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ADMISSIBILITY OF CERTAIN LOCATION
INVARIANT MULTIPLE DECISION PROCEDURES'

By MARTIN Fox
Michigan State University

Random variables X, Y, Y,, --- are available for observation with X
realvalued and Y, Y>, ‘- - taking values in arbitrary spaces. The distribution
of Y= (Y, Y, ---) is given by p; (j =1, -+, r) and the conditional
density with respect to Lebesgue measure given Y¥; = y; i =1, ---, n—1)
is pj(x—6, y) where y = (yy, ¥2, ‘). The parameters jand 6 are unknown.
A decision k€ {1, ---, m} is to be made with loss W(J, k, n, ) when n
observations are taken. Following Brown’s (1966) methods admissibility
is proved for the decision procedure which is Bayes in the class of invariant
procedures. The result contains that of Lehmann and Stein (1953).

1. Introduction. The admissibility of best invariant sequential estimates of a real
location parameter was studied by Brown (1966). A related testing problem,
namely of testing that observations come from one location family versus the
alternative that they come from another (real location parameter in both cases),
was treated by Lehmann and Stein (1953) for the fixed sample size case. In the
present paper Brown’s methods are adapted to invariant sequential multiple
decision problems when the sample comes from one of several location families.
As in Brown’s paper the results apply to fixed sample size problems as a special
case.

Let H = x P E; where E, is the real line and E,, E;, --- are arbitrary. Let 4,
be the Borel g-field on E, and #; be an arbitrary o-field on E; (i = 2, 3, ---). Let
o ; be the o-field of cylinder sets with measurable bases in the ith coordinate and
"M =F(| )] ;) where F(%) is the smallest o-field containing €. In Brown
(1966) the E; are all taken to be the real line. His results in Section 2 except for
those in Subsection 2.2 do not require his more restrictive conditions. It will be seen
that in the present setting the results in Section 3 (which parallel Brown’s Subsection
2.2) do not require his restrictive assumptions.

Let (X, Y,, Y,, ---) be a random variable on (H, «/(*’) such that

(1) X takes values in E,| and is &/ ,-measurable and
(ii) Y, takes values in E;, ; and is &/, ;-measurable (i = 1, 2, ---).
Let Y = (Y,, Y,,-).Forall@e Eandj = 1, ---, rif S e o&/™, then
Po((X,Y)eS) = [[ pju(x—0,y) dx uydy)

and set p; = p,w. Here [ Pin(x,-)dx = 1 a.e. (u;) and each yu; is a probability
measure on Z (| J§ ;). Thus, p,,(x—0, y) is the conditional probability density
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with respect to Lebesgue measure, henceforth denoted by A, of X given Y; =
yii=1,--,n—1)and is o/ "-measurable.

This model is motivated by considering Z,, Z,, --- which are independent,
identically distributed random variables whose common probability density with
respect to Ais f;(x—0). We thenset X = Z, and ¥, = Z;, —Z, (i=1,2,--) s0
Y is the maximal invariant under the translation group. Section 5 contains an
example of this type for fixed sample size.

We wish to make a decision k € {1, -+, m} without knowledge of the true values
of j and of §. Observations are taken sequentially on X, Y,, ¥,, -~ . A decision
procedure & consists of a stopping rule ¢ and a behaviorial decision rule ¢ where
6:H > Iand ¢: H— A,,. Here I is the set of natural numbers and A, is the
probability simplex in v-dimensional Euclidean space. The interpretation of
o = n is that sampling stops after observing X, Yi, --%, ¥,_; so that we require,
for all Lebesgue measurable 4 = A,,, that

{(x,):0(x,y) =n,e(x,y)e A} e L™.

If o(x, y) = 0 for some (x, ), then this is true for all (x, y) and ¢ is a constant.

The loss may depend on

(i) the index j of the true family of distributions;

(ii) the decision k;

(iii) the number n of observations; and

(iv) the value y of Y.
Hence, the loss function will be denoted by W(j, k, n, y). By letting W(j, k, n, y) =
oo when n # n, we obtain a fixed sample size problem. In this case we abuse
notation by deleting # from the arguments of W. The risk of the decision procedure
0= (o,¢)is

R(0,/,6) = Y= 1 [ Jeu(x, »)W (J, ks o(x, ¥), )p,(x =0, y) dx p(dy)

where ¢, is the kth coordinate function of ¢. Then, a decision procedure & is (trans-
lation) invariant if it does not depend on x or, more formally, if 6 is (|5 ;)
measurable.

Let .# denote the set of all #(|J§ &;)-measurable functions (i.e., invariant
measurable functions) on H. For § = (g, ¢) € £ the risk is independent of 6 so we
suppress this argument from the function R and observe that in this case

R(j,8) = Yi=1 Ja(n)W (). k, o(y), y)u(dy).

Let £ € A,, that is, ¢ is an a priori distribution on the index j of the family
of distributions. We then extend the domain of definition of R by setting

R(0,&,8) =371 &;R(0,),9).
Now let §, be Bayes in # with respect to £, that is, §, € # and
R(&,8,) = inf; . 4 R(Z,0).
Set Ry(j) = R(j, 8,). Without loss of generality assume &; > 0(j=1, -, r).
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The purpose of this paper is to present the
THEOREM. Let 6, = (0, &) be Bayes in & with respect to &. Assume

() if 6, F and R(j, 6;) = Ro(j) (j = 1, ---, 1), then &; — O, in measure (u;);

() forj=1,---,r; k=1, -, m we have
(1.1) [ dy){W (i k, 00(v), ») § [x|p(x, y) dx} < 003
and

@iii) for j =1, -, r; k = 1, ---, m we have
(1.2) & dz {supscs [ uldy){Lea»)W (i k,o0(y), )
—a(V)W(Js k,a(y), )12, pi(x, y) dx}} < oo.

Then, d, is admissible.

This theorem is analogous to Brown’s Theorem 2.1.1. In this case, contrary
to Brown’s, all procedures for which no observations are taken are invariant.
Note that (1.1) implies Ry < o0.

Setting r = m = 2, consider a fixed sample size problem in which W(j, k, y) = 0
or 1 according as j = k orj # k. This is the hypothesis testing problem considered
by Lehmann and Stein. Any test which is best invariant of its size and which
requires randomization with probability zero (as in Theorem 1 of Lehmann and
Stein (1953)) is Bayes in £ with respect to some £ € A,. Furthermore, (1.1) is the
moment condition in Lehmann and Stein (1953). An example has been given
(Fox and Perng (1969)) showing inadmissibility may result when this moment
condition is violated.

The proof of the theorem parallels that in Brown (1966) Section 2.1. A brief
discussion of changes needed is given in Section 2. Sections 3 and 4, respectively,
contain lemmas concerning Conditions (i) and (iii) of the theorem. These lemmas
and their proofs parallel corresponding lemmas in Brown (1966) Sections 2.2,
2.3. Complete proofs are not given in Section 3. Those in Section 4 are sufficiently
short so that they are included.

Lemmas 3.2 and 4.3 show that the theorem contains the corollary given by
Lehmann and Stein (1953). Complete proofs are found in Fox (1970).

2. Outline of the proof of the theorem. Let R(0, j, 5) < Ry(j) for all 6 € E, and
j=1,--,r Let

(21) (l)(j,Z, n,Z’: n,: J’) = Z;cn:l [ZkW(j7 k,na y)_zk,W(j, k’ n,: Y)]

and w(], X, J’) = (,0(_], £O(y): 0'()(}7), £(X, J’): O'(X, y))
The assumption of the previous paragraph implies

§1.d0 [ u(dy) f@(j,x, y)p(x—0,y)dx 2 0
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for all j = 1, -, r and L > 0. Note that the statement of the theorem does not
restrict attention to procedures with ¢ = 1. In the present case, contrary to Brown’s,
procedures with ¢ = 0 are invariant.

For each j = 1, ---, r the steps of the proof proceed as in Brown (1966) up to
(2.1.18). A lemma parallel to Lemma 2.1.1 is not needed. Instead, the corresponding
step results directly as follows.

Let

H; = limsup, ., | u;(dy) =552 dx[@(), x, ) [~ 1]2 p (2, y) dz]
= limsup, ., | 1;(dy){f= L+AdijL/2dz+j Soadxftir,dz
ll:{i-zAdij-'—x dZ"‘j Il,'/nLZAdxj—L/zde}
(2.2) ~{w(J,x y)pi(z:3)}
< limsup; . [ZEF4dx [@( ), x, y) [ udy) (5172 pi(z, y) dz]
+limsupy o [ p(dy){[ 2o dz 0 Pdx+ [2E R dx [21% L dz
+[2f2dz (2535 dx}
H{a(),x y)p,(z )}

Consider the first term in the last expression in (2.2). The outer integration yields
a term which is an integral over S(L) (and hence converges to zero by a step
parallel to (2.1.18)) plus an integral over the remainder of the region. Since
—L—A < x < —L+ A over the entire region of integration, on this remaining
part we have o(x, y) = o,(y) and Isk(x, y)—so(y)l < a(k =1, -, n). Thus, this
remainder is at most

ofZEE A dx [ u(dy)i= 1 W(Ji kooo(v), ¥) [5 172 iz, v) dz]
=aY vy [ uddy)IW (i k. 0o(y), ¥) [21/2(A=2)p)(z, y) dz]
<aM

for some finite M as a consequence of (1.1). But « > 0 is arbitrary so even the
remainder converges to 0 as L — oo.

Once again the proof parallels that in Brown (1966), this time through (2.1.24).
Since inequalities parallel to (2.1.13) and (2.1.24) hold for all j = 1, ---, r we have

0 < Y7oy & liminfy . [ pfdy) Y2, dx[@(), x, y) [¥2)2 p(2, y) dz]

(2.3) < liminfy o Yoy & udy) (2,2 dx [@(), x, ) [¥2)2 pi(2, y) dz]
< Y51 & Jdx[Juddy)(@(),x, y) [ pi(z, y)dz}]
= Jdx V-1 & § nidy)l@(i, x, y) [ pi(z, y) dz}]-

Since 6, € .# and J,, is Bayes in # with respect to £, the last quantity in brackets in
(2.3) is nonpositive and, hence, is 0 for almost all x(1). But Assumption (i) implies
for each j = 1, ---, r that d, is the unique a.e. (3] p;) decision rule which is Bayes
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in # with respect to £. As a consequence, 5(x, y) = 6,(») = 5o(») a.e. (Ax Y u))
which completes the proof.

3. Discussion of Condition (i). We have seen that Condition (i) implies that J,
is the unique Bayes procedure in # with respect to £. In Lehmann and Stein (1953),
with fixed sample size, unicity of the best invariant test of a given size of H, : j = 1
versus H,:j = 2 is guaranteed by the assumption that the p,-probability of
randomization is 0. Perng (1967) showed that without unicity the best invariant
test may be inadmissible. We study in this section the relationship between unicity
and Condition (i) and will see that the latter is not much stronger than the former.
In fact, in the fixed sample size case, Lemma 3.2 states the two are equivalent.

For 6 € 4, let £%(y) be the posterior probability that j = j* given ¥ = y and

R(é’ o | y) = Z;=1 51*()))2;:‘:1 Ek(y)W(.]’ k9 0'()’), ,V),
the conditional Bayes risk of & given ¥ = y. Thus, R(¢,8) = Y5 &; [ R(E, 6 | ) X

1 {(dy).
Let ¢’ be a fixed invariant stopping rule. Assume, for the remainder of this

section, that there exists 6 = (¢, ¢’) € S such that R(£, §) < co. Let

(3.1) Bo(y) = {v:v€A, R(&, (v,0") | y) =inf,c o, R(E(1,07) [ 1)}

(3.2) eoi(y) = inf {v,:ve B, _,(y)} (k=1,--,m)
and

(3.3) » B(y) = {v:veB,_ (), v = eou(¥)} (k=1,--,m—1)

The first lemma parallels Lemma 2.2.1 in Brown (1966).

LemMA 3.1. Let ', & = (¢, 0") and &, be as in the preceding paragraph. Then,
&, is finitely measurable, 8, = (¢y',06') e F and R(&, 6,) = inf‘,:(wf)”R(é, 5).
The decision procedure 8’ is the unique a.e. ()} u;) procedure of the form (¢, ¢') € S
having Bayes risk R(E, 8,") if, and only if, for almost all y (Y} u;) the sets defined in
(3.2) are singletons for each k = 1, ---, m. In this case, R({,6,") = R(&, 0,') for a
sequence 8, = (g,/, 0’) € F implies &, — &, in measure (Y ;).

Proor. Note that p;, and W(j, k,n,-) must be «/™-measurable. On X,=
{y:o’(y) = n}let
(3'4) fn(”’ J’) = ZS’=1 fj ZZ‘=1 ka(j9 k,n, J’)
=R((v,0)|y)-

In (3.4) we can take y = (¥4, -+, y,—1) S0 that f, is Borel measurable on A, x X,
and, clearly, is continuous in v for each y € £,. Hence, By(y) is closed and, further-
more, g, = inf, 4, f.(v,") is measurable. Hence, for any fixed a € A,, the measur-
ability of {y:ep () > a} = {¥:fu(a, y)—g,(») > 0} follows. Thus, &," is Borel
measurable on Z, for each n. Since ¢’ < oo a.e. (D] ;), we see that ¢, is finitely
measurable. Also §," € # and is a decision rule since {(x, y): o'(y) = n,
e, € Aye o™ for every Lebesgue measurable 4 < A,
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The remainder of the proof is parallel to that of Brown (1966) Lemma 2.2.1.
The second lemma parallels his Lemma 2.2.2.

LeEMMA 3.2. In the fixed sample size case a procedure &, which is Bayes in £ exists.
This procedure is unique a.e. (3 ;) if, and only if, Assumption (i) of the theorem
is valid.

Proor. The first statement in Lemma 3.1 guarantees existence of §,. The last
statement proves that unicity implies Assumption (i). The reverse implication has
already been noted.

The last lemma parallels Lemma 2.2.3 in Brown (1966).

LemMA 3.3. Assume W(j, k, 0, y) = o0 and .
liminf,_, , W(j, k,n,y) = co.

Then, there exists at least one procedure Bayes in #. Furthermore, Assumption
(i) of the theorem is satisfied if, and only if, the procedure Bayes in S is unique

a.e. (X1 1y).

Proor. The proof parallels that of Brown (1966) Lemma 2.2.3 through the
assertion following (2.2.12) that the sequence of stopping rules converges in measure
(in this case with respect to Y ; y;). Convergence of the sequence of behavioral
decision rules follows in a similar fashion since if 6* = (¢*, ¢*) is the unique
procedure Bayes in ., then a.e. (3.} 1;) only one component of ¢* is positive
(and, hence, equals one).

4, Discussion of Condition (iii). We consider lemmas concerning Condition (iii)
of the theorem. Recall the definition of w in (2.1) and let
Ij = j(?)o dZ {Supéeljw(j’ 8O(y)’ Uo()’)’ S(Y)sJ(Y),Y) luj(dy)jz—zpj(x9 J’)dx}'

Condition (iii) is equivalent to I; < co (j= 1, ---, 7).
The first lemma parallels Lemma 2.3.1 of Brown (1966).

LEMMA 4.1. If there exists z, < o0 such that
(4.1) fufdy) [z piz, y)dx =1
for each j = 1, ---, r, then Condition (iii) is satisfied.
Proor. By (4.1) for z > z, we have
sup; e s+ J (> 2o(¥), 00(1) &), 0(»), V)iy(dy) [ p(x, y) dx = 0.
Hence,
I < [ dz 3 fea0)W (s k. oo(y), y)uidy) - | pi(x, y) dx
= ZORO( j) < 0.
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The next lemma covers the case in which procedufes having finite risk have
sample size bounded by N < co. It parallels Lemma 2.3.2 of Brown (1966).

LeEMMA 4.2. Suppose there exists N < o such that W(j, k,n,y) = oo forn > N
and that

(42) I Wk m, y)usd) [l ) dx < oo
forj=1,-,r;k=1,--,m;n < N. Then Assumption (iii) is satisfied.
PRrooF. Since §, is Bayes in .# we have
Y5-1&ifo(h,eo(y): 00(v), &(3), o(v), Y)u(dy) [ pi(x, y) dx < 0.
Hence, ‘
(4.3) X5=1¢;f0(f eo(v) 00(v). e(v) o(v), V)i(dy) 22 p . ) dx
< = e £ 50 00(0): 00(0).600). o(5) ) o2 5, ) .

From (4.2) and (4.3) we obtain ,

Yi Gl £ 518,08 dz {supse 5 [ Yii=1 a(0)W (i Ky o(v), y)ai(d)

Jix122 D%, y) dx}

(4.4) SV Y=y Y= &8 Az [ W (i ke, n, y) x5 2 pj(x, p) dx
=i Zﬁ=12§=1 51.‘ w(j, k,n, y)u,-(dy)j IX|pj(x, J’) dx
< 0.

Buteach ¢; > 0sol; <o (j=1,,7).
The next lemma parallels Lemma 2.3.3 of Brown (1966). It shows that the
moment condition of Lehmann and Stein (1953) implies Assumption (iii).

LEMMA 4.3. In the fixed sample size case if
§W(0i ks y)ui(dy) | x| pi(x, y)dx < o
forj=1,-,r; k=1, -, m, then Assumption (iii) is satisfied.

PrOOF. The proof of Lemma 4.2 will suffice with the modification that in (4.4)
the sum over n contains only the term corresponding to the fixed sample size.
We now consider the interesting case in which

(4.5) W(j.k,n,y) = Wi(j. k)+ Wa(n).

Let #, be the set of invariant behavioral decision rules depending only on
(X, Yy, -, Y,_;). The final lemma of this section parallels Lemma 2.3.4 of
Brown (1966).
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LemmMA 4.4, Let W satisfy (4.5). Suppose for some ¢ >0 that
Wion)=Wyn—1) 2 ¢ for n = 1,2, --- and that W,(n) = O(n*) as n > Sfor
some f§ = 1. Assume, for some « > 0, that

(4.6) Jui(dy) Jx[**p,(x, y) dx < o0

for j =1, r and that, for some y > 0, there exists a sequence ¢, € S ,(n =
1,2, --) such that

(47) s Kms & Tl eIl )] By ) > cf2} = O(n 001 +2077)
asn — oo forj =1, -, r. Then, Assumption (iii) is satisfied.
PRrROOF. Let 6* = (¢*, o*) € # where
O'*(y) = min {n: Z;: 1 éj Z;c"=1 snk(y)Wl(j’ k)j})nj(x’ Y) dx é 6/2}

and ¢*(y) = ¢,(y) for all y such that o¢*(y) = n. From (4.7) we obtain
uiyio*(y) z n} = 0(n=P*2M77) 50 that o* < o0 ace. (Y ;) and

(43) FIW(a I 2o (d) < oo

If (yy, =+, yu—1) has been observed with a*(y,, ---, y,_;) = n, then the expected
loss due to making some decision using ¢, is at most ¢/2 which is less than the cost of
another observation. Hence, o, < o* a.e. (3] u)).

From Holder’s inequality, (4.6), (4.8) and the fact that o, < o* a.e. (u ;) there
exists b; < oo such that

j Wl(ao(y)).uj(dy)j!xl >z pj(xa y) dx
(49) S (TWAloo I )} [ ) oy ) 212+

é blz—-Z(l +a)/(2+a)’

Letting W* = max;, W,(j, k) and using (4.6) we see that there exists b, < oo
such that

ka=1 W(j, k)jSOk(y).uj(dy)jlx[>zpj(x9 .V) dx

(4.10) S WrzmOO fuy(dy) f |x['*p,(x, y) dx
é bZZ_(l +a)‘
Then, (4.5), (4.9) and (4.10) yield
I; < [ dz {33 Wi(J, k) § eou()if(dy) a2 p,(x, ¥) dx
+ [ Wa(0o(9)uid) fix15- pi(x, y) dx}
é J';o[bzz—(l+a)+ b12—2(1+a)/(2+a)] dZ+Ro(j)
< 0.

The author has been unable to prove a lemma paralleling Lemma 2.3.5 of
Brown (1966).
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5. An example. Let Z,, Z, be independent random variables each distributed
normally with mean ( and variance aj2/2. Set X=Z,and Y =Z,—-Z,. Assume
o; = jfor some j = 1, 2, 3. Assume the loss does not depend on Y and is given

J
by the table below when action k is taken.

W oo —
_—— O =
—_ O = N X
)

N

Let ¢; = $(j = 1, 2, 3). The procedure which is Bayes in the class of invariant
procedures (and, hence, admissible) makes decision 1 if Y2 < & log 2, decision 2
if$log2 < Y2 < 72/51og (2), and decision 3 if Y2 > 72/5log (3).

In this example only two observations have been taken for clarity of exposition.
If more observations are taken, we set ¥; = Z,—Z,, (i = 1, -, n—1) and then
our decision rule is of a similar form using }7_; Y.

Setting r = m is also not needed. We can, for example, have a fourth possible
decision with constant loss a. If a is sufficiently small (less than the maximum
posterior probability given Y of an “error’’ using our procedure) then for some
values of Y this decision will be made. For a smaller than the minimum posterior
probability given Y of an “‘error,” the fourth decision will always be made.
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