipyopp i = 1, ---, ¢, where k; = [n,0] denotes the largest integer
not exceeding n;z. We again emphasize that we are concerned with only the tests
based on trimmed samples. Some definitions are given in Section 2. In Section 3
we derive the asymptotic distributions and obtain the asymptotic relative efficiency
of the proposed test ¥, with respect to Bhapkar’s test. Some examples for distri-
butions with heavy tails such as the logistic, double exponential and Cauchy are
given in Section 4.

2. Some definitions. Let us definefori=1,..., ¢
(21) U =TL=0(n=2k) 32w e e 1 00X 1p, o Xepl)s
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(2.2) @ Pxy,,x) =1 ifx;>x; forall j=1,-,c except i,
=0 otherwise.

Further we define fori =1, ---, ¢

(2.3) Y = n#(Xu+1—b,—0), Yo = (X, i, =b1-a—0;)

Y= (Y11, Y2, Yoq, YcZ)'

We here notice that the statistic U,", given Y, is a generalized U-statistic (see [5])
based on sample size n; —2k; from distribution with density 9;x),j=1,-¢
9(x) =f(x=0)/[F(by -+ Yo /n*) = F(by+ Y;1/n,*)]

for b,4+0;+Y;/n* <x <by_,+0;+Y;,/n;*

(2.4)

=0 otherwise.

Finally, we define for i=1,...,c

(25) R = (N=2k)*[UP—EU,D [Y)], R, =R, -, R),

(2:6) W0 = (N=2k)H (U0 = 1fe),  Wo= (WD, W),

whereZ E(x% [ Y) is the expected value of the statistic *, given Y, and N = Zj=1nj,
k =) 5-1k;

We assume throughout this paper that the sample sizes n;, j = 1, -+, ¢ increase
in such a way that limy_, , n;/N = 4,0 < 4; < 1.

3. Asymptotic distributions. Now we shall consider the asymptotic distributions
of the proposed statistics under the hypothesis H, and the following sequence of
alternatives

(3.1) Hy:F(x) = F(x—v,/N?), i=1,-,c¢
where not all v’s are equal.

LeMMA 3.1. Under the sequence of alternatives Hy, the conditional mean vector
and covariance matrix of W,, given Y, are asymptotically given by p(Y) =

(11(Y), -+, 1 (Y)) and Q = || ||, respectively, if there exists a function g(x) such
that for any x and any sufficiently small h,

(32 DU S 9. [0 g(x)dF(x) < o0
where
(3.3) 1Y) = i+ f (b Zi~(c—1) "' Y1 Z;] e(1—2a)2,

(3.4) p = (1=20)* 7 3= [F(x) —o]*™ %/ (x) dF(x) Y= 1 (vi—v)),
Z; =47 Y +(c—1)Y,,
(3.5) @ = (Vo1 AT 2054, —ed T = e YR (2e - 1),
0;;=1o0r0fori=jori+#j
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Proor. First we get
E[pO(X 1.+, X) | Y] = TT5m [F(by -t Yol )= (bt ¥y /n )]
x [bagt Y lmt 2 T [F(t+0,—0;) — F(b,+ Yy /n;*)] dF(1).
By expanding in a Taylor series and using the assumption (3.2), it follows that
(3.6) E(@@|Y)=c '+ [5-=[F(x)—a]° >/ (x) dF(x) Y j2: (vi— v;)N*(1 —20)°
+f(bIZi=(c—1)"' Y2 Z]/eN}(1—20)+ O(N1).
Thus we get (3.3) by noticing the definitions (2.1) and (2.6). Secondly, we calculate

the conditional covariance w™”, given Y. In this case, we get from the theory
of the generalised U-statistics,

(3.7) w(ij) =Al—lp(li(";)...0+“'+llc‘lpgj:?.01
where p§9). 010 ... o (1 lies at the kth place) is the covariance of (X, -, X;, -+, X,)
and @V(X,’, -+, Xi-y, Xpo X441, X.) and X; and X, are independent and
identically distributed as (2.4) for each j. After some calculations, we get
(3.8)  p§2 5100 (1 lies at the kth place)

= (1—cdy— 8+ ¢80 401) > (2c — 1)+ O(N 7).
Thf; identity (3.5) follows from (3.7) and (3.8). It is also concluded from (3.5) that
w9 is asymptotically independent of Y.

THEOREM 3.1. The random vector W, has the joint asymptotic normal distribution
N(0, X,) or N(u, X,) under the hypothesis H, or the alternatives Hy if the assumption
(3.2) holds, where p = (uy, -+, u,) and £, = ||6,7||

(3.9) o, =p.w?/(c—1)*(1-20),
B =(c—1)*(1—2a)+(2c—1)(c* = 2c+2)u(1 — o) +2(c— 1)(2c — 1)ar’.

ProOF. We easily have E(W,) = u;+O(N~%) from (3.3) using the well-known
fact that Y is asymptotically distributed as N(0, IT) where

I1, 0 loe(1 — ) o

(3.00)  T=| . |, M, =f(b)?
0 II, o? a L —a)||.

2

Now the identities
W, = RO+ (N =2k [E(UD | Y)—1/c], i=1,,c
lead to the following expression
(3.11) 6, = Cov(R, P, R.Y)+ (N —2k) Cov [E(U,” | Y), E(UY | Y)].
The second term of the right-hand side may be calculated from (3.3) and (3.10) as
(*=2c+2)u(l —o)+ 20 (c— )Xoy ™+ 204" —ed ™ —ed; 7Y
+ A(e—1)(1-2a).
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Thus we have (3.9) from (3.5), (3.10) and (3.11). It remains to show the asymptotic
normality of W,. First the asymptotic normality of (Y, R,) follows by Theorem 2
of Sethuraman [6]. Secondly, for any constant vector a’' = (a,, -+, a,), the
expression

(3.12) a'W, =aR,+(N-2k)*Ys_ a[E{U,P|Y)—1/c]

is a function of Y and R,. The asymptotic normality of a'W, may be derived by an
application of the theorem of Anderson [1], page 76, for (3.12) and that of W,
may be established from this fact.

We here define the test statistic V,,

(3.13) V, =W, AW,
where
(3.14) A :(C—'1)2(26_1)(1—"2a)ﬁc—1|[511).l—‘ll).1[|, i,j=1,"', C~

THEOREM 3.2. The test statistic V, is asymptotically distributed as y?*_, with ¢—1
degree of freedom under H,, and as noncentral y>_,(8) with c—1 degree of freedom
and the noncentrality parameter § if the assumption (3.2) holds, where

(3.15) 6 =c*(c—1)*(2c—1)(1—=20)>"2B. 71 (D5= Ai(v;—7)?)
x [ [F(x)—“]c_zf(x) dF(x)]Z, V=3 A

The proof is essentially the same as that of Bhapkar [3] or Sugiura [7] and is
omitted. We here notice that Bhapkar’s test may be denoted by V.

It has been shown by Andrews [2] that the Pitman efficiency is given by the ratio
of the noncentrality parameter of the ¥V, to that of the V¥, in their asymptotic
distributions. From (3.15), we have the asymptotic relative efficiency of the test V,
with respect to the test ¥, as

(3.16) e (o) = (c—1)*(1 —2a)*> 2B, " [[or -« [F(x)— ]~ 2f(x) dF(x)]?
+ [0 F(x)""% (x) dF(x)]*.

4. Examples. We first express e () as a function of ¢ for some distributions with
heavier tails than the normal distribution and we compute the numerical values of
e(o) for ¢ = 2, 3, 4and 5. After some calculations, we get the following expressions,

(a) Logistic distribution, f(x) = exp (—x)/(1+exp (—=x))?, —00 < x < 0.
eo(0) = B [(c=)1(1 = 20)* + e+ 1)1 — 1) ]2
(b) Double exponential distribution, f(x) = exp (—|x|)/2, —o0 < x < oo.
(o) = (c—1)*(2 ' = 1)72B. 7 '[2°7 (1 — 20+ cor) — (1 —2a1) ]2
(c) Cauchy distribution, f(x) = 1/n(1 +x?%), —c0 < x < co.

e.(@) = (c—1)*(1=20)> 2B, 7 "[{(1 —20)° " '+ (c— 1)J (o)} + {1+ (¢ — 1)J (0)}]?



where

J (o) = (2m) 7 (1 —2e)° " *sin(p) +(27) " *(c—2)(1 —20)* > cos ()
—r) o= 2)e— (),

A C-SAMPLE TEST BASED ON TRIMMED SAMPLES

Jy(o) = (n) " *sin(y)

J3(0) = (2m) " (1 —2a)sin(y),

c =4,

y =n(1-2a,
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and J,(0) is the value of J.(x) when « = 0. The numerical values of e.(x) for
¢ = 2,3,4 and 5 are shown in the following tables.

TABLE 1

Logistic distribution

1 2 25 3 35 4 .45
c
2 995 968 .945 917 .882 .842 .798
3 .986 .968 .953 932 .807 .876 .840
4 994 1.002 1 992 977 956 928
5 1.014 1.054 1.066 1.070 1.066 1.053 1.031

TABLE 2
Double exponential distribution

.1 2 .25 3 35 4 45
c
2 1029 1.089 1.125 1.164 1.204 1.246 1.289
3 1.019 1.089 1.134 1.184 1.238 1.296 1.357
4 1.022 1.129 1.200 1.279 1.367 1.463 1.567
5  1.042 1.203 1.306 1.422 1.551 1.693 1.850

TABLE 3
Cauchy distribution

.1 2 25 3 35 4 45
c
2 1.089 1.258 1.339 1 .403 1.435  1.441 1.405
3 1078 1258 1.350 1.427 1475 1498 1.480
4 1.094 1368 1.519 1.659 1.731 1.827  1.869
5 1.144 1.562 1.802 2.029 2.225 2.343 2.393
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