ON THE EXISTENCE OF THE OPTIMAL STOPPING RULE IN THE S_n/n PROBLEM WHEN THE SECOND MOMENT IS INFINITE¹

By M. E. THOMPSON, A. K. BASU AND W. L. OWEN

University of Waterloo, Laurentian University, and Rutgers University

Let X_1, X_2, \cdots be i.i.d. random variables with mean 0, and let $S_n = \sum_{i=1}^n X_i$. The $S_n | n$ optimal stopping problem is to maximize $E(S_\tau / \tau)$ among finite-valued stopping times τ relative to the process $(S_n, n \ge 1)$. In this paper we prove partially Dvoretzky's (1967) conjecture that an optimal stopping time should exist when $E|X_1|^{\beta} < \infty$ for some $\beta > 1$, by showing that the result holds if $\limsup_{n\to\infty} P(S_n \ge c ||S_n||) > 0$ for some c > 0, where $||S_n|| = (E|S_n|^{\beta})^{1/\beta}$. This condition is shown to hold in some special cases, including the case where the X_i are in the domain of attraction of a stable distribution with exponent greater than one.

1. Introduction. Let X_1, X_2, \cdots be independent and identically distributed random variables with mean 0, and let $S_n = \sum_{i=1}^n X_i$. If \mathcal{M} is the collection of finite valued stopping times τ relative to the process $(S_n, n \ge 1)$ for which $E(S_{\tau}/\tau)$ is defined (possibly infinite), then the S_n/n optimal stopping problem is to find if possible $\sigma \in \mathcal{M}$ such that

(1.1)
$$E(S_{\sigma}/\sigma) = \sup \left[E(S_{\tau}/\tau) : \tau \in \mathcal{M} \right].$$

Burgess Davis (1971) has shown that if $E(X_1 \log^+ X_1) = \infty$ (where $\log^+ a = \log a$ if $a \ge 1$, and 0 if a < 1), then there is a $\sigma \in \mathcal{M}$ for which $E(S_{\sigma}/\sigma) = \infty$. This σ is clearly optimal in the sense of (1.1). On the other hand, it is also well known (see Davis (1971)) that if $E(X_1 \log^+ X_1) < \infty$, then $E(\sup_{n\ge 1} (S_n^+/n)) < \infty$. Therefore, if $E(X_1 \log^+ X_1) < \infty$, \mathcal{M} is the class of all finite stopping times relative to $(S_n, n \ge 1)$; and general optimal stopping theory tells us a good deal more.

The process $X = ((S_n, n), n \ge 1)$ may be regarded as a Markov process with state space $R \times [0, \infty)$, stationary transition probabilities, and initial distribution that of X_1 on the line $\{(x, 1): x \in R\}$. (Here R denotes the real numbers.) Suppose that $E(\sup_n (S_n^+/n)) < \infty$, and for each $(x, s) \in R \times (0, \infty)$ let

(1.2)
$$h(x,s) = (x/s)^+ \vee \sup \left[E((x+S_\tau)/(s+\tau))^+ : \tau \in \mathcal{M} \right].$$

Let $D = \{(x, s) \in R \times (0, \infty) : h(x, s) = x^+/s\}$. It can be proved as in Theorem 8 of Chow and Robbins (1967) that $(h(x+S_n, s+n), n \ge 1)$ is the minimal supermartin-

Received October 20, 1969; revised May 14, 1971.

¹ The results in this paper were obtained independently in the doctoral dissertations of the three authors. Dr. Basu's proof was slightly different from the one given here.

gale above $((x+S_n)^+/(s+n), n \ge 1)$ for each $(x, s) \in R \times [0, \infty)$. If $\tau \in \mathcal{M}$ and $\bar{\tau} = \inf [n \ge \tau : S_n > -x]$, then $\bar{\tau} \in \mathcal{M}$ (Feller (1966), page 380) and

(1.3)
$$E\left(\frac{x+S_{\bar{\tau}}}{s+\bar{\tau}}\right) \leq E\left(\frac{x+S_{\bar{\tau}}}{s+\bar{\tau}}\right) = E\left(\left(\frac{x+S_{\bar{\tau}}}{s+\bar{\tau}}\right)^{+}\right).$$

Hence $D \subset (0, \infty) \times (0, \infty)$, and it follows by the Corollary to Theorem 6 of Chow and Robbins (1967) that if for $(x, s) \in R \times [0, \infty)$ the stopping time $\tau(x, s) = \inf [n \ge 1 : (x + S_n, s + n) \in D]$ is finite, it maximizes $E(x + S_n, s + n)$ among $\tau \in \mathcal{M}$.

Dvoretzky's proof ((1967), Section 3) of the following theorem, describing the set D, is valid, as it does not use the general assumption of his paper that $EX_1^2 < \infty$.

THEOREM 1.1. Let $EX_1 \log^+ X_1$ be finite. Then there is a strictly increasing positive function f(s) on $[0, \infty)$ such that for $(x, s) \in R \times [0, \infty)$

$$\frac{x}{s} < \sup \left[E\left(\frac{x+S_{\tau}}{s+\tau}\right) : \tau \in \mathcal{M} \right] \quad \text{if} \quad x < f(s),$$

$$\frac{x}{s} = \sup \left[E\left(\frac{x+S_{\tau}}{s+\tau}\right) : \tau \in \mathcal{M} \right] \quad \text{if} \quad x = f(s),$$

$$\frac{x}{s} > \sup \left[E\left(\frac{x+S_{\tau}}{s+\tau}\right) : \tau \in \mathcal{M} \right] \quad \text{if} \quad x > f(s).$$

Dvoretzky (1967) and Teicher and Wolfowitz (1966) showed that if $E{X_1}^2 < \infty$, then $\tau(0,0)$ is finite, and therefore optimal. Dvoretzky conjectured that the same result ought to hold when $E|X_1|^{\beta} < \infty$ for some $\beta > 1$. In this paper we prove a partial result in this direction; we establish the existence of an optimal stopping rule when the truncated variance

(1.5)
$$U(x) = \int_{(-x)^{-}}^{x} y^{2} dP(X_{1} \le y)$$

is of "dominated variation" as $x \to \infty$, in a sense defined precisely in Section 3 below. A particular case is the situation when X_1 belongs to the domain of attraction of some stable random variable with exponent greater than one.

2. An upper bound on f. Let $\overline{\mathcal{M}}$ denote the class of all (possibly infinite) stopping times relative to $(S_n, n \ge 1)$. If $\tau \in \overline{\mathcal{M}}$, we shall set

(2.1)
$$\frac{x+S_{\tau}}{s+\tau} = \lim_{n\to\infty} \frac{x+S_n}{s+n} = 0$$

on the set $\{\tau = \infty\}$ for any $(x, s) \in R \times [0, \infty)$. The theorem we shall prove in this section is the following:

THEOREM 2.1. If there is a $\beta > 1$ such that $E|X_1|^{\beta} < \infty$, then there is a finite constant K_0 such that for every $s \ge 1$ and $x \ge K_0 ||S_{[s]}||$, where $||S_{[s]}|| = (E|S_{[s]}|^{\beta})^{1/\beta}$, we have

(2.2)
$$\frac{x}{s} \ge \sup \left[E\left(\frac{x+S_{\tau}}{s+\tau}\right) : \tau \in \overline{\mathcal{M}} \right].$$

The proof will be broken down into a sequence of lemmas, in which it will always be assumed that $E|X_1|^{\beta} < \infty$ for some $\beta > 1$. The first one is an analogue of Lemma 2 of Dvoretzky (1967).

Lemma 2.1. If $s \ge 1$ then

(2.3)
$$\sup \left[E\left(\frac{S_{\tau}}{\tau + s}\right) : \tau \in \overline{\mathcal{M}} \right] < \frac{2\beta' \|S_{[s]}\|}{\lceil s \rceil}$$

where $\beta' = (1 - 1/\beta)^{-1}$.

Proof. We have

$$(2.4) E\left[\sup_{n\geq 1}\left|\frac{S_n}{n+s}\right|^{\beta}\right] \leq E\left[\sup_{[s]\geq n\geq 1}\left|\frac{S_n}{n+s}\right|^{\beta}\right] + E\left[\sup_{n>[s]}\left|\frac{S_n}{n+s}\right|^{\beta}\right] \\ \leq E\left[\sup_{[s]\geq n\geq 1}\left|\frac{S_n}{n+s}\right|^{\beta}\right] + E\left[\sup_{n>[s]}\left|\frac{S_n}{n}\right|^{\beta}\right].$$

But the processes $(|S_1|^{\beta}, |S_2|^{\beta}, \cdots)$ and $(\cdots, |S_3/3|^{\beta}, |S_2/2|^{\beta}, |S_1|^{\beta})$ are both submartingales. Therefore (see Doob (1953), page 317),

(2.5)
$$E \left[\sup_{n \ge 1} \left| \frac{S_n}{n+s} \right|^{\beta} \right] \le 2(\beta')^{\beta} E \left[\left| \frac{S_{[s]}}{\lceil s \rceil} \right|^{\beta} \right].$$

From Jensen's inequality

(2.6)
$$E \left[\sup_{n \ge 1} \left| \frac{S_n}{n+s} \right| \right] \le 2\beta' \frac{\left\| S_{[s]} \right\|}{[s]},$$

and the lemma follows.

LEMMA 2.2. Let $s' \ge s > 0$, $x' \le x$ and $\tau \in \overline{\mathcal{M}}$ satisfy

(2.7)
$$E\left(\frac{x+S_{\tau}}{s+\tau}\right) \ge \frac{x}{s}.$$

Then for $m=0, 1, 2, \cdots$ there is a stopping time $\tau(m) \in \overline{\mathcal{M}}$ satisfying

$$(2.8) S_{\tau(m)} > x - x' \text{ a.s. on } \{\tau(m) \leq m\},$$

and

(2.9)
$$E\left(\frac{x'+S_{\tau(m)}}{s'+\tau(m)}\right) \ge \frac{x'}{s'}.$$

PROOF. This is Lemma 6 of Dvoretzky (1967).

LEMMA 2.3. Let (2.7) hold for some x > 0, s > 0, $\tau \in \overline{\mathcal{M}}$. Then there is a $\tau^* \in \overline{\mathcal{M}}$ satisfying

(2.10)
$$E\left(\frac{x/2 + S_{\tau^*}}{s + \tau^*}\right) \ge \frac{x}{2s}$$

and

(2.11)
$$E\left(\frac{1}{s+\tau^*}\right) \leq \frac{1}{2s} + \frac{\|S_{[s]}\|}{sx}.$$

PROOF. Let τ^* be $\tau([s])$ from Lemma 2.2, with s'=s and x'=x/2. Then (2.10) holds, and max $(S_1, S_2, \dots, S_{[s]}) > x/2$ a.s. on $\{\tau^* \leq s\}$. Thus $P(\tau^* \leq s) \leq 2E|S_{[s]}|/x$, and hence by Jensen's inequality, $P(\tau^* \leq s) \leq 2|S_{[s]}|/x$. But

(2.12)
$$E\left(\frac{1}{s+\tau^*}\right) \le \frac{P(\tau^* \le s)}{s+1} + \frac{P(\tau^* > s)}{s+\lceil s \rceil + 1}$$
$$\le \frac{P(\tau^* \le s)}{s} + \frac{P(\tau^* > s)}{2s}$$
$$= \frac{1}{2s} + \frac{P(\tau^* \le s)}{2s},$$

and the result follows.

To prove Theorem 2.1 we observe that if (2.7) holds for some $\tau \in \overline{\mathcal{M}}$, then by Lemmas 2.3 and 2.1,

(2.13)
$$\frac{x}{2s} \leq E\left(\frac{x/2 + S_{\tau^*}}{s + \tau^*}\right) = \frac{x}{2}E\left(\frac{1}{s + \tau^*}\right) + E\left(\frac{S_{\tau^*}}{s + \tau^*}\right)$$
$$\leq \frac{x}{4s} + \frac{\|S_{[s]}\|}{2s} + \frac{2\beta'\|S_{[s]}\|}{[s]},$$

or

(2.14)
$$\frac{x}{4s} \le (2\beta' + \frac{1}{2}) \frac{\|S_{[s]}\|}{[s]} \le (4\beta' + 1) \frac{\|S_{[s]}\|}{s}.$$

Theorem 2.1 now follows with $K_0 = 16\beta' + 4$.

COROLLARY. If $E|X_1|^{\beta} < \infty$ for some $\beta > 1$, then $f(s) \leq K_0 ||S_{[s]}||$ for $s \geq 1$; and if in addition

(2.15)
$$\lim \sup_{n \to \infty} S_n / ||S_n|| > K_0 \text{ a.s.},$$

then an optimal stopping time exists for the S_n/n problem.

It is easy to show using the Hewitt-Savage Zero-One Law (see Feller (1966), page 122) that inequality (2.15) holds if $\limsup_{n\to\infty} P(S_n > K_0 ||S_n||) > 0$. Moreover, by using an inequality of Marcinkiewicz and Zygmund (1938) (see Theorem 5) we can strengthen this result as follows.

COROLLARY. If
$$E|X_1|^{\beta} < \infty$$
 for some $\beta > 1$, and if (2.16)
$$\limsup_{n \to \infty} P(S_n \ge c ||S_n||) > 0$$

for some c > 0, then an optimal stopping time exists for the S_n/n problem.

3. Dominated variation and the relative growth of S_n and $||S_n||$. Let F be the common distribution function of X_1, X_2, \cdots and define the function U on $[0, \infty)$ by

(3.1)
$$U(x) = \int_{(-x)^{-}}^{x} y^{2} dF(y).$$

DEFINITION. (Feller (1967), Section 8). The truncated variance U is of dominated variation if there exist constants v > 0, C and T > 0 such that

$$(3.2) U(tx)/U(t) < Cx^{2-\nu}$$

for all x > 1 and t > T.

The following lemma will relate the behavior of the other truncated moments of X_1 with that of U, when U is of dominated variation.

LEMMA 3.1. (Feller (1967), Section 8, Theorem 2). Let U be of dominated variation and let

$$(3.3) V_a(x) = \int_x^\infty y^{-q} dU(y).$$

If q > 2 - v, then for t > T

(3.4)
$$t^{q}V_{q}(t)/U(t) \leq L_{q} = -1 + \frac{Cq}{q-2+\nu}.$$

We observe that $V_2(x) = 1 - F(x) + F[(-x) -]$, and

$$V_1(x) = \int_{(-\infty, -x) \cup (x, \infty)} |y| dF(y).$$

A trivial consequence of (3.2) is that $\lim_{x\to\infty} x^{-2}U(x) = 0$. Therefore, there is a sequence (a_n) of positive numbers tending to infinity and a finite constant K_1 such that

$$(3.5) na_n^{-2}U(a_n) \le K_1$$

for all n. From (3.2) we then have

$$(3.6) na_n^{-2}U(a_nx) < K_1Cx^{2-\nu}$$

for x > 1 and n large. The relations

$$nV_2(a_{-}x) \le L_2K_1Cx^{-\nu}$$

and (for v > 1)

$$(3.8) nV_1(a_n x) \le L_1 K_1 C a_n x^{1-\nu},$$

again for x > 1 and n large, now follow from (3.4).

LEMMA 3.2. Let U be of dominated variation with v > 1, and let (a_n) be a sequence of numbers tending to infinity and satisfying (3.5). For n and x large, there is a constant C_0 independent of n and x such that

$$(3.9) P(|S_n| \ge xa_n) \le C_0 x^{-\nu}.$$

PROOF. Fix x > 1, and define the truncated variables

(3.10)
$$X_{kn} = X_k \quad \text{if} \quad -xa_n \le X_k \le xa_n,$$
$$= 0 \quad \text{otherwise.}$$

Let
$$\mu_n = EX_{kn}$$
 and $S_{mn} = \sum_{k=1}^m X_{kn}$. Then

$$(3.11) \quad P(|S_n| \ge xa_n) \le n[P(X_1 < -xa_n) + P(X_1 > xa_n)] + P(|S_{nn}| \ge xa_n).$$

Since $EX_{1} = 0$,

(3.12)
$$|n\mu_n| \le nV_1(xa_n) \le L_1 K_1 Ca_n x^{1-\nu} \le \frac{1}{2} a_n x^{1-\nu}$$

for x and n large. Therefore

(3.13)
$$P(|S_{nn}| > xa_n) \leq P(|S_{nn} - n\mu_n| > \frac{1}{2}xa_n)$$
$$\leq 4x^{-2}a_n^{-2}nU(a_nx)$$
$$\leq 4K_1Cx^{-\nu}$$

for x and n large. Moreover,

$$(3.14) n[P(X_1 < -a_n x) + P(X_1 > a_n x)] = nV_2(a_n x) \le L_2 K_1 C x^{-\nu}$$

for x and n large. The conclusion of the lemma is now immediate.

COROLLARY. Let U be of dominated variation with v > 1, and choose (a_n) to satisfy (3.5). Let F_n be the distribution of S_n/a_n . If $1 < \beta < v$, and some subsequence (F_n) of (F_n) converges to G, then

(3.15)
$$\lim_{n'\to\infty} \int_{-\infty}^{\infty} |y|^{\beta} dF_{n'}(y) = \int_{-\infty}^{\infty} |y|^{\beta} dG(y).$$

Feller (1967) proves that since U is of dominated variation, we can choose (a_n) so that the sequence $na_n^{-2}U(a_n)$ is bounded below by some constant $\rho > 0$, in which case the sequence (F_n) is stochastically compact in the following sense.

DEFINITION. If (G_n) is a sequence of distribution functions and every subsequence of (G_n) has a further subsequence converging to a nondegenerate distribution function, the sequence (G_n) is called *stochastically compact*.

In view of the criterion (2.16), the following theorem is immediate from these remarks and (3.15).

THEOREM 3.1. If U is of dominated variation with v > 1, then an optimal stopping time exists for the S_n/n problem.

4. Structure of the optimal stopping rule. It is an easy consequence of Theorem 2.1 and (3.15) that when U is of dominated variation with v > 1 and (a_n) is a sequence for which (F_n) is stochastically compact, the function f satisfies

$$(4.1) f(s) \le K' a_{[s]}$$

for some finite positive K'. We may also prove the following in direct analogy with the second part of Dvoretzky's (1967) Theorem 2.

LEMMA 4.1. Under the conditions stated above

$$(4.2) f(s) \ge ka_{[s]}$$

for some positive k and all s.

PROOF. Let c > 0 be given. For any integer r > 0, let $\tau(r) = \inf[n \ge r : S_n > -ca_r]$. The stopping time $\tau(r)$ is a.s. finite. Then

(4.3)
$$E\left(\frac{ca_r + S_{\tau(r)}}{r + \tau(r)}\right) \ge \frac{1}{2r} \int_{-ca_r}^{\infty} (ca_r + u) dP(S_r \le u)$$
$$= \frac{a_r}{2r} \int_{-c}^{\infty} (c + w) dP(S_r / a_r \le w).$$

If $(F_{n'})$ is a subsequence of (F_n) converging to G

(4.4)
$$\lim \inf_{n' \to \infty} \frac{n'}{ca_{n'}} E\left(\frac{ca_{n'} + S_{\tau(n')}}{n' + \tau(n')}\right) \ge \frac{1}{2c} \int_{-c}^{\infty} (c + w) dG(w).$$

Now $2c - \int_{-c}^{\infty} (c+w)dG(w)$ is negative for c=0, and continuous. Hence for some finite $c_0 > 0$, $2c_0 < \int_{-c_0}^{\infty} (c_0 + w)dG(w)$, and

(4.5)
$$\liminf_{n' \to \infty} \frac{n'}{c_0 a_{n'}} E\left(\frac{c_0 a_{n'} + S_{\tau(n')}}{n' + \tau(n')}\right) > 1.$$

Thus $c_0 a_{n'} < f(n')$ for all but finitely many n'. The lemma now follows by the stochastic compactness of the family (F_n) .

It is well known (see Feller (1966), page 305) that if X_1 belongs to the domain of attraction of a nondegenerate random variable Y, with norming constants (a_n) , then there exists a number $\alpha > 0$ such that $a_{rn}/a_n \to r^{1/\alpha}$ as $n \to \infty$, and Y is strictly stable with exponent α . If $\alpha > 1$, then X_1 satisfies the hypothesis of Theorem 3.1 with $1 < v < \alpha$ (see Feller (1966), page 303). Because $a_{rn}/a_n \to r^{1/\alpha}$ as $n \to \infty$, a_n is of the form $n^{1/\alpha}L(n)$ where L is a slowly varying function of its argument (Feller (1966), page 269), and equations (4.1) and (4.2) suggest that f may have the same asymptotic behavior. That this is true will be shown in a subsequent paper.

REFERENCES

Chow, Y. S. and Robbins, H. (1967). On values associated with a stochastic sequence. *Proc. Fifth Berkeley Symp. Math. Statist. Prob.* 1 427-440.

DAVIS, B. (1971). Stopping rules for S_n/n , and the class $L \log L$. To appear.

Doob, J. L. (1953). Stochastic Processes. Wiley, New York.

Dvoretzky, A. (1967). Existence and properties of certain optimal stopping rules. *Proc. Fifth Berkeley Symp. Math. Statist. Prob.* 1 441-452.

Feller, W. (1966). An Introduction to Probability Theory and its Applications 2. Wiley, New York. Feller, W. (1967). On regular variation and local limit theorems. Proc. Fifth Berkeley Symp. Math. Stat. Prob. 2 373–388.

MARCINKIEWICZ, J. and ZYGMUND, A. (1938). Quelques théorèmes sur les fonctions indépendantes. Studia Math. 7 104-120.

Teicher, H. and Wolfowitz, J. (1966). Existence of optimal stopping rules for linear and quadratic rewards. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 361-368.