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PROCEDURES FOR REACTING TO A CHANGE IN DISTRIBUTION

By G. LORDEN
California Institute of Technology

0. Summary. A problem of optimal stopping is formulated and simple rules are
proposed which are asymptotically optimal in an appropriate sense. The problem
is of central importance in quality control and also has applications in reliability
theory and other areas.

1. Introduction. Suppose X;, X,, --- are independent random variables observed
sequentially and X, -+, X,,—, have distribution function F, while X, X,,+1, -
have distribution function F; # F,. Both F, and F, are known but / is unknown
and some action should be taken after X,,, X, 4, --- begin appearing, the sooner
the better. As a possible procedure we consider every (nonrandomized) stopping
variable N with respect to the observed sequence. Thus the event {N = n}, which
denotes stopping to take action after observing X, -, X,, is determined by
Xy, -+, X, (i.e. belongs to the sigma-field generated by X, ---, X,). For m =
1,2, .-, let P, denote the distribution of the sequence X, X,, --- under which X,,
is the first term with distribution function F;. If P,, is the true distribution, then in
the event that N = m it is desired that the conditional expectation of N —m should
be small. Letting E,, denote expectation under P,,, we therefore define

€] EN =sup,s esssupE,[(N—m+1)* | X, -, X,-1]

to serve as a ““‘minimax” type of criterion for quickness of reaction to a change.
Let P, denote the distribution under which X;, X,, --- (independent) have distri-
bution function F,. It is assumed that the desire for small E,N is offset by the
requirement that the frequency of “false reactions” be controlled by a condition
of the form E,N = y, for a prescribed y > 0. In other words, subject to E,N = 7,
we seek to minimize E, N, which is the smallest A4 such that form = 1,2, -+

Em[N'—(m_l),XI =x19"',Xm—1 =xm—1] §A

for almost every (Py) point (xy, ***, X,,—1) in {N = m}. Thus E,N is the smallest
boundon the average number of differently distributed X’s observed before reacting,
guaranteed regardless of the behavior of the X’s before the change.

In Section 2 the smallest possible E,N is determined asymptotically as y — oo
and shown to be attained asymptotically by the following procedure due to Page
(1954): stop the first time

LD b A0
2) T, = 1, logz rpy—mines, 3 log 5y >
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1898 G. LORDEN

where f,, f; are densities of F,,, F; with respect to a suitable measure (e.g. 3(F, + F})).
For computational purposes the obvious recursion formula

3) T, = ( 1+10g§:E ")>

is useful. Page also pointed out that the procedure in (2) is equivalent to performing
a sequential probability ratio test (SPRT) of f, vs. f; with log-boundaries 0 and y
and repeating the test on successive new observations until a decision in favor of f;
is reached. It follows by a routine application of Wald’s equation that for this
procedure

(4) EoN = OC_ lEoN*,

where N* is the time for a single SPRT to stop and a = P, (decide f;), so that the
expected number of tests required is «~'. Similarly,

©) E\N =(1-p)"'E,N*¥,

where B = P, (decide f;), and it is clear from the definition of 7}, that E,N = E;N.
Page obtained these formulas for EoN and E; N, which he called the average run
length (A.R.L.) under P, and P,, respectlvely Although the A.R.L., E, N, is equal
to E, N for Page’s procedure, this need not be the case for alternatlve procedures,
and E,N is clearly an inadequate criterion for performance. (Note that an un-
repeated SPRT with log-boundaries —oco and 0 yields E,N = oo, in fact
Py(N = ) > 0, and yet E; N will be quite small; alas, E;N = o).

In both a practical and a theoretical sense, the problem becomes more interesting
if we replace F; by a dominated family of distributions {F,, 8 € ®} with 8 unknown
and try to achieve small EgN (defined like E;N) for each 6, subject to E,N = y.
It is to be expected that one cannot simultaneously minimize for all 8; however,
the results of Section 2 indicate that one can simultaneously minimize for each 6
asymptotically as y — 0 for a wide class of problems. These results will be estab-
lished by exploiting the connection between the present problem and one-sided
sequential testing. To see this connection, consider the following alternative des-
cription of Page’s procedure: stop the first time

(6) max <, i logﬁ)g ‘;

This can be regarded as a “maximum likelihood” treatment of the unknown change
point, i.e. stop when for some k the observations X, ---, X, are “significant.” In
this case, significance is measured by a one-sided SPRT with right-hand log-
boundary y. To handle composite {F,} one can simply use instead a one-sided
sequential test of Fy, vs. {Fp} and apply it to X,, X344, - foreach k = 1,2, -+,
stopping the first time one of these tests says stop. This approach is shown to work
in Section 2 where the following main result is obtained.



PROCEDURES FOR REACTING TO A CHANGE IN DISTRIBUTION 1899

THEOREM 1. Suppose there exists a class of “‘one-sided tests” (i.e. extended stopping
variables) {N(2), 0 < a < 1} such that

Py(N(x) < 0) 2« for all «,
and for all 6 ©
[loga|
EgN(o) ~ 10) asa—0
where
Jo(X)
I(0) = Eglog 5——= .
()] o ngo(X)< 0 forall 0

For y>1let « = y~! and define N*(y) = minys ; {N(2) +k—1}, where N («)
is N(a) applied to Xy, Xy41, -+ . Then N*(y) is a stopping variable,

(7 EN*(y) 2y for ally,

and for all 6 € ® {N*(y), y > 1} minimizes EqN*(y) asymptotically subject to (7),
by virtue of the relation

N logy
®) EoN*(y) ~ m asy—» .

The fact that this last relation characterizes asymptotic optimality is established
by Theorem 3 of Section 2. The existence of asymptotically optimal one-sided tests
is guaranteed under fairly mild conditions by Lemmas 1 and 2 of (Kiefer and Sacks,
1963). The tests are one-sided SPRT’s of F,, against a (fully-supported) mixture of
Fy’s, an approach described in (Wald, 1947). Unfortunately, these tests are difficult
to perform, in general, because a nontrivial integration is necessary at each stage
to determine the likelihood ratio. The resulting reaction procedures require com-
putation of »n such likelihood ratios after the nth observation. In order to derive
useful asymptotically optimal procedures, Section 3 is restricted to the case where
F, and the F,’s belong to a Koopman-Darmois family. In this context, asymptotic
optimality is attained by simple one-sided test procedures based on the maximum
likelihood ratio (in 6). These give rise to explicit stopping boundaries like those in
Schwarz’s (1962) work on asymptotic shapes of Bayes sequential testing regions.
The use of these procedures is fully described in Section 3, which is independent of
Section 2. It should be noted that recent work by Robbins and Siegmund (to appear)
shows that the approach based on mixtures can indeed be used to derive explicit
procedures for some problems, particularly those involving normal distributions.
For further discussion and comparisons between this method and the maximum
likelihood approach, the reader is referred to [5]. Some applications of maximum
likelihood reaction procedures are given in Section 4.

Besides Page’s (1954) work, the following are a few of the many other approaches
to the formulation and solution of problems involving the detection of changes in
distribution. The classical Shewhart (1931) control charts using ‘3¢ limits” have
been widely used in quality control applications. An interesting Bayesian formula-
tion utilizing geometric prior distributions for the unknown change point was
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studied by Girshick and Rubin (1952). Chernoff and Zacks (1964) and later Zacks
and Kander (1966) considered a sort of “retrospective’” formulation in which one
looks at a fixed sample X7, ---, X, and attempts to determine whether and where a
change has occurred. They gave no optimality results, but did compare their pro-
cedures numerically with those of Page, which were also proposed for problems
of this fixed-sample type (1955). A variety of practical procedures have been used
and numerical comparisons of their performance are given in (Roberts, 1966), using
the “worst case” to measure quickness of reaction, which is tantamount to adopting
the minimax-type criterion, E; N, defined in (1).

2. Asymptotic theory. The first result establishes bounds on the performance of
reaction procedures constructed from one-sided tests.

THEOREM 2. Let N be an extended stopping variable with respect to X, X, -+
such that
® Py(N < o0) Z a..
For k =1,2, - let N, denote the stopping variable obtained by applying N to
X Xix1, -+*» and define
N* =min {N,+k—1|k=1,2,---}.

Then N* is an extended stopping variable,

(10) E,N* = 1/a,
and for any alternative distribution, F,
(11) E,N*<E|N.

PrOOF. N*is an extended stopping variable since the event {N* < n}is the union
of {N; £ n}, {N, £ n—1}, ---,{N, £ 1}, all of which are evidently determined by
Xy, X,. Form=1,2,-.-

Em[(N*—m+1)+ IXI’ "'sXm—l] = Em[Nm l Xl’ ""Xm—l] = EmNm = ElNa
and (11) follows by definition of E, N*.
To prove (10), define
6]‘ = 1 if Nk < 00,
=0 if N,=o0, k=1,2,--.
Since the ergodic hypothesis is true for the i.i.d. sequence X, X,, --- (Loéve, (1963)),
(12) lim,,,n~ 'Y ho1 & = Eoéy = Po(N; < 0) < aas.(Py).

Assume that E,N* < oo (otherwise (10) is trivial). Let No* = 0 and define
N,* < N,* < .- recursively as follows. If N¥_, = n, then for each r = 1,2, ---
apply Nto X, 4,, X,+r+1, --- and let N, * be the first time stopping occurs for some r.
Then N;* = N* and N,*, N,*—N,* N3*—N,*, .- are independent and identi-
cally distributed.
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Clearly

Enppir Tl 21 form=0,1,-,

since £y, »4, = 1 for some r causing the stop at NY,,.Hence, &+ -+ +&y = m
form = 0,1, ---, so that

(13) — N ZEN*

As m — oo, the right-hand side of (13) approaches (E,N *)~! by the strong law of
large numbers and the left-hand side tends to a limit < « by (12), proving (10).

REMARK. By a similar renewal argument it can be shown that if Ny, ---, N, are
stopping variables and N = min (N, -+, N}), then (EoN)™! < (EoN) ™'+ -+ +
(EoNy) L. For example, if EGN; = kv, i = 1, -+, k, then E;N 2 7.

If N is the stopping variable of a one-sided SPRT of F, vs. F; with likelihood-
ratio boundary 1/a, then by well-known results (Wald (1947)) Po(N < o) = « and
we have E,N ~ [loga|/I;, as « — 0, where I; is the information number, E,
log (f,(X)/fo(X)). Applying Theorem 2, we obtain an N* (Page’s procedure) satis-
fying E,N* = «~ ' and E;N* asymptotically at most [log «|/I; as « — 0. Theorem
3 establishes that this is asymptotically the best one can do.

THEOREM 3. Let n(y) be the infimum of E\N as N ranges over the class of extended
stopping variables satisfying EoN 2 v. If I = E; log [ f1(X)/ fo(X)] < oo, then

lo
(14) n) ~ asy— oo,
1

The proof uses the following
THEOREM (WALD). If N is the sample size of a test of fo against f, with error proba-
bilities o, P respectively, then

1—
LEN 2 (1—f)log =L+ plog 2 2 (1-pioga] ~log2,

where I; = E; log [ f;(X)/ fo(X)]-

PRrOOF. The first inequality appears in (Wald, 1947, page 197). The second in-
equality follows from the fact that Blog(l —a)~! is nonnegative and
(1—p) log (1—p)+ B log B attains minimum value —log 2 when § = 4.

PROOF OF THEOREM 3. By virtue of the result just established for Page’s pro-
cedure, it only remains to show that n(y) is asymptotically no smaller than the
right-hand member of (14). It will suffice to show that for every ¢ in (0, 1) there is a
C(e) < oo such that for all stopping variables N

(15) L,E,N = (1—¢)log E;N — C(e).
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Fix ¢ and define stopping variables T, =0 < T, < T, < --- as follows:
T;..(i = 0,1, ) is the smallest n (or oo if there is no n) such that n > T'; and

(16) S1iX 74 D filX) = Bfo(XT.-+1) < fo( X

By the standard argument used to estimate error probabilities of sequential proba-
bility ratio tests (Wald, 1947), P,(T; < o) < ¢, and the same argument is easily
modified to yield

) Py (T, <0 IDrk) <e¢ provided P(Dy)>0,

where D,, = {T,_; = k < N}, which depends only on X}, ---, Xj.

Consider all those subsets D,, for which Py(D,,) > 0, and hence also
P,. (D, > 0 because P, gives the same distribution of X, ---, X, as does P,
On the subset D,,, N and T, determine the following sequential test based on

Xis1> Xgp2, o2 stop at min (N, T,) and
decide P, istrueif N = T,;
decide P, is true if N > T,.

The number of observations taken is min (N, T,) —k, whose (conditional) expecta-
tion under P, (- [ D,)) is at most E, N. (D,, belongs to the o-field of events deter-
mined by X, -, X,.) Wald’s theorem applies with a = Po(N = T, | D,,) and
1—B = Py (N £ T, | D,y), so that we have

(18) LLENz Py (N < TrIDrk)IlOgPo(N =T I Drk)|_10g2
2 (1-¢)[log Po(N < T;| D,y)| —log2,
the latter inequality following from
P (N = TrIDrk) 2 Py y(T, =0 |Drk)

and (17).

Let R be the smallest r = 1 (or oo if there is no r} such that 7, > N.
If Po(R = r) > 0, then Po(R < r+1) | R = r) is well defined and evidently equals
Py(N £T,|T,_; < N), which is an average (over k) of the probabilities
Py(N £ T, | T,_; = k < N) satisfying (18). Therefore Po(R = r) > 0 implies

19 1,E;N = (1—g)|log Po(R < r+1|R = r)|—log2.
Elementary calculations show that a lower bound of the form
PoR<r+1|Rzr)zQ for r=1,2,--,suchthat Po(Rzr)>0

implies
P(Rzr+1)=(1-0) forr =1,2,-

and hence EoR < Q1. Thus (19) yields
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When P, is true {T} is a sequence of cumulative sums of independent random
variables distributed like T';, as can be verified from (16). Since EqR < oo by (20),
Wald’s equation

E,Tg = EqR- E T,
holds, and hence
(21) log EoN < log E Tz =log EoR + B(¢),

where B(¢) = log E,T, which is finite for all ¢ and does not depend on N. Relation
(15) follows at once from (20) and (21), and the proof is complete.

Proor oF THEOREM 1. For each 6 € ® relations (7) and (8) follow from the
hypotheses about N(«) by Theorem 2. The fact that these relations characterize
asymptotic optimality is the content of Theorem 3.

3. Reaction procedures for Koopman-Darmois families. Suppose that the F,’s are
members of a Koopman-Darmois family of distributions, i.e.

(22) dF(x) = exp (0T(x) — b(0)) du(x), fe@®,

where p is a o-finite measure on the real Borel sets and ©* is an interval on the real
line. Then b(0) is strictly concave upward and infinitely differentiable on ®@*, We
assume that F, is also a member of the same family. There is no loss of generality
in assuming that F, corresponds to 6 = 0 (shifting ®* if necessary) and that
b(0) = 0 (by incorporating exp (— b(0)) with x). Thus x becomes identified with F,
and by regarding T(X,), T(X,), --- rather than the X’s as the observations we can
rewrite (22) in the simpler form

23) dFy(x) = exp (6x — b(0)) dF o(x), 0e®*

where @* contains 0 and 5(0) = 0. Let @ = ©*—{0}.
In order to obtain asymptotically optimal procedures by application of Theorem
1 we need only determine stopping variables, N(x), such that

(24) Py(N(x) < 0) = a for0<a<1
and

[loga
(25) EoN(a) ~ 10) as o—0, for all 0 ®.

A routine calculation shows that I(6) = 0b'(6)— b(0). The log-likelihood-ratio of
F, over F, based on X, ---, X, equals 6S,—nb(6), where S, = X;+---+ X,. The
procedures N(x) will be given by rules of the following form: stop at the first n
such that

(26) SUP|g; 26, (x) (08, —nb(0)) > h(a) > 0,

where 6,(x) | 0 and A(x) — oo as specified later. Note that if 0 is an endpoint of
©*, which may be desired in some applications, then |6 = 6,(x) in (26) is still
correct, it being understood that 8 ranges over ®* only (which need not be the full
natural parameter space of the family).
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It is clear from (26) that N(«) is obtained by stopping the first time that a one-
sided SPRT of F, vs. F, with log-boundary A(a) says stop for some 6 with |0 | = 601().
Since 6,(x) | 0 as « — 0, any fixed 6 # 0 is included for sufficiently small « and
hence E,N(a) is at most the expected time for a one-sided SPRT of F, vs. F,. The
latter is asymptotically 4(x)/1(6) as h(x) — oo, so that

EgN(a) 1

27 lim sup, | 071(_&)— = I(_HS .

It evidently suffices for (25) to choose h(x) ~ llog o [ To see how to satisfy (24), we
next consider the problem of estimating the “error probability,” Po(N(x) < o).
Begin by rewriting (26) in the equivalent form

h(a b(o
(28) S, > infy5 4, {-—(O—)+n —(9—)} . or

h(@) ~ b(0)
S, < SUPg<—g,(a) T+n o (

Fix n. If the infimum in (28) is attained at @ = 6, (say), then the probability that the
first inequality holds is at most exp (—/(«)) because the latter is the standard upper
bound on the probability of ever terminating the one-sided SPRT of 6 = 0 against
6 = 0,. The same upper bound applies even if the infimum is not attained, since we
can apply the same argument to a sequence of 6’s along which the infimum is
approached. Similar reasoning applies to the second inequality in (28), leading to
the conclusion that

29) Po{N(e) =n} < 2exp(—h()) forn=1,2,--.

By differentiating the right-hand member of the first inequality in (28), one finds
that the infimum is attained either at 8,, or as 6 approaches an endpoint of ©*, or
for 0 satisfying nI(8) = h(a). Since I(9) increases with 0, the first of these is the case
unless n < h(@)I(0,)~*. The same argument used for (29) now shows that

h
(30) Po{[min 0 01(;,‘)1 = 91))] < N(@) < oo} < 2exp(—h(x),

where [x] denotes the largest integer =< x. Using (29) for n not included in the
estimate (30), we obtain

h(a)

31) Po{N(ax) < o0} < 2exp(—h(x)) {min (I(Gl),I(—HI))_'_l} .
It is known (e.g. Wong, (1968)) that the error probability is of smaller order of
magnitude than the right-hand side of (31). However, the latter bound is simple and
explicit, and suffices for the present application.

We now indicate how to choose 6, () and k() and verify (24) and (25). First set
0,() = |log oc]" or 1 times the length of ©*, whichever is smaller. Then choose
h(x) = 1 as small as possible so that the right-hand side of (31), which is decreasing




PROCEDURES FOR REACTING TO A CHANGE IN DISTRIUBTION 1905

in h(a), is at most «. This last choice makes (24) an immediate consequence of (31),
and it remains only to show that the 4(x) so defined is asymptotic to |log o |, which
suffices for (25) (see the remark following (27)). By expanding b(0) and b'(6) in
Taylor series about zero, it is seen that 1(6) = 0b'(0)—b(0) ~ CH? as § — 0, where
C = 1b"(0) > 0. Therefore, the above choices of §; and A(x) imply

(32) 2h(e) exp (—h(w)) ~ Calloga| =2 as a— 0.

Substituting (1+¢) |log o| for h(x) makes the left member of (32) asymptotically
too small if ¢ > 0 and too large if ¢ < 0. Therefore, h(x) ~ |log al, as required.

In practice, there are two useful schemes for applying Page’s procedure. One is
the graphical method of plotting S, versus # on a cusum (for “cumulative sum”’)
chart. A straight edge moved along and placed at the proper angle and distance
from the latest point can be used with the rule “stop if a previously plotted point
lies on the opposite side of the straight line.” Thus a run of length k is “significant”
whenever its sum exceeds A4 + Bk, where A and B are computed to give the desired
likelihood-ratio boundary for a 1-sided SPRT. In effect, after the nth observation
one performs an SPRT graphically on the reversed sequence X,, X,_;, -, X;.
A considerable simplification is effected by using a parallel boundary through the
last plotted point. As soon as any previously plotted point falls across this boundary
then that point and all its predecessors can be eliminated from further considera-
tion, since no significant run including these points can occur unless there is also a
shorter significant run not involving them. To perform two Page procedures simul-
taneously, with alternative 6’s on either side of the parameter value, one can use a
“V-shaped” boundary with the vertex placed at the proper distance in front of the
latest point. The maximum likelihood procedures can be used in exactly the same
way, replacing the straight-line stopping boundaries by convex boundaries. The
values 4+ Bk for the straight-line boundary are replaced by one of the sequences
in (28), i.e.

(33) ¢, = infys,, {%ﬁ kb—gg)}

or

h(x)  b(0)
€ = SUPg< _g, {—0—+k7 >

depending on whether one is interested in right-hand or left-hand alternatives. If
alternatives in both directions are wanted, then one uses a pair of boundaries
simultaneously, resulting in a more or less “U-shaped” implement. Several points
deserve emphasis. First recall that for k = h(x)I(6,) ~* the infimum (resp.supremum)
in (33) is attained at 6, (resp. —0,), so that the boundaries ultimately become
straight. Next, it is helpful to recall that the infimum (resp. supremum) for smaller
k is attained at § satisfying kI(6) = h(x) (except possibly for some initial values of k
where this equation has no solution and the infimum is approached at an endpoint
of ©*). Finally, it should be noted that, just as for Page’s procedure, simplification
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is achieved by using a straight-line boundary (or two) through the last plotted point,
representing an SPRT of § = 0 vs. § = 6, with log-boundary 0. As soon as a pre-
viously plotted point falls across this line no significant run (for right-hand alterna-
tives) involving that point or its predecessors need be sought.

Carrying out Page’s procedure numerically is best handled by the recursive
relation (3). To perform a maximum likelihood procedure (for alternative 6’s on
the right, say), proceed as follows. Compute T,’s recursively by (3) (i.e. perform
Page’s procedure) with f; = f,,, the “closest alternative.” Stop whenever T, = h(x)
occurs, and whenever T, = 0 one can begin a new cycle, discarding all previous
observations and starting fresh on the incoming observations. In addition, each
time a new cycle begins compute at each stagen = 1, 2, ---

0™ =X+ +Xprr1> k=1,-,[min(M,n)]
where M = h(x)I(0;) ™!, stopping at the first n such that
0" > ¢, for some k.

If Q,, --+, Qu denote the Q,’s before observing X,, and Q,’, ---, Oy denote the
current Q,’s , then we have

Qll =Xn 4
0, =X,+0, (or0ifn=1)
Ou' =X, +0u—, (or 0if n < M).

Thus after each observation one can determine by addition a new set of Q’s,
stopping as soon as some Q, > ¢, and recycling the whole procedure whenever
T, = 0. For alternative 6’s in both directions one performs simultaneously two
procedures as just described, one for each direction of alternatives.

The choice of 6, can be made by considering the importance of reacting quickly
(or at all) to alternative &’s at various distances from the nominal value. The choice
of a critical value (h(x) above) could most effectively be made by comparing the
E,N’s attained for various choices with the E,N’s achieved for alternative 6’s.
Unfortunately, choosing h(«x) to make the right-hand side of (31) equal « is overly
pessimistic, in general, because (31) is a crude estimate of the error probability of a
one-sided test. Furthermore, the bound (10) in Theorem 2 is also likely to be pessi-
mistic, so that E,N will tend to be considerably larger than « if the boundary A(x)
is chosen as above. It is to be expected that the approximation

[log h(a)]
16)

is somewhat better, although it is difficult to estimate its accuracy in general.
Perhaps the most satisfactory approach to selection of a critical value is to deter-
mine E,N* and E,N* for a few 6’s by Monte-Carlo methods. The structure of the
maximum likelihood procedures indicates that when an alternative 6 is true, N*

E,N*(a) < E,N(a) ~
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should be approximately normally distributed and when 6 = 0, N* should be
approximately geometrically distributed (by virtue of the repeated independent
“cycles”).

In [5], improved methods for approximating error probabilities of the kind in
(31) are studied.

4. Examples and applications. A typical application of reaction procedures in
quality control is to detect changes in the mean 6 of measurements X;, X, --- on
some manufactured product (or batches), it being assumed that the underlying
distribution is normal with variance known, presumably from long-term experience.
Assuming the variance is one and the nominal value of 8 is zero, we have the infor-
mation number /(6) = 6% and for alternative 6’s > 0 we have

¢, = (2kh(x))? for k < 2h(a)8,”2;
h(a) _
= =+ 10, for k > 2h(a)0; %,
1

The stopping boundary consists of a piece of a parabola extending into a line
tangent to the parabola. It is proved in [5], that in this case, (31) can be improved
as follows

(h(2))* log (2h(2)0, ™)
* (dn)? }

the factor of two being necessary only when both directions of alternatives are
considered.

Another area of application is reliability theory. It is often desired to react to
increasing (or decreasing) failure rates, e.g. in detecting the onset of wearout or
deterioration of reliability in the course of production. Times between failure are
usually assumed to have an exponential distribution or, more generally, a Weibull
distribution. Since the Weibull distribution is equivalent to an exponential distri-
bution of a specified power of the failure times, problems of changes in the scale
parameter reduce to the exponential case. If the nominal value of the exponential
parameter is taken to be 1 (by a scale change, if necessary) then the family of
exponential distributions with higher failure rates can be specified conveniently by

fox) =(1+0) e (x> 0,0 >0),

the densities with respect to the nominal distribution. The deusity f, corresponds to
a failure rate of 1+6. This leads to

) h(x)  log(1+0)]
¢, = infy5 4, o —k—o—' },

with stopping as soon as — S > ¢, i.e. ) < —c;. (In the Weibull case S is the
sum of powers of the failure times.) For k = A(a) (log (1+6,)+(1 +6,)"'—1) the
infimum is attained at ;, while for smaller k it turns out that ¢,/k is the solution

(34) Po{N(2) < 0} £ 2e"‘("‘){1
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in (0, 1) of x—log x = 1+k~'A(x). Of course, the same computations apply to
problems of changes in the arrival rates of Poisson processes, which occur in many
contexts other than reliability theory.
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