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ON THE EXISTENCE OF THE OPTIMAL STOPPING RULE IN THE S,/n
PROBLEM WHEN THE SECOND MOMENT IS INFINITE!

By M. E. THOMPSON, A. K. BAsu AND W. L. OWEN
University of Waterloo, Laurentian University, and Rutgers University

Let X;, X,, --- be i.i.d. random variables with mean 0, and let S, =
X~ . X:. The S,/n optimal stopping problem is to maximize E(S:/t) among
finite-valued stopping times 7 relative to the process (S,, » = 1). In this
paper we prove partially Dvoretzky’s (1967) conjecture that an optimal
stopping time should exist when E|X;|* < oo for some § > 1, by showing
that the result holds if lim sups— . P(Sn = cllS.l) > 0 for some ¢ > 0,
where ||IS.|| = (E|S,|")!#. This condition is shown to hold in some special
cases, including the case where the X; are in the domain of attraction of a
stable distribution with exponent greater than one.

1. Introduction. Let X;, X,, --- be independent and identically distributed random
variables with mean 0, and let S, = Y7_; X;. If ./ is the collection of finite valued
stopping times 7 relative to the process (S,, n = 1) for which E(S,/7) is defined
(possibly infinite), then the S,/n optimal stopping problem is to find if possible
¢ € M such that

(.Y E(S,/0) = sup [E(S./t):teA].

Burgess Davis (1971) has shown that if E(X; log* X;) = oo (where log* a =
logaifa = 1,and 0if a < 1), then there is a ¢ € # for which E(S,/6) = oo. This
ois clearly optimal in the sense of (1.1). On the other hand, it is also well known
(see Davis (1971)) that if E(X; log* X;) < oo, then E(sup, (S,"/n)) < co. There-
fore, if E(X; log* X,) < oo, . is the class of all finite stopping times relative to
(S,, n = 1); and general optimal stopping theory tells us a good deal more.

The process X = ((S,, n), n = 1) may be regarded as a Markov process with
state space Rx [0, c0), stationary transition probabilities, and initial distribution
that of X, on the line {(x, 1):x € R}. (Here R denotes the real numbers.) Suppose
that E(sup, (S,*/n)) < oo, and for each (x, s) € Rx (0, 00) let

(1.2) h(x,s) = (x/s)" v sup[E((x+S)/(s+71)) *:teA].

Let D = {(x, s) € Rx (0, 0):h(x, s) = x*/s}. It can be proved as in Theorem 8 of
Chow and Robbins (1967) that (h(x + S, s+#r), n = 1) is the minimal supermartin-
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gale above ((x+S,)*/(s+n),n = 1) for each (x,s)e Rx[0, ). If Te€.# and
T =inf[n = 7:S, > —x], then T € A (Feller (1966), page 380) and

3 E X+S.\ _ L (x+S: x+S:\*
(1.3) s+t =E S+7T =E s+7T :

Hence D < (0, w0) % (0, o), and it follows by the Corollary to Theorem 6 of Chow
and Robbins (1967) that if for (x, s) € Rx[0, o) the stopping time t(x, s) =
inf[n 2 1:(x+S,, s+n) € D] is finite, it maximizes E(x+ S,/s+ 1) among 7 € /.
Dvoretzky’s proof ((1967), Section 3) of the following theorem, describing the
set D, is valid, as it does not use the general assumption of his paper that EX;% < 0.

THEOREM 1.1. Let EX, log* X, be finite. Then there is a strictly increasing positive
Sfunction f(s) on [0, 00) such that for (x, s) € Rx [0, o)

X T /x+8S, ] )
-s_<SUP_E(s+-c>:TE‘//J if x<f(s),
X [ [x+S, ]

(1.4) 5 =sup E<s+r ):‘ce/z’4 if x=f(s),
X [ [x+S, ] )
—s>supLE<S+t):reﬂ_ if x> f(s).

Dvoretzky (1967) and Teicher and Wolfowitz (1966) showed that if EX;? < oo,
then (0, 0) is finite, and therefore optimal. Dvoretzky conjectured that the same
result ought to hold when FE |X 1 |” < oo for some § > 1. In this paper we prove a
partial result in this direction; we establish the existence of an optimal stopping
rule when the truncated variance

(1.5) U(x) = [f-5- y*dP(X{ £ y)

is of “dominated variation” as x — oo, in a sense defined precisely in Section 3
below. A particular case is the situation when X, belongs to the domain of attrac-
tion of some stable random variable with exponent greater than one.

2. An upper bound on /. Let ./# denote the class of all (possibly infinite) stopping
times relative to (S,, n = 1). If 7 € .#, we shall set

21 x+S, i x+S,
@1 T T

on the set {t = oo} for any (x, s) € Rx [0, 00). The theorem we shall prove in this
section is the following:

THEOREM 2.1. If there is a B > 1 such that E|X,|F < co, then there is a finite
constant K, such that for every s > 1 and x = K| Sqll, where [|Spqll = (E|Siq]?)'%,

we have
S E x+S.\ Y.
2.2) = sup e ‘TE .

v | x
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The proof will be broken down into a sequence of lemmas, in which it will always
be assumed that E]Xl |” < o for some f > 1. The first one is an analogue of
Lemma 2 of Dvoretzky (1967).

LeEMMA 2.1. If s = 1 then

S, 1 28|s,
(2.3) sup[E(m):re./z]< ﬂé's]”"

where B’ = (1—1/p)~ 1.

Proor. We have

S, |? S, |f B
. < ] —n

2.49) Elisup,,;1 i ]:E[supmg,@l _— ]+E[sup,,>[s] e ]
; B S,,”

gE[supm%n;l n—+s ]+E[supn>m > ]

But the processes (|S;|%, |S,[%, ) and (-, |Sa/3[%, |S2/2[%, |S;|?) are both sub-
martingales. Therefore (see Doob (1953), page 317),

2.5 E S <oy [P
() Supngl n+s _= (ﬁ) [S] .
From Jensen’s inequality
(2.6) E| sup,» Sl <op [Seal

: n2lipgs| | = [s]°

and the lemma follows.

LEMMA 2.2. Let s’ =2 s > 0, x' £ x and © € 4 satisfy
. E x+S, o X
27 s+1 )7 s’

Then for m = 0, 1, 2, --- there is a stopping time ©(m) € 4 satisfying

(2.8) Sem > x—x"a.s. on {1(m) < m},
and

E x’ +Sr(m) > x,
(2.9) s'+t(m)) = s "

Proor. This is Lemma 6 of Dvoretzky (1967).

LeMMA 2.3. Let (2.7) hold for some x > 0, s > 0, v € /. Then there is a t* € 4
satisfying

210 E x/2+S,. >ic-
(2.10) s+1*¥ /= 2s
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and

1 Sl
(2.11) E<s+ ) =7 2s sX

PRrROOF. Let t* be 1([s]) from Lemma 2.2, with s’ = s and x’ = x/2. Then (2.10)
holds, and max (Sy, S5, ==, S)) > x/2 as. on {t* < s}. Thus P(t* <s5) <
2E|S;|/x, and hence by Jensen’s inequality, P(t* < 5) < 2[Syl/x. But

E 1 < P(z*<s) P(r*>5s)
s+t¥) = s+1 +s+|:s:|+1
P(z*<s) P(t*>
2.12) < (t* < s)+ (t* >5)
s 2s

1 P(r*<5)
=%t T

and the result follows.
To prove Theorem 2.1 we observe that if (2.7) holds for some t € ., then by

Lemmas 2.3 and 2.1,

X . X248\ x 1 S
2.13) 5s=E s+1* :EE s+t +E<s+r*)
||S[81” ' |
St t 5]
or
(2.14) _(213 +2)“ [s]” <(4ﬂ'+1)”—sﬁlﬂ,

Theorem 2.1 now follows with K, = 16,3 +4.

COROLLARY. IfE]X1 |'g < oo for some B > 1, then f(s) = Kol Siqll for s = 1;
and if in addition

(2.15) limsup, ., S./[[S.| > Koas.,

then an optimal stopping time exists for the S,/n problem.

It is easy to show using the Hewitt-Savage Zero-One Law (see Feller (1966),
page 122) that inequality (2.15) holds if lim sup,.,,, P(S, > K,S,|) > 0. More-
over, by using an inequality of Marcinkiewicz and Zygmund (1938) (see Theorem 5)
we can strengthen this result as follows.

CoroLLARY. If E|X, |’ < oo for some > 1, and if
(2.16) lim sup,-.., P(S, = ¢S, ) > 0

for some ¢ > 0, then an optimal stopping time exists for the S,[n problem.
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3. Dominated variation and the relative growth of S, and ||.S,||. Let F be the common
distribution function of X, X,, --- and define the function U on [0, o) by
3.1) U(x) = [-uy- y* dF ().

DerINITION. (Feller (1967), Section 8). The truncated variance U is of dominated
variation if there exist constants v > 0, C and T > 0 such that
(3.2) U(tx)/U(t) < Cx*~Y

forallx > land ¢t > T.
The following lemma will relate the behavior of the other truncated moments of
X, with that of U, when U is of dominated variation.

LemMma 3.1. (Feller (1967), Section 8, Theorem 2). Let U be of dominated variation
and let

(3.3) Vx) = |7 y~1dU(y).
Ifq> 2—v, then for t > T

q Cq
3.4) VUM S L, = —1+q—2+v'

We observe that V,(x) = 1—F(x)+ F[(—x)—], and
Vi(x) = I(—oo,—x)u(x,oo) |J’| dF(y).

A trivial consequence of (3.2) is that lim,_, , x~2U(x) = 0. Therefore, there is a
sequence (a,) of positive numbers tending to infinity and a finite constant K; such

that

(3.5) na,”*U(a,) £ K,

for all n. From (3.2) we then have

(3.6) na, *U(a,x) < K,Cx*""
for x > 1 and #n large. The relations

3.7 nVy(a,x) £ L,K,Cx™"
and (forv> 1)

(3.8) nVy(a,x) £ L,K,Ca,x'"",

again for x > 1 and n large, now follow from (3.4).

LeMMA 3.2. Let U be of dominated variation with v > 1, and let (a,) be a sequence
of numbers tending to infinity and satisfying (3.5). For n and x large, there is a con-
stant C, independent of n and x such that

(3.9) P(|S,| = xa,) £ Cox™.
Proor. Fix x > 1, and define the truncated variables
(3.10) Xiw =X if —xa, <X, = xa,

=0 otherwise.
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Let u, = EX,, and S, = Y r=; X Then
(.11 P(|S,| = xa,) £ n[P(X; < —xa,)+P(X > xa,)]+P(|S,,| Z xa,).
Since EXy.= 0,
(3.12) ln#n| < nVy(xa,) £ L,K,Cax'™" < Ya,x
for x and n large. Therefore

P(Syn] > x0,) Z P(S— 11t > 3a)
(3.13) < 4x"%a,”*nU(a,x)

< 4K,Cx™"

for x and n large. Moreover,
(3.14) n[P(X, < —ax)+P(X,;>ax)] = an(a,,x)‘g L,K,Cx™"
for x and n large. The conclusion of the lemma is now immediate.

COROLLARY. Let U be of dominated variation with v > 1, and choose (a,) to satisfy
(3.5). Let F, be the distribution of S,/a,. If 1 < B < v, and some subsequence (F,)
of (F,) converges to G, then

(3.15) lim, o [ 2o V[P AF(9) = [ 20 |¥|?dG(y).

Feller (1967) proves that since U is of dominated variation, we can choose (a,)
so that the sequence na,”2U(a,) is bounded below by some constant p > 0, in
which case the sequence (F,) is stochastically compact in the following sense.

DerINITION. If (G,) is a sequence of distribution functions and every subsequence
of (G,) has a further subsequence converging to a nondegenerate distribution
function, the sequence (G,) is called stochastically compact.

In view of the criterion (2.16), the following theorem is immediate from these

remarks and (3.15).
THEOREM 3.1. If U is of dominated variation with v > 1, then an optimal stopping
time exists for the S,/n problem.

4. Structure of the optimal stopping rule. It is an easy consequence of Theorem
2.1 and (3.15) that when U is of dominated variation with v > 1 and (a,) is a
sequence for which (F}) is stochastically compact, the function f satisfies

4.1) fs) = K/a[s]
for some finite positive K’. We may also prove the following in direct analogy with
the second part of Dvoretzky’s (1967) Theorem 2.

LeMMA 4.1. Under the conditions stated above
4.2) f(s) 2 kagg

for some positive k and all s.
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PROOF. Let ¢ > 0 be given. For any integer r > 0, let ©(r) = inf[r = r: S, > —ca,].
The stopping time (r) is a.s. finite. Then

4.3) E CLS’(') >_1_ N dP(S. <
. 7’+T(I‘) = zr —ca (car+u) ( r = u)

= ;7 j _°° (c+w)dP(S,/a, < w).

If (F,) is a subsequence of (F,) converging to G,

n' cay+S.w 1(°
(4.4) liminfy ., — E (m)—j 25 J _ (c+w)dG(w).

Now 2¢— 2, (c+ w)dG(w) is negative for ¢ = 0, and continuous. Hence for some
finite ¢, > 0, 2¢, < [2,, (co+W)dG(w), and

45 liminf,..—— g %t Swn)
4.5) imin e W) > 1.

Thus cya, < f(n’) for all but finitely many »’. The lemma now follows by the
stochastic compactness of the family (F,).

It is well known (see Feller (1966), page 305) that if X; belongs to the domain of
attraction of a nondegenerate random variable Y, with norming constants (a,),
then there exists a number « > 0 such that a,,/a, — r'/*asn — oo, and Y is strictly
stable with exponent «. If > 1, then X, satisfies the hypothesis of Theorem 3.1
with 1 < v < a (see Feller (1966), page 303). Because a,,/a, — r'/* asn — o, a, is
of the form n'/*L(n) where L is a slowly varying function of its argument (Feller”
(1966), page 269), and equations (4.1) and (4.2) suggest that /' may have the same
asymptotic behavior. That this is true will be shown in a subsequent paper.
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