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TRANSFORMATIONS OF GAUSSIAN PROCESSES TO
THE BROWNIAN MOTION

By P. K. BHATTACHARYA
University of Arizona

Transformations of a class of Gaussian processes to the Brownian
motion are obtained by reproducing kernel Hilbert space methods. These
trgnsformations are such that the value of the transformed process at any
point of time is given in terms of the sample path of the original process
up to that time. In certain situations the boundary-crossing behaviors of
the original process and the transformed process are related.

1. Introduction. Consider a finite number of random variables {X(¢), t = 1, ---, n}
following a nonsingular Gaussian distribution with zero mean. In dealing with
many problems concerning such random variables, it is convenient to work with
linear transforms {Y(¢), t = 1, ---, n} of the X-variables which are independent
standardized Gaussian random variables. Indeed, these transforms can be carried
out sequentially in ¢, i.e. by transforming with a lower triangular matrix. For a
continuous time parameter Gaussian process {X(¢), = 0} the natural analogue of
this would be to try to transform the process to a Brownian motion and the need
for such transformations has been expressed by Doob (1949). In this paper, such
transformations are obtained for a class of Gaussian processes by reproducing
kernel Hilbert space methods. Again, these transformations are sequential in ¢.
Furthermore, in certain situations these transforms are such that a boundary-
crossing problem for the original process is related to a boundary-crossing problem
for the Brownian motion. For a survey of reproducing kernel methods the reader
may consult Aronszajn (1950) and Parzen (1959).

2. Preliminaries. Consider a separable real Gaussian process {X(¢), ¢ = 0} with
mean value function 0 and covariance kernel R. We shall restrict our attention to a
certain class of such process by imposing some conditions on R. The first condition
is,

CoNDITION 1. R is continuous and nonsingular on every finite subset of [0, c0).

Before stating the other conditions, let us introduce some notations. First note
that the continuity of R implies that the process is continuous in mean square and
therefore, continuous in probability. Consequently, any countable set 7" which is
dense in [0, o) satisfies the definition of separability by virtue of a theorem of Doob
(1953, Chapter II, Theorem 2.2). To be specific, we are going to take the non-
negative rationals for T in all our discussion. The separability condition will be
needed only in Section 5. Consider now a sequence of finite sets {T}} satisfying
T,c T, forall nand (J;2, T, = T. We denote T, = T, n [0, 7]; R is the
restriction of R to [0, 7] x [0, 7]; R, [(s, t), s, t € T,* are the elements of the inverse
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of the matrix R, , = ((R(S, 1)))ss ,+; H(R) is the reproducing kernel Hilbert space
of functions on [0, co) with reproducing kernel R; H(R") is the reproducing kernel
Hilbert space of functions on [0, 7] with reproducing kernel R*; R(-) = R(s, -) for
every s = 0; R/" is the restriction of R; to [0, t]; Y (s, ¢; 1) = (R,", R)u(re)
s, t,7 = 0. When there is no danger of confusion we shall sometimes use the same
symbol for a function and its restriction to some subset of its domain.

It is well known that H(R") consists of all functions which are restrictions to
[0, 7] of functions in H(R) and if f*, g° are restrictions to [0, 7] of f,g € H(R)
respectively, then

¢)) 5 gt)H(R') = (E*[fl R,t= ‘c],E*[g IR,,t = T])H(R)

where E* stands for projection. We shall frequently use this fact though we may not
explicitly refer to it when it is used. We shall now list two other conditions on R in
terms of the function y. These conditions can also be interpreted in terms of
conditional expectations by noting that

Y(s, t;1) = (RS, R)pyre
= (E*[Rs l Ru’ u é T]’ E*[Rt l Rw u é T])H(R)
= (E*[X(s) | X(u),u < ), EX[X () | X(u),u < 7))

where L,* is the closed linear manifold of the Hilbert space L,(Q, &, P) of square-
integrable functions on the basic sample space (Q, .o/, P) spanned by {X(¢), t = 0}.
The process being Gaussian, projections and conditional expectations are the same
and we have

(s, t;7) = Cov (E[X(s) | X(u),u < 7], E[X(?) | X(u), u < 7]).
ConDITION 2. There exists a constant K, not depending on (s, ¢) such that
[W(s,t;0)— (s, t;7)| £ Klo—1|.

ConpiItioN 3. For every positive-valued function w on [0, c0) which satisfies
& W(s)R(s, )*ds < oo, the integral, [§ [& w(s)w(EW(s, t; T)ds dt is a strictly
increasing function of .

REMARK. Since
(& & wls)w(tW (s, t,7) dsdt
= |E*[J& w(s)R,ds | Ry, u < ]| ry
= Var (E[[§ w(s)X(s) ds | X (u),u < 7)),

this integral is monotone non-decreasing in 7 even without the condition.
We now choose a function w on [0, o) satisfying (i) w(s) > 0 for all s,
(i) [& w(s)ds < oo, (iii) [ w(s)R(s, s)*ds < oo, and define

@ £(@) = [§ wRGs, 1) ds, £20.
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For instance, w(s) = e™* min (R(s, s)~%, 1) will do. The requirement (iii) on w tells
us that f'e H(R), since

18 & w(eW(DR(s, 1) dsdt < [ [& w(s)w(){R(s, s)R(Z, 0}t ds dt
= ([& w(s)R(s, 5)*ds)* < 0.

Consequently, for every 7 > 0, the restriction of f to [0, ] is in H(R"). We now
define

©) ¢ = | f[Ews = §5 J& W)W R, R ds dt
= [& & w(s)w(t)W (s, t;7)ds dt.

This function ¢ is going to play a central role in our subsequent development and
the purpose of Conditions 2 and 3 is to ensure that ¢ behaves in a desirable manner.
To this end, we now prove two lemmas.

LeMMA 1. ¢ is Lipschitz.

PROOF.

|$(0)—d(0)| < [§ [& W)W |W(s, t;0)— (s, t;7)| dsdt < K|o—1|(J& w(s)ds)*
by Condition 2. Because of requirement (ii) on w, the lemma is now seen to hold.

LEMMA 2. ¢ is strictly increasing.

Proor. The proof follows from Condition 3 and requirements (i) and (iii) on the
function w.

We shall use the function f defined by (2) to transform the X-process to a
Brownian motion in two steps. First we shall transform {X(¢), ¢ = 0} to a Gaussian
process { Y(¢), t = 0} with mean value function 0 and covariance kernel o(s, 1) =
¢(min (s, )) in which all sample paths are continuous. The ¥-process which is one
with independent though not necessarily stationary increments, will then be
transformed to a Brownian motion on [0, || ]|, —¢(0)). For a more restricted
class of Gaussian processes satisfying some additional conditions, a different
method will be given for transforming the Y-process to a Brownian motion on
[0, o0).

REMARK. Suppose {X(#), ¢ = 0} is a separable real Gaussian process and let P,*
denote the probability distribution of the process up to time t with mean value
function m and covariance kernel R. If m € H(R) then P,,* and P’ are equivalent
and an explicit formula for the probability density functional dP,,*/dP,® is known
(see Parzen (1959)). It is easy to verify that both under P, and under P, {log dP,,}/
dP,', t 2 0} is a Gaussian process with independent increments, which leads us to
the process defined by (4) below.

3. Construction of a Gaussian process with independent increments. We define

“ Y (1) = Ly, Yy 1o FR1 (5, DX (D), 20,
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The main results of this section are given in the following theorem and its
corollary.

THEOREM 1. Let {X(t), t = 0} be a real Gaussian process with mean value function
0 and covariance kernel R satisfying Conditions 1-3. Then

(a) The process {Y(t), t = 0} given by (4) is a Gaussian process with mean value
function 0 and covariance kernel p(s, t) = ¢(min (s, 1)); it is continuous in probability
and almost all its sample functions are uniformly continuous on T ~ [0, ] for every .

(b) The modified process { Y(t), t = 0} obtained by continuous extension of sample
paths {Y(t, w), t € T} satisfies for every t, Y(t, w) = Y(t, w) a.s., and all its sample
paths are continuous.

CoRrOLLARY. {Y(t) = Y(t)— Y(0), t = 0} is @ Gaussian process with mean value
Jfunction 0 and covariance kernel p'(s, t) = ¢(min (s, t))—p(0). Hence, this is a
process with independent increments, starting at 0 with probability 1 and having
Var( Y(s)— Y(t)) = |p(s)— ¢(1)|. Furthermore, all its sample paths are continuous.

The proof of the theorem will be broken up into several lemmas.

LeMMA 3. Y(7) exists both as a limit in mean square and with probability 1.
ProoF. See Parzen (1959), Theorem 9B.
LemMMA 4. {Y(¢), t = O} is a Gaussian process with mean value function 0.

Proor. Follows from the linearity of the transformation given in (4).
We shall now obtain the covariance kernel of { ¥(¢), ¢ = 0}. The following lemma

can be easily verified.

LEMMA 5. Let A = ((a,,)) be a nonsingular n x n matrix with inverse A~ =
((@*)) and by, -+, b, any n real numbers. Then

YooY me1ag,a"b, = b, s=1,--,n.
LeMMA 6. For 0 £ ¢ £ 1, and for each n,
CoV (Lo e SORT(S DX (D, Ty e,ef OR; 15 DX (1)
= Sorera e/ ORTHsD ().
Proor.
CoV (Ysse 1o S (OReg (5 DX (1), Yo em, o/ (IR, £ (5, DX(D))

=Y sre e Luwe aef (IReg (5, ) WR, ¢ (u,V)R(2,v)

=Y ste e/ OReg (8,0 Yo e 1,e R VIR, 2 (u,0) ()

=Y sser, o/ (R g (s, Df (D),

where the last step follows from Lemma 5 because, since o < 7, T,,” = T," and since
teT,’ teT,".

LemMa 7.  p(o, ©) = Cov (Y(0), Y(x)) = ¢(min (o, 1)) forall 6,7 = 0.
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PRrOOF. Let ¢ < 1. Then

Cov (Y(0), Y (7))
= Cov(lim, g Y se 1o S )Ry (5, )X (1), limy sy Vs e 1, S ()R, 2 (5, DX (D))
=i, , CoV (Lo e 1, S OR7A (S, DX (D), Y 1,5/ ()R A5, )X (1)
= 1My, Y sr e 1,0/ (IR, (5,1 (D)

by Lemma 6. To conclude the proof of the lemma we have only to note the well-
known fact (see Parzen (1959)) that

limn—boo Zs,te T,."f(s)Rn_,a'l(s’ t)f(t) = ||fU||12-I(R“) = ¢(G)
LeEMMA 8. The process {Y(t), t = 0} is continuous in probability.
ProOF. Follows from Lemma 7 and the continuity of ¢.

LEMMA 9. Almost all sample paths of the process {Y(t), t € T} are uniformly
continuous on T N [0, 1] for every t.

PrOOF. The proof of this lemma proceeds along the same line as that in Doob
(1953), Chapter VIII, Theorem 2.2.

PLlub. o jyn<ineerizien: | Y ((,0)= Y(jIN,w)| = N7%]
<N P[Lub. < imeer | Y (G 0)= Y(jIN, )| = N7#]
<23, PLY((j+D/N, )= Y((j—1/N,w) = N7*]
=233, Q) H((+DIN) - (- DIN)}*

x [w-usexp [ =& 2{¢((j+1D/N) = d((j—DIN)}]d¢
S QY2 NHo((+ DIN) = (- DIN)}*

x exp [ — 3N "Hp((j+D/N)—¢((j—1D/N)} ']
< C,N"*exp[—C,N*]

where the last step in which C, and C, are positive constants follows from Lemma 1.
Since

> N"*exp[— C,N*¥] < o0,
an application of the Borel-Cantelli lemma concludes the proof.

ProoOF OF THEOREM 1. Part (a) is merely a restatement of Lemmas 4, 7, 8 and 9.
To prove part (b) consider those  for which the sample paths of { Y(t w), t € T}are
uniformly continuous on 7 ~ [0, 7] for every 7 and for these w, let { Y, ), t = 0}
be the unique continuous function which coincides with ¥(¢, ) for all ¢ € 7. For all
other w, which account for at most a set of probability measure 0, let Y(z, w) be
the zero function. It is well known (see e.g. Breiman (1968, Theorem 12.16)) that
by virtue of Lemmas 8 and 9, for every ¢, Y(t, w) = Y(t, w) a.s. In this way, the
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process { ¥(¢, w), t = 0} in which all sample functions are continuous, is probabi-
listically indistinguishable from the process {Y(¢, w), ¢ = 0}. This concludes the
proof of Theorem 1.

The Corollary follows immediately from the Theorem and its proof is omitted.

4. Converting {Y (¢), t = 0} to the Brownian motion. In this section we shall
discuss two methods for transforming the process { ¥(¢), ¢ = 0} to the Brownian
motion.

The first method is a well-known device (see Doob (1953, page 420)) in which the
time-axis is transformed in such a way as to make the increments stationary. The
actual description of this method is given in the following theorem.

THEOREM 2. Let g(s) = ¢(s)—¢(0), s = 0. T iien g is a continuous 1—1 mapping
from [0, ) 10 [0, || f]|firy— P(O)), and Z,(1) = Y(g~'(#)), 0 < t < ||f|firy— $(0) is
a Brownian motion of which all sample paths are continuous.

ProoF. That g is a continuous 1 —1 mapping follows from Lemma 2. The rest
follows immediately from the corollary to Theorem 1.

Our second method is more direct giving rise to a Brownian motion on [0, o).
However, this method is applicable to a more restrictive class of Gaussian processes
whose covariance kernel satisfies the following condition.

ConDITION 4. (a) For every © = 0 and for min (s, ¢) > 7,

%) Y'(s,t57) =limyoo {Y(s, t;7+6) (s, t57)}/6
and

6 Y'(s,t37) = limyo {Y/'(s, 157 +6) = Y'(s, 1, 0)}/0
exist.

(b) For each 7, and for w satisfying requirements (i) and (iii),
[efew(w'(s,t;7)dsdt > 0.
(c) The convergence in (6) is uniform in (s, ¢), the limiting function is a bounded
function of (s, ), and for each (s, t), Y"(s, ¢; 7) is continuous in 7.
The functions y'(-, -, ) and ¥"(-, -, 7) on (r, 00) x (7, w) extend in a natural
manner to [0, ©0) x [0, o). This is because, for min (s, #) < 7 and for sufficiently
small J,

Y(s,t;T+6) = Y(s,t;7)
by virtue of (1), and
limg_, o {Y(s, ;T +8)— (s, t;7)}/0 = 0.

However, for min (s, f) = 7, the above limit will not in general exist, but if we define
V'(s, t; 1) = 0 for min (s, #) < 7, then

Y'(s, t57) = limyoo {Y(s, t;T4+8) = (s, t;7)}/6
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holds except on a set of two-dimensional Lebesgue measure 0. Similarly, if we
extend Y'(s, ¢; 7) = 0 for min (s, ¢) < 7, then

Vs, t30) =limso {Y'(s, 151+ 0)—¥'(s,1;0)}/0

holds except on a set of two-dimensional Lebesgue measure 0. Furthermore, the
convergence in the last expression is obviously still uniform in those (s, ¢) for which

it holds.

LeMMA 10. ¢ is twice differentiable; its first derivative ¢’ is everywhere positive
and its second derivative ¢” is continuous.

PRrROOF.

{B(r+8)— Y6 = [§ |5 wsw(D)5™ {Y(s, 137 +8) —Y(s,1,)} dsd.

Here the integrand is dominated by w(s)w(¢) K by Condition 2 and it tends to
wESw(EW ' (s,t;7) as 6 — 0. It now follows from the Lebesgue dominated convergence
theorem that the first derivative ¢’ of ¢ exists and indeed

¢'(0) = [§ [& w(s)w(t)'(s, t; ) ds dt.

That ¢’ is positive now follows from Condition 4(b) and from requirements (i) and
(iii) that w satisfies. We now turn to the differentiability of ¢’, but this again follows
in the same way in view of Condition 4(a). The continuity of ¢" also follows

routinely from Condition 4.
The following theorem now gives a method for transforming the Gaussian

process { Y(¢), t = 0} to the Brownian motion on [0, o). This construction, by its
very definition, depends on Condition 4 for its applicability.

THEOREM 3. Let
Z,(t,0) = [6 50" (){d'(9)} "HV (s, 0) ds+{d' (D} *Y (1, ), t=0.
Then{Z,(t), t = 0} is a Brownian motion of which all sample functions are continuous.

REMARK. The integral in the definition of Z,(¢, w) exists as a Riemann integral
for every w because all functions appearing in the context are continuous. The
choice of Z,(t, w) is elucidated by formally integrating by parts as if Y(-, w) were
differentiable. Then

Zy(t,0) = [6{¢'(5)} Y '(s)ds.

PrOOF. We have only to verify that the covariance kernel of {Z,(¢), t = 0} is of

the desired form.
Now since { Y(¢), ¢ = 0} is a process with independent increments, it is easily seen

that {Z,(¢), t = 0} also has independent increments. It is, therefore, enough to
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verify that Var [Z,(t)] = 7 for all T > 0. Now

Var(2:0] = | |\ iy #min (s, )0} dsa

s [ (" O{O(0)— 4’(0)} $(1)—¢(0)
+(¢'(7)) TJ‘O {¢ (t)}% dt+ b @

Integrating by parts, the last expression can be shown to be equal to 7. This
concludes the proof.

5. The boundary crossing behaviors of the X-process and the Y-process. Let b be
a function in H(R). If we replace X by b in (4), we get (1) = (f, b)u(r-)- We now
ask the question: If a sample path X(¢, w) < b(¢) for all 0 £ ¢ < 7, will its trans-
form Y’(t, ) < B(¢) for all 0 < ¢t < 77 In this section we shall prove that the
answer to this question is in the affirmative with probability 1, provided that the
covariance kernel of the process satisfies the following condition.

ConpITION 5. For any positive integer n and any distinct #;, -++, £,, § = 0, the set
of linear equations

Z’i'= 1 Ci(s I tl’ Ty tn)R(tb t}) = R(S, tj)’ = la R
have solutions ¢(s | ¢;, -+, £,) 2 0.

ReMark. Condition 5 can be equivalently expressed as,

E[X(s) I X(ty), -, X(t,)] = Z?=1 s | ty, s t)X(t)

with nonnegative coefficients c;(s | t1, -+ t,). In this latter form, this condition may
seem to be a reasonable one for many physical processes, at least over a short range.

LEMMA 11. Let A be a symmetric nonsingular n x n matrix with inverse A~! =
(a™). If f = Aw where w = (wy, =, w,) withw,Z0u=1,--,n, then x, 2 0
forv =1, ---, n implies

Yn=120=1£u0"%, Z 0.
ProoF. The proof follows from the identity
z:= 1 ZZ: lfuawxu = Z:= 1 Wuxu
which is a consequence of Lemma 5.

LemMA 12. If {X(¢), t = 0} be a real separable Gaussian process with mean value
Sfunction 0 and covariance kernel R satisfying conditions 1-3 and 5, {Y(t), t = 0} is
a process defined by (4) and if b € H(R), then

%) Plo| X(t,0) £ b(1),0 < t <7, Y(r,0) > f©)] = 0
where B(t) = (f, D)y~
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ProOF. By virtue of Condition 5, the restriction of f'to T, is a linear combination
of the restriction to 7, of {R,, s € T’} with all coefficients nonnegative. Now let

Y (1, 0) = Y i1, SR, (5, )X (1, ),
Bu(®) = Ysse 1S (R 1 (s, )b(D).
Then
Bo() = Yu(7, @) = Y s 1, f ()R, 1 (5, D{D(D) — X (1, )},
and due to the nature of f'as observed above, Lemma 11 becomes applicable here,
giving
{0]X(t,0) £ b(N,0£ 1S 7, Y,(1,0) > f,(0)} = &

for each n. To conclude the proof we have only to recall that lim,_ ., Y,(t, w) =
Y(z, w) with probability 1 and lim,_, , S,(t) = B(z).
We now state and prove the main result of this section.

THEOREM 4. Under the conditions of Lemma 12,
Plo|X(t,0) < b(1),0 < t < 7,(¥t,0) > B(), some 0=<t<7]=0.

PRrOOF. The proof follows from the fact that all sample pathé of the ¥-process
are continuous and by substituting rationals in [0, 7] for 7 in (7).

COROLLARY. Under the conditions of Lemma 12, the following holds for the
Brownian motion {Z,(1),0 £ t £ || f ||y~ $(0)}. For every0 < © < || f]|7:r)— ¢(0),

Pl ' X(t,0) £ b(t),0<t £1,Z,(t) > plg~ () - Y(0), some 0=<t<1]=0.

REMARK. The behavior of {Z,(t), 0 < ¢ < || f||7x —¢(0)} given in the above
corollary is not in general shared by {Z,(t),0 < t < o0}.

Theorem 4 and its corollary have interesting implications in boundary-crossing
problems in Gaussian processes which have engaged a considerable amount of
attention during the last decade. The references to some of the basic work in this
field can be found in Cramér and Leadbetter (1967). Here, we merely note that by
using Theorem 4 or its corollary we can obtain bounds for probabilities of a large
class of boundary-crossing events in Gaussian processes in terms of the probabilities
of boundary-crossing events in Gaussian processes with independent increments or
in the Brownian motion.

REFERENCES

ARONSZAJIN, N. (1950). Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 337-404.

BREIMAN, LEO (1968). Probability. Addison-Wesley. Reading.

CrAMER, HARALD and LEADBETTER, M. R. (1967). Stationary and Related Stochastic Processes.
Wiley, New York.

Doos, J. L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist.
20 393-403.



TRANSFORMATIONS OF GAUSSIAN PROCESSES 2017

Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

PARZEN, EMANUEL (1959). Statistical analysis on time series by Hilbert space methods, I. Technical
Report No. 23, Stanford University. Reprinted in Parzen, Time Series Analysis
Papers, Holden-Day, San Francisco, 1967.



