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A NOTE ON DISTRIBUTION-FREE STATISTICAL INFERENCE
WITH UPPER AND LOWER PROBABILITIES'

By R. J. BERAN
University of California, Berkeley

Upper and lower probabilities needed for distribution-free inference
about the parameters are found for a class of statistical models. The results
improve upon those of a previous paper in that continuity of the under-
lying distribution function is not assumed.

1. Introduction. An experiment is performed, resulting in observations x =
(x4, x5, -++, xy). These observations are generated from parameters 6 and realized
random variables e = (ey, e,, *--, ey) by the mapping

(1.1) x =T, 'e.

Here {T,: 0 € Q} is a known family of nonsingular transformations mapping R"
into RY, Q is the parameter space, and the components of e are realized values of N
independent identically distributed random variables with common distribution
function F on the real line. The 0, the F, and the realized e producing the observed
x are all unknown.

In a previous paper (1971), the author treated the problem of inference about 8
within the general framework of Dempster’s (1966) upper and lower probabilities
and risks. The analysis was performed under two alternative sets of assumptions
on F: first that F is continuous, and secondly that F is both continuous and
symmetric about the origin.

The aim of this note is to carry out a similar analysis for 6 without, however,
assuming continuity of F. While the results are more complicated than those of
Beran (1971), removing the continuity assumption makes the model more realistic
and permits theoretical treatment of ties among the observations.

2. No assumptions on F. It is supposed only that F € &, the family of all distri-
bution functions on the realline. Let F~!(z) = inf {t: F(t) = z},let UY = {ue R":
0 < u; £ 1}, and let F~! be the function that maps u e U" into (F~(u,), F~'(u,),
-++, F~!(uy)). Equation (1.1) may be rewritten as

2.1 x =T, {F~'(u)},

where u is a realization of a random variable distributed uniformly over U".
Performing the experiment described in the Introduction is viewed as the realization
of aue UV, the selection in some unspecified fashion of a 6 € Q and a Fe &#, and
the observation of a x related to u, 8, F through (2.1).
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Let

(22) S,(u) ={(0,F)eQxF:x =T, {F '(u)}},
let |

(2.3) U, ={ueU":S(u) # &},

and for any Lebesgue measurable subset B = U,, let

(2.4) P(B|U,) = P(B)/P(U,),

where P is the uniform probability measure on U™, It is shown later in (2.13) that
P(U,) exists and is nonzero. The upper and lower probabilities ofaset D < Q X #
are defined as

(2.5) P*D) = P(u:S,(w)nD #ZF|U,) "
P (D) = P(u:S,(u) = D, S,(u) # & | U,)

respectively, whenever the arguments on the right are Lebesgue measurable.

Suppose Z is a space of decisions and I: Q x # x 9 — R* is a loss function. The
upper and lower risks incurred by a decision d € 2 under the loss function / are
defined as '

(2.6) R¥(L,d) = [¢ P*((0, F,d) > z) dz
Ry (L, d) = [¢ P (0, F,d) > z)dz

respectively, provided the integrals exist.

A frequency-based statistical rationale for considering these upper and lower
probabilities and risks has been described in Beran (1970) and (1971). In the
context of this rationale, there is a natural optimality property to be desired of a
decision d: a decision d € 9 is said to be minimax under loss function /if R*(, d) <
R*(l, d') for every d’ € 9. Thus, to make a minimax decision concerning ¢ alone,
under a loss function which does not depend on F, it is enough to know P*(D),
P (D) for all sets of the form D = 4 x %, where 4 < Q.

For such sets D, the expressions (2.5) for P*(D) and P (D) may be simplified. Let

(2.7) W.(u) = projo (S.(w))
={0eQ:x =T, '{F '(u)} foratleastone FeZ}.

Evidently

238) . = {ue UY: W,@) # &)
and

(2.9) P*AXF) =Pu: W wnAd+Z|U)

P (AXF)=Pu:W(u)c 4, W,(u) #J | U,).
The following definitions and notations are helpful in simplifying (2.9).
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DEFINITION 2.1. If'z = (24, 25, ***, zy) € RY, rank(z,) is defined to be the number
of components of z that are not larger than z;. The notation rank(z) denotes the vector
(rank(z,), ---, rank(zy)).

A rank vector is said to be proper if no two of its components are equal.

DEFINITION 2.2 A rank vector v’ = (r,’, ¥5", -+, ¥y') is said to be associated with a
proper rank vector v = (ry, rp, -+, ) if ¥, 2 r;for 1 < i < N. (Notation:r’' ~ r.)
Thus, for example, the rank vectors (1, 2, 3), (2, 2, 3), (1, 3, 3), (3, 3, 3) are each
associated with the proper rank vector (1, 2, 3). However, (2, 3, 3) is not associated
with (1, 2, 3) because (2, 3, 3) is not a rank vector.

For any rank vector r € RY, define Q(r) as

(2.10) Qr) = {#eQ:rank (Tyx) =r}.
For any proper rank vector r € RY, define w(r) as ‘
(2.11) o) =y~ Q).
Then, if rank(u) is a proper rank vector,

(2.12) W.(u) = w(rank (u)).

Indeed, if 6 € W, (u), there exists a F € & such that T,x = F~(u); hence, since
F~! is monotone increasing and rank(u) is assumed to be proper, rank(7,x) ~
rank(u). Since, trivially, 6 € Q(rank(7,x)), it follows from (2.11) that 0 € w(rank(u)).
Conversely, if 0 € w(rank(u)), there exists a rank vector r ~ rank(u) such that
0 e Q(r). Consequently, there exists a Fe # for which T,x = F~!(u); hence
0 € W (u).

Let ry, I, -+, Iy denote all proper rank vectors in R" such that w(r;) # &. For
1 <1 M,setw; = or). The family of sets {w;: 1 < i < M}is acovering of Q.
From (2.8) and (2.12) follows

(2.13) P(U,) = P(u:rank(u)e( M {r,})
= M/N!.
Forl1 £i < Mand A < Q, define
6%, A) =1 if Anw;#J
(2.14) =0 otherwise
04(i,4) =1 if w,cd
=0 otherwise.
From (2.12)
(2.15) P(u: We(u) n A # &) = P(u:rank (u) € J;.506,4)20 {1:})
= (Y11 0%(i, A)/N!
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and

(2.16) P(u: W,(u) = 4, Wy(u) # &) = P(u:rank (0) € J15,:,4y%0 {T:})
= (TX1 5,0, A))/N!

The last two expressions, together with (2.13) and (2.9), establish

PROPOSITION 2.1. Let A be an arbitrary subset of Q.. Then under model (2.1),
P¥AxF)=M"1YM 6%, A)
P*(Ax'ﬂ-)=M—l ﬁl‘s*(iaA)-

Let #, and & denote, respectively, the class of all step distribution functions
and the class of all continuous distribution functions on the real line. If in formu-
lating the model associated with (2.1) the assumption F € F isreplaced by Fe &,
then Proposition 2.1 still holds, provided A x & replaces 4 x%. On the other
hand, if the assumption Fe & is replaced by Fe &, Proposition 2.1 must be
replaced by the corresponding result in Beran (1971). There are notable differences
in application between Proposition 2.1 and its analogue in Beran (1971). (Compare
the example in Section 4 with that in Section 3.1 of Beran (1971).)

3. Symmetry assumption on F. It is supposed now that F is symmetric about the
origin. Let F, denote the distribution function of the random variable |e,|, let
F, ™! denote its inverse, let V¥ = {ve R¥: —1 < v, < 1}, and let G™' be the
function that maps ve VN into (sign (v,)Fy ~'(|v,]), sign ()F.~'(jv2]) -+
sign(vy)F ~'(Joy]))- Here sign (z) is — 1, 0, or 1 according to whether z is negative,
zero, or positive. Since F is symmetric, (1.1) may be rewritten as

G.D x =T, {G™'M}

where v is a realization of a random variable distributed uniformly over V" and
where F, € & ., the family of all distribution functions with carrier set [0, o0].

An analogue of Proposition 2.1 can be stated for the model just described.
Details of the derivation are omitted. The following definitions and notations are
needed.

If ze RV, let |z| = (|z4], |z,|, -+ |2]) and sign(z) = (sign(zy), sign(z,), -
sign(zy))- A sign vector is said to be proper if none of its components equal zero.
The phrase rank and sign vector pair refers to any of the possible pairs (rank(|z|),
sign(z)), where z € R".

DEFINITION 3.1. A rank and sign vector pair (x', ") is said to be associated with a
proper rank and proper sign vector pair (t,8) if r,/’ Z rifor1 = i = N and if s;' = s;
whenever s;' # 0.

(Notation: (x',s’) ~ (1,8).)
For any rank and sign vector pair (r, s) € R” x R, define Q ,(r, s) as

3.2 Q. (r,s) = {0 €Q: rank(|T,x|) = r, sign(Tpx) = s}.
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For any proper rank and proper sign vector pair (r, s) € RY x R", define o ,(r, s) as

(3.3) w.(r,8) = U(r’ )~ (rs) Q4 (T, 8).
Let (ry, 1), (f3, S5), -5 (Twr,, Syr,) denote all proper rank and proper sign vector
pairs in RY x R such that w,(r;, s) # . Forl £i< My, setw,t = w,(r;,s).

Define 6*(i, 4), and 8,(i, A), as in (2.14), replacing the {w;: 1 < i < M} by the
{w, 1 2i< M)

PROPOSITION 3.1. Let A be an arbitrary subset of Q. Then under model (3.1),
P¥AXF )=M, 'Y M4 6%, A)
P(AXF ) =M, 'Y 6,(,A4).

The remarks following Proposition 2.1 apply with obvious modifications.

4. Example: the two-sample location shift model. In this model, x = (xy, -, X,
Yis 00 yn)’ N =m+n, 0= u FeZ, and TuX = (Xg5 s Xy Vi — M5 77 yn_#)'

Let a1 < a2 < .-+ < a;, where L < mn, denote the distinct values among
{d;; = »1 <i<m1 £j< n}. Asimple geometric argument shows that for
this locatlon shift model, the nonvoid sets Q(r) are, in fact, the 2L+1 sets
( @, al)’ (al’ aZ)a ] (aL, OO), {al} {aZ} {aL}

The corresponding family of sets {w;: 1 é i < M} may be described as follows.
Let

n,; = number of x’sofrank j in x, (1=/j= m)

4.1 n,; = number of »’s ofrank j in y, (1 =j=n)

= number of components of rank j in T,X,
(1=isL1=j=N).
Furthermore, let

(4.2) C=[[I}- "xj!][nz=1 My!]
Ci=1_[9]=1nij! (1ZigL).

Then the sets {w;: 1 £ i < M} for this model consist of (—o0, a,], [a;, @], -+,
[a;, o) each repeated C times and of {a;} repeated C;—2C times for each
i,1 <i < L. Consequently, M = Y ~; C;—(L-1)C.

Evidently, C,/C is an integer for each i, 1 < i < L. Therefore, in computing
upper and lower probabilities from Proposition 2.1, it is possible and convenient to
use, instead of the family {w;: 1 £i < M}, just the subfamily consisting of
( ©, al, [a1, @3], -+, [ar, ) and of {a;} repeated D; = C;/C—2 times for each

i,1 £ i < L. Correspondingly, M is replaced by K = Z . D;+L+1.

As an example of how the upper and lower probabilities so found can be applied
to inference, suppose it is desired to estimate u under the loss function

4.3) (u,d) = |u—d| if |u—d| b
=b if |u—d|>b,



1948 R. J. BERAN

where b > a;—a;. Let b; = (a;+a;,)/2 for 1 £i < L—1 and let by = a,—b,
by = a,+b. For the loss function (4.3) the upper risk incurredin estimating u by dis

(4.4) R*(1,d) = K™ [Yi]a;—d|+¥j=1 Djla;—d]| +20],
provided d e (b;_,, b;) for some i, 1 < i < L. Otherwise
4.5) R*(l,d)> R*(l,b,) if d<b,

R*(l,d) > R*(I, by) if d>b;.

It is easily verified that the values of d which minimize R*(l, d) are precisely the
medians of a set B, which consists of by, b,, ---, b, _, together with a; repeated D;
times foreach i, 1 < i < L. In other words, any median of B is a minimax estimate
of p under the loss function (4.3). If the observations in each sample are all distinct
and if the differences {d;;: 1 < i < m, 1 < j < n} are also all distinct, then D; = 0
for 1 < i =< L. In this special case, B = {b,, b,, -+, b;_,} and therefore median
{d;}, the well-known Hodges-Lehmann estimate for x4 is minimax.
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