CORRECTION NOTE

CORRECTION TO

"DISTRIBUTIONS CONNECTED WITH A MULTIVARIATE BETA STATISTIC"

BY D. J. DE WAAL

University of the O.F.S.

The author is indebted to Professors C. G. Khatri and M. S. Srivastava who pointed out that Theorem 2 in the above mentioned article (Ann. Math. Statist. 41 1091-1095) is invalid. He would also like to thank Professor Srivastava for the suggestion to assume $I - \Sigma_1^{-1} \Sigma_2 = (2/m)P$ where P is fixed as $m \to \infty$.

The following changes must be made to Theorem 2, page 1093: We make the convention that $O(m^{-2})$ can also mean the order term $O(m_{\min}^{-2})$ where m_{\min} $\min (m_1, \cdots, m_q).$

(i) Equation (4.7) must read

(4.7)
$$\rho = 1 + (n/2fm)(np - p^2 + 4\operatorname{tr} P - p) + (p/12f)(\sum_{r}(1/m_r) - (1/m))(2p^2 + 3p - 1)$$

(ii) Equation (4.8) must read

$$I - \Sigma_1^{-1} \Sigma_2 = (2/m)P$$
 where P is fixed as $m \to \infty$.

(iii) Page 1094: Replace lines 12-19 with the following: From Sugiura and Fujikoshi (Ann. Math. Statist. 40 942-952) we can write

(4.13)
$$|\Sigma_1^{-1}\Sigma_2|^{\frac{1}{2}m} = |I - (2/m)P|^{\frac{1}{2}m}$$

$$= \operatorname{etr}(-P)(1 - (\operatorname{tr}P^2)/m + O(m^{-2}))$$

and

$$(4.14) \qquad \qquad (\frac{1}{2}m)_K = (\frac{1}{2}m)^k (1 + a_1(K)/m + O(m^{-2}))$$

where $a_1(K) = \sum_j K_j^2 - \sum_j K_j j$. Substituting (4.11), (4.13) and (4.14) in (4.10), $\phi(t)$ becomes

$$\phi(t) = (1 - (1/m) \operatorname{tr} P^2)(1 + (1/m) \operatorname{tr} P^2)$$
$$(1 - 2it)^{-\frac{1}{2}f}(1 - \omega_{\operatorname{tr} P}((1 - 2it)^{-1} - 1)) + O(m^{-2})$$

since (see Sugiura and Fujikoshi (1969))

$$\sum_{k=0}^{\infty} \sum_{K} \omega_k C_K(P)/k! = \omega_{\text{tr } P} \text{ etr } P,$$

$$\sum_{k=0}^{\infty} \sum_{K} a_1(K) C_K(P)/k! = (\text{etr } P) \text{ tr } P^2,$$

$$\sum_{k=0}^{\infty} \sum_{K} \omega_k a_1(K) C_K(P)/k! = \omega_{2+\text{tr } P} (\text{etr } P) \text{ tr } P^2.$$

Choosing ρ such that $\omega_{\text{tr }P}=0, \rho$ becomes as given in (4.7). Hence the characteristic function of \cdots (continue with equation (4.15)).

The following misprints also appear in the article:

- (i) Equation (2.1): exp $(-\operatorname{tr} RE)$ instead of exp $(-\frac{1}{2}\operatorname{tr} RE)$.
- (ii) Equation (2.3): $\Gamma_p(b)$ instead of $\Gamma_p(\alpha)$.
- (iii) In the proof of Lemma 3, page 1091: α_r instead of a_r and $\frac{1}{2}m_r$, α instead of a and $\frac{1}{2}m$ and b instead of $\frac{1}{2}n$.
- (iv) Equation (3.2): $\Gamma_p(\frac{1}{2}m_r + h_r)$ instead of $\Gamma_p(\frac{1}{2}m_r + h)$.
- (v) Equation (4.3): $2\gamma_j$ instead of γ_j .
- (vi) Equation (4.4): $(1/2\rho)$ instead of $\frac{1}{2}\rho$.
- (vii) Page 1094, line 4: np instead of mp.
- (viii) Equation (4.23): $\frac{1}{2}mp(m-p-1)/n$ instead of $\frac{1}{2}m(m-p-1)$.