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BRANCHING PROCESSES WITH RANDOM ENVIRONMENTS, II:
LIMIT THEOREMS'

By KRISHNA B. ATHREYA AND SAMUEL KARLIN

University of Wisconsin and Stanford University

0. Introduction. We refer to [I] for the basic set up, notation and terminology. In
this sequel to [1] we elaborate several analogs of the known limit theorems for
simple Galton-Watson processes.

The B.P.R.E. will be labeled supercritical, critical, or subcritical according as
Elog¢;(1) > 0, = 0 or < 0 respectively. The supercritical case is distinguished in
that extinction of the population is not a certain event for almost every realization
of the environmental process. Here the classical Martingale theorem has a natural
extension (see Theorem 1 of Section I). In order to justify the rest of the terminology
separating the critical from the subcritical case, we recall the following facts con-
cerning one type Galton-Watson processes.

A subcritical simple branching process has the property that

(1) lim,., P{Z, =k|Z, # 0} =a,, k=1,2,-

exists and {a,} determines a genuine discrete probability density while in the critical
case the limit in (1) identically vanishes. In fact, in the latter case E(Z, | Z, # 0)~cn
provided ¢"(1) < oo where ¢(s) is the progeny p.g.f. of the process. (Here ¢ is an
appropriate positive constant.) More specifically, we have the limit law

Z, 1
(2) E(exp[—l—;]

1+4a
for suitable a > 0. This is commonly known as Kolmogorov’s limit law while
priority for (1) is generally attributed to Yaglom.
In order to develop a version of (1) in the context of B.P.R.E. we impose addi-
tional conditions on the environmental process {{,, t = 0}.

Z,,;é0>—>

DEFINITION 1. The stationary ergodic process {, is said to be exchangeable if the
vector random variables ({;, (i1, =+ Civw @and (&uii> Cuvioys o5 ;) are identically
distributed for each i = 0 and n = 0.

When {,, t = 0 consists of i.i.d. random variables then {, is manifestly an
exchangeable process. Another example of an exchangeable process arises when
(¢, t = 0) is a stationary reversible ergodic Markov chain. Our result here is that
the sequence of random probability distributions viz. {Z, ] Z, # 0, } converges in
law to a random probability distribution. More precisely,
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1844 KRISHNA B. ATHREYA AND SAMUEL KARLIN

THEOREM 2. Let ({,,t = 0) be an exchangeable process in accordance with
Definition 1. Suppose E|log ¢,(1)| < co. In the subcritical B.P.R.E., i.e., where
E(log 97, (1)) < 0 holds, there exists a p.g.f. Y(s, {) for a.e. { such that

3) E(s?|Z,# 0,FQ)— ¥(s,0) in law

as n — oo. In the critical case, that is where E(log @ (1)) = O then (3) persists but
6,0 =0a.s.

N. Kaplan [3] has provided examples to show that the limit law (3) cannot be
strengthened to a probability one statement.

The subcritical Galton-Watson process is characterized by the property that the
mean number of progeny per parent is less than 1. The analog of this property in
the B.P.R.E. case is the content of the following theorem.

THEOREM 3. Let {,, t = 0 be an exchangeable process. Suppose E| —log (1—,,(0)) |
and E|log ¢;(1)| are finite. Then

[1 =00 (Pr, (- 91,(0) -]
" [1 - (Pg,,((ﬂg,,_ 1(.” (/’Cl(o)) )]

exists and is < 1 a.s. The B.P.R.E. is subcritical iff P({, m({) < 1) > 0.

m({) = lim

REMARK. Notice that for the special case ¢.(s) = ¢(s), independent of {;, we
have m(0) = ¢'(1).

We have also determined (subject to a mild moment condition) the exact rate of
approach to zero of 1 —¢. (¢, (-~ (¢ (s)---))) (see Theorem 4 of Section 2).

The anticipated generalization of (2) to the critical case B.P.R.E. probably reads

AZ,
4) E <exp I: - m]

as n — oo where a,({) is an appropriate sequence of rv’s which increases to o
w.p. 1. Subject to mild conditions on ¢,(1) and ¢(1), the validity of (4) reduces
equivalently to establishing that

1 .
Z,# 0, ﬂ:(g)> ) in law

) 1 no Pt 0
ST P A Y P
in probability as n - oo where P,, = [ [/ @z(1). The details are set forth in

Section 3. Again Kaplan [3] has shown that (5) in general cannot occur with pro-
bability 1. It follows, for the critical case, that 1 — ¢, (¢, _, (--* (¢,(0)) may not tend
to 0 w.p. 1 although convergence in probability is assured since the reversed
sequence

1= (- (@r,_ (¢.,(0))---) = probability of no extinction by generation n
certainly converges to zero w.p. 1.

On the other hand, the quantity 1 —¢, (¢, _, (- (¢(0)) does converge to zero
w.p. 1 in the subcritical case as is seen on the basis of Theorem 5.
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1. Supercritical case. This section extends the basic limit theorem of Kesten and
Stigum [2] on supercritical Galton-Watson process to a B.P.R.E. Recall that when
a B.P.R.E. is supercritical P{{:q({) < 1} = 1. (Smith and Wilkinson [4] refer to
this as the immortal case.) We assume throughout this section that the hypothesis
of Theorem 3 of [1] holds, namely, E|log (1—¢(0))| < o and E(log ¢-,(1)~ <
E(log ¢7,(1))" < co. These stipulations, according to that Theorem 3, make the
process supercritical. We know from the results of Section 3 in [1] that

Plw:Z,» |} =1-q(0)>0 as.

We shall now evaluate the rate of growth of Z, on the set of nonextinction.
In complete analogy with the theorem of Kesten and Stigum [3] on supercritical
Galton-Watson process we obtain

THEOREM 1. Let W, = Z,P,” " whereforn 2 1,P, = [[}1Zg (1) and P, = 7, = 1.
Then, the family {W,;(F(0);n =0, 1,2, ---} constitutes a nonnegative martingale
and hence lim,_, , W, = W exists a.s. Suppose, in addition, that

E{(or,(1) ™' 252 pio(f)jlogj} < oo.

Then,
() lim,, , E(e™*""|F() = y(u,l) where Y(u, T) is the unique solution of the
Sfunctional equation (T is the shift operator on the environmental process)

_ u =
(6) Y(u, ) = ‘P;(V’(m: TC>> as.

among those satisfying lim, o u™ '[1—y(u, O] = 1,
(i) EW[FQ) =1
(iiiy P(W =0 |F(Q) = g0 as.

REMARK. The proof of (i) and (ii) given below is not the shortest we know but the
method is used again later in the analysis of the subcritical case (see Theorem 5).

ProoF. The martingale property is readily verified from the definition of the pro-
cess. Also (iii) follows easily from (i) and (ii) by letting # — oo in (6) and using
Theorem 6 of [1]. We now turn to (i) and (ii). Define

gn(u,0) = E(e™*"" | 0= Q@ (- (‘/’g,,_,(e_ulp")), fornz=1.
go(u,{) =e™",
l//n(U,Z) = u_.l |gn+1(u?Z)_gn(u3 C’)l for n :>—_ 0

and . )
zr?o=0 l//n("l’ C) = K(“a C)'

We shall show that K(u, {) < oo for u > 0 a.s. { and

(7) lim, o K(u,0) =0.
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Assuming (7) proved for the moment, it follows that

(a) for almost all ¢, lim,,, g.(u, {) = ¥(u,0) exists. (This is, of course,
manifest from the fact W, - W a.s.)

(b) lim, o |u™ A —y(u,0)—1| < limsup, o [u~"(1—e™*)—1|
+limsup,; ot~ |go(u, ) —Y(u, )| £ 0+limsup, o K(u,) =0

thus implying (i) and (ii) except for uniqueness.

We now embark on the proof of (7). Since for any p.g.f. f(x) with /' (1-)=
m, f (e""™) = e™" by convexity of e~ * for x = 0 we see that g,,(u, {) = g,(u, )
and so

lpn(“a E) = Ll— ! [gn+ 1(“, 5)—9.,(“, z‘)]

By the mean value theorem,

= _ , u _
l//,,(Ll,z,) é u ](pCO(l)[g"<(p/go(l), TC>_gn—1 < {0(1) TC>:|

=l//"_‘<a’i%l_)’Tz> foreach n > 1
and on iteration we get
(®) D) < w(% T”E)-
Now

-1
b 0) =2 oty

u\"! u u\"! u
= (F) |:(p§n(e—u/P”H)_1+F:|+<F> |:1_}_)__e—ll/Pn].
_i |
_u. l_.li_e—"/Pu é_ i .
P" Pn 2 P"

Since u = Elog ¢,(1) > 0 there exists (by the ergodic theorem) for almost all 4
an integer N({) such that n = N({) implies log P, = nu/2 or P,”' < r" where
r=e"*<1 . Thus )7 P,~" < oo for almost all {. Again for any p.g.f. f(x)

1—f(e™) B 1—f(e™) 1—e™"

u T ol1—e" u

But
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and since (1 —e™")/u is decreasing in u for small ¥ > 0, we can find a u, > 0 such
that for 0 < u < u, and n = N(0),

u\"! u 1=, (e
—_ —u/Pu+1y__ — < ___L___ .
(9) <Pn) |:()DC.,(e ) 1+Pn] = [l (pg"(l)urn+l

Now
. 1_¢C@-W”3}
n}:"ol: ([)c"(l)l,”‘ !

I—I—_ﬂl(e———_w'm) (by nonnegativity of terms)
(/)/g"(l)l/”'"+1 y 1 g v yO

el ]

I
M8
o5}

(by stationarity)

W= (Pgo(l)ur"+l
) 1— et
= E( ) ':I ——%]> (by nonnnegativity of terms)
n=0 Lo

B w [ @ l—e_j"'“ﬂ—ljpgo(j)
- Ego{nZ‘b(.iZOl: B j-ur"“ _l (pgo(])>}

© /p O(j) o ]_e—jur’”"
pera

jur

- l_e_jur,-+l
(10) sup;, (logj)™" Z [1 —7,,_,4(1—] < 0.

A quick way to check (10) is to note

1—e™ 7
()

I P i T Y B e
e |< ——
(”,;[' Jur }:L[' ij}“
Ju 1—e ™ N\dy
= —(lo r_'j <1— >—
g 0 y y
and

iy tim (ogn | (1 =)
i) lim;,, - = =
jmen TO8 0 y v

Invoking our hypothesis we see that

E{§<u>_l[ (W/P ) ! uj]
J— ( e UFp+ 1y __ +_ < o
n=0 Pn PC” Pn

is decreasing for x > 0 and hence
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and hence for almost all {

- u o —u/Pn+ 1 u
n;) P @y (e )— +Pn < 0.

Clearly the last conclusion also implies by dominated convergence that

H = u o —u/P u
llm,,wnz0 P, @ (e ")—1+17" =0.

This establishes (7).
We now turn to the proof of the uniqueness part. Let ¥ (s, {) for i = 1, 2, satisfy
for almost all {

(11) Vi, 0) = go;o@ ( L Tc>>

lirnuLO u- 1(1 _l//i(u’ E)) =1.

Let f(u,0) = u™"|Y;(u, )~ (u, {)|- Then, it follows from the mean value
theorem

S = f< ol )

and an iteration yields
Su, C)<f<— T )

Fix a u > 0. Let 4, = {{:log P, = kuo/2 for k = n}. Then by the ergodic
theorem we have P(4, )Tl On 4,

(12) f(uaz) é Xn = Supvgur"f(v’ T"f)

where r = e */2. But by stationarity X, has the same distribution as X, =
SUP, <, f (v, 0). Since, lim, o u™" (1=, 0)) = 1 for i = 1,2 we have lim,|o
f@, ) =0 and hence X, — 0 with probability one. This implies that
X, = 0 in probability and there exists a fixed nonrandom sequence {n ;1 of integers
— oo such that X, — 0 with probability one. Now referring to (12) we see that
fw,0 = X,, on 4,,X, — 0 for almost all {, 4, ; 1 and PA,) 1 1. All these facts
together entail f (4, {) = 0 for almost all { and u > 0, proving uniqueness.

REMARK 1. If in Theorem 7 we assume the stronger condition that n; =
(o7 (l))((p;}(l))_ satisfies Y 72, n;r’ < coa.s. for some fixed r, 0 < r <o < 1,
6 > 0 then we can assert the mean square convergence of W, - W when condl-
tioned on F({), i.e., lim,_,, E[(W,—W)> | F(Q)] = 0 a.s. The condition En; < oo
is clearly sufficient for this.

REMARK 2. Itis tempting to conjecture that the weaker condition Y % o (¢f,(1)) ™
pe(j)jlogj < oo as. is both necessary and sufficient for #({) to be nondegenerate.
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2. The concepts of critical and subcritical. In the classical Galton-Watson case the
process is said to be supercritical, critical or subcritical according as the mean of
the offspring distribution satisfies m > 1, = 1, or < 1. In the supercritical case the
process goes to co with positive probability. For the subcritical Galton-Watson
process, although extinction becomes certain, the distribution of the process con-
ditioned on nonextinction approaches a nondegenerate limit law while for the
critical case this limit is a null distribution. We use the corresponding criterion to
distinguish the subcritical and critical cases in the B.P.R.E. model. More precisely,

DEerFINITION 2.1. Assume P(g({) = 1) = 1. If the sequence ¢, (w) of random
elements of /,, (space of convergent series) where

(13) én(w) = {P(Zn = k|Zn 5& 07C05C19"'a€n—1);k = ]aza}

converges in law as n — oo to a random element &(w) = {ak(E); k=1,2,-}where
a(§)=20,and Y72 a,(0) =1 a.s. the B.P.R.E. process is called subcritical, while
if the same holds with a,({) = 0 for all k a.s. the process is called critical.

We now turn to the problem of characterizing more practicably the concept of
criticality. For this pupose we need to impose further requirements. Henceforth
throughout this section we assume that for each n the distributions of ({,. {,, -+, {,)
and ({,, {y—1, =+» o) areidentical (c.f. Definition 1 of Section 0 of exchangeability).
This property is manifestly satisfied for the independence model of Smith and
Wilkinson and for the case of a reversible stationary Markov chain. Of course, we
also postulate as previously, that {; is a stationary ergodic process. From now on
unless stated explicitly otherwise, we exclude the supercritical case £ log ¢y (1) > 0.

We need additional notation. Let

(14) (5, 0) = @ (@, (- (@, () ++)
s, Dm0, ]

(15) Y,(5,0) =— (j _?T (g g) O B |2, £ 0,F(D)

(16) 1—m,(s, )

G, (s, ) =1=-Y(s,0) = 20,0
and #,, ¥, G, will denote the analogous quantities defined by the reversed sequence

(Cm cn—l’ ) CO) instead of (CO’ Ch Ty Cn)
We establish first that lim,_, , Y,(s, {) exists. To this end, note that

L= (@, - @r(s) )

=0 (@, @,(0)-+)

~ 1= @Cn(ﬁn(sa f)) 1— (p§,.(ﬁn(0a C))‘ =
oo p[ LB 007

because (I —¢;z, (x))/(1—x) is increasing in x € (0, 1). Thus, G, (s, {) is monotonic
in n and we may conclude that

Gn+1(s7 C) =

¥ st
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(17 G(s,0) =lim,.,, G,(s,0) and  ¥(5,0) = lim,, ¥,(s,0)

exists for every Z.
Invoking the property of exchangeability in conjunction with the limit relation
(17), we obtain

THEOREM 2. Let (,, t = 0) be an exchangeable process. Then for each 0 < s < 1
(18) Y,(s,0) - ¥(s,0) in law.

It remains to determine precise conditions assuring that w.p. 1 ¥(s, {) is an
honest p.g.f. For this objective, we exhibit first the identity

(19) Gn((/’go(s)a TY) = Gn+ 1(8, C)Gw 1((p(0(0), T?)
and this with (17) yields

(20) G(9,(5), TO) = G(s, DG(,(0), TO).
Letting s increase to 1 in (20) gives

(21) G(1-,T) =G6(1—,Dm(0)

where

1= 0. (00 (9,(0(0) -+))

(22) m@= G(‘Pgo(o), T{) =1lm,., N A OED)) <L
The relation (21) leads to
LeMMA 1. The following set equivalences hold w.p. 1.
(23) {{;61—-,0) =0} ={{;G(1—, T]) =0},
24 {$L6(-,0 =1} ={(;6(1-,TD =1}.
ProoF. By definition
m(0) = lim, ., G,(¢,(0), TO) Z G1(,(0), TT) - 1=2u(0aO) >0

1- (pCl(O)

w.p. 1. Now (21) implies (23).
Again, on the basis of (21) since m(Z) and G(1 —, {) do not exceed one

{61 -, TH =1} = {{;6(1-,0) =1}
and owing to stationarity the two sets have equal probability. These facts clearly

imply (24). []
Since T is ergodic we may infer

COROLLARY 1.
P{{;G1—;0)=0}=0 or 1
P{{;G(1—;D) =1} =0 or 1.
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Our next step is to relate the probabilistic quantities P({; m({) < 1),
PE; G(1—,0) = 0)and P(€; G1—, {) = 1). The following implications hold.

LEMMA 2.
(25) PCm<1)>0=P{6(1-;0)=0=1,
(26) PC;m() <1)=0=P{;G(1—-;0)=1) =1.
PROOF. Let PC;m@0 < 1) >0. Assume to the contrary that

P(; G(1—,) = 0) < 1 then by Corollary 1 its value is 0. According to (21) and
the hypothesis, we have

<j{z;m(z)<1}G(l—aZ)dP‘Fj(g:;m(Z):nG(l—,g)dp
—[G(1—,0)ap

and f@(l—, 0)dP = C by stationarity thus reaching an absurdity and thereby
proving (25).
Next, let P({; m({) < 1) = 0. Referring to (22) we have

P(;G(pg(0), T =1) = 1.
Also, the process not being supercritical compels the inequality
P(Z; @, (0) > 0) > 0. Therefore
P(Z; G(p,(0), TO) =1, ¢4,(0) > 0) > 0.

However, 1—G(s, T?) is an analytic function for Is, < 1 and nondecreasing in s
(0 < 5 < 1). Therefore 1 —G(¢,(0), T) = 0, ¢,,(0) > 0 requires 1 —G(s, T{) = 0
for 0 < s < 1 and in particular 1—G(1 —, T{) = 0. Thus,

P 61—, T)=1)>0
and again invoking the result of Corollary 1 we deduce

PCG—-,TD=1)=1
and (26) is established. []

An immediate consequence of Lemma 2 is the assertion that the B.P.R.E. is
subcritical if and only if P({; m({) < 1) > 0. The following result highlights in
more recognizable form a necessary and sufficient condition for subcriticality
subject to a very mild further hypothesis concerning ¢,,(0).

THEOREM 3. Let E(— log (1—¢.(0)) < co. Then
(27) PCm(()<1)>0
if and only if
(28) E(log 9;,(1)) < 0.
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ProOOF. Define
L=y, 94, (0) )
1=, (00

=i 9e0) )
1= 69, (0)-)

1= (@, ¢, (0) )
1=, 9, (0) )

Let b, = Eg,(0), b, = E§.(D), b, = E@G,() all of which exist (are finite) because
of E(—log (1 —¢,(0)) < co. From (17) we know that §,({) decreases to —log m({).
Invoking the monotone convergence theorem yields

(29) lim,, ,, E(§,(0)) = E(—log m(])).

Let (27) hold. We claim that P(; g({) = 1) = 1. Otherwise, P({;q(0) < 1) = 1
leads to the result P({;lim,. ¢,0) = 0) = 1 which on account of exchange-
ability implies P({;lim §,({) = 0) and then by consulting (29) we deduce the
equality

gu(0) = —log

gn(Z) = - lOg

gn(i) = - lOg

P(Gm=1)=1
contradicting (27). Thus, if (27) holds we must have P({; q({) = 1) = 1 and then
a fortiori Elog @7 (1) < 0. By monotone convergence we obtain
(30) by = E(g.(D) > — Elog ¢, (1).
But, by exchangeability b, = b,. Then comparing (29) and (30) we may conclude
that
31 —Elogo;(1) = —Elogm({)

which is strictly positive. Hence E log ¢, (1) < 0 as was to be shown.

Clearly, (29) implies P({; g(¢) = 1) = 1and hence (31) holds as the above reason-
ing demonstrates. Thus, E(—log m({)) > 0 and this inequality is manifestly equi-
valent to (27). (]

Summing up the preceding series of results, we have

THEOREM 4. Let ({,, t = 0) be an exchangeable stationary ergodic process. Suppose "
E(—log (1—¢(0)) < . Then

(i) 4o = Elog @i (1)" > Elog ¢,(1)~ = the process is supercritical. That is
Pq) <) =1 '

(i) oo > E(log ¢;,(1)" = E(log ¢;,(1))™ = the process is critical. That is
PCqQ) =1) =1, but lim,., P(Z, =k | Z, # 0, F{)) > 0 in law for each k.

(i) E(log i (1) < E(log ¢;(1))™ = the process is subcritical. That is
Pl ) =1) = 1,and P(Z, = k| Z, # 0,0) - in law to a(0) for each k and

PCY e ald) =1) =1.
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We close this section by proving one further analog. of a result on the
classical Galton-Watson subcritical case. This concerns the rate of decay of
L=, (g, (- (@ (s) ) to zero.

THEOREM 5. Let E(log ¢y,(1))* < E(log ¢y,(1))~, E(—log (1—¢,(0))) < oo and
E((iz1 plCo)klog ) oy, (D] 1) < 0.
Then

1= g, (- (9g,() )
H;=0 (ple(l)

exists and is strictly > 0 for 0 < s < 1, w.p. 1.

(32) lim,, , =A(s,0)

REMARK. We emphasize the fact that in (32) the reverse sequence {,, {,_; -+, {o
appears. Also note that E(—log (1—¢.(0)) < co implies E(log ¢;,(1))” < oo
and with E(log ¢y,(1))* < E(log ¢,(1))” also that El|log ¢ (1)| < oo and
Elog ¢, (1) < 0.

We need a lemma to prove Theorem 5.
LEMMA 3. For any c, r in (0, 1),

sup,., [(—logr)supys, ((logk) ™" &’ [1—(1—cr*)]dx)] < co.
PRroOF. Record first

I—(I—cr®)f =cer Y i (L—cry;

obviously
[§erl—crydx =c[§ e ™(1—ce ™) dx (where p = —logr)
1 1
=-I;J ydy (by setting y = 1—ce™*P)
1-c¢
1 .
ép(j+1) since0<l—c<1.
Thus,

(—logr(logi)~* j3° [1-C1 —cr")"] dx < (logk)™* Z'};}) G+~
But

k—1 1
supkgz[(logk)ﬂ(;0 (]_-I-l)>] <. []

PrOOF OF THEOREM 1. Convexity implies

L=, (- (08 ) = [[1=0 @,(1)
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and ontakinglogarithms we get

(33) 10g (1 =y, (- 9g(8)) ) = Y=o log o (D).

When E log ¢t,(1) < 0 the right side goes to — oo by the ergodic theorem and thus
lim,. ., [1—=@ (- @) -] =0 uniformly for 0<s<1, w.p.l.

Now define

(B4 A0 =[1—py, (- (9g(0) )Py (recall that P,y =[]i—o i(D).

Then

(35) A,5,0) = [ [Ti=o (1 —a,(t,0)) dt

where a(t, ) = 1—@y ()" o (1-b;_(£,0))

and b(t, ) = L=y (1)) ).

It suffices to show that under the condition of the theorem
(36) Yragt,) < o uniformly for 0 <t <1, w.p.l.
On the basis of (33), we deduce that

log (1= 05 (- 9u(s))-+) _
np ="

(37 limsup,, . SUPo<s<1 1 w.p.1

where u = — E(log ¢;,(1)). Let n >0 be arbitrary. By Egoroff’s theorem
and by virtue of (37) we infer the existence of a set 4, an integer N, and con-
stants ¢, r in (0, 1) with the properties P(4) > 1—n and (€4, n > N entails
supg<s<1 (1=, (- @ (s)) = cr”. Hence,

(1 - bj— l(ta Z))

(38) {ed,j>N=a;1t,0) =1=(p (1) 'L,
< [1—op(1—cr) @y (1) '],
Using the estimate in (38) we get
E(supo<,<1 2 j=nat,0); 4)
S EQ 7y = (1=cr) @ (1) '] A)
SEY N[ =g (1 =cr/) (o)) ']
= YN E[1 =g (1 =er)o(1))7']
since the {;’s have the same distribution
SEYEo[(1—op(1—cr)py(1)7']
= E[Y 720 Y21 kpg()(0,(1) 7' (1 =(1=er)) )]
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® klogkp, (k) |:Z;3°=0 {1—(1—crlye 1}])

_ -1
= (—lognE <,;2 P, (1) (logk)(—logr) ™"

B . ® klogkpco(k)>
<(-logr) KE<kZZ———q)£O(1)

< o by hypothesis.

(by Lemma 3)

It follows that
SUPo <t O pend(t,0) < o0 w.p.l on A.
But P(4) > 1—# and 7 is arbitrary. We now have (36). []

COROLLARY 2. Under the hypothesis of Theorem 5 and exchangeability we have

1—(/’c0("' ((Pc,,(s)) )

converges in law to A(s, ).
Pn+1

PROOF. Merely note that ({,, ¢y, -+, {,) and ({,, {,—1»> > {o) have the same joint
distribution. []

3. Critical case. This is the case when the extinction probability is one w.p. 1 and
the conditional distribution of Z, conditioned on Z, # 0 tends to a defective distri-
bution with all its mass at oco. However, it is anticipated that with proper normaliza-
tion the distribution may tend to a nondegenerate limit law. This is the situation in
the classical Galton-Watson process. We shall now paraphrase that analysis.

To avoid unimportant technical details we impose the following constraints.
Assume that w.p. 1

(39) 0<a=gp1),0<p< i) and ()< K.

These conditions prevail throughout this section unless specified otherwise.
The bounds of (39) yield the following estimates.

LEMMA 4. Let ¢(x) =Y oo a,x* be a p.g.f. satisfying (39) and consider the Taylor
expansions,

@' (N(1—x)*

(40) I—o(x) = ¢'(H(1—x)— >
"(1)(1 — 2 e 1— 3
=00 = 1)1 -y~ 0= 7@

where n and & are appropriate values in the interval (x, 1). Then

(41) ————=K; < 0=x=1
<p(n)(1_x)

=50
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and

(42) -ﬂz(l)—w)(l —x)=y>0 0<x<1

where the bounds K, and y depend only on the constants o, f and K.

Proor. Clearly

1 o'(1) < o'(1)
®"(n) "M 1y T 1-0(x) = 1—9(0):
20 (1) 1—x

But the Schwarz inequality tells us that ¢'(1) < [2¢"(1)]* [1 —¢(0)]* which with the
aid of (39) yields (41). In a similar manner we have

@) «p"'(c) o —x)—(1-@(x))
— —3r =% = =7

and the right-hand side is
Y2 YaZo(k=1=v)x")ay

which is uniformly bounded below owing to the conditions (39), and (42) is
established. []

Introducing the short hand
(43) 9n(8) = @ (@, (- (95,(8) +))

and referring to the expansions (40) we have

1 1

1—g,(s) , =g, 1) 9101
[1—gn_1<s)]<p¢n(1)[1— . %(1)]

_ 1 [1 1—g,-1(s) ¢7(1,)
T [1=gu- 190, (D) 2 )

{[1 gn I(S)](P (nn)}z
* 1—g,-1(5) ¢7,(1,)
4o} ,.<1>>2[1 RERIOFH)
i 2 oD
Taking account of (41) and since P, = [[}= ¢z(1), we obtain
P, P,_ 1P,_,0;(1 P,_[1-g,-1)](p; (1)?
(44) < 1 4z 1I(Pg,.( )+ ) i[1-g . 1 )]2((P§"( )
1=g,(s) T 1=g,—1() 2 ¢ (1) 4o (1)
Iteration of (44) gives

Sa (C)+K1

B 1 ’ (1)
@ a0 5 Y (1)] (1=g4-5(5)
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where
n(g) Z Pk 1 (1)

An analogous argument using the third order Taylor expansion produces the
inequality

P, 1 - <P"’(f )
(46) — 2a,0-Y T S

(1—gi-1(s))-
The result of (41) applied to (46) implies

P,
(47) -9, = Cem—%
Yi-1P;
and by virtue of (45) and (46) that

m s14+Ca,0)

where C and C, are positive constants independent of s and n.

We now impose further restrictions on the environmental process {. Specifically,
assume {{;,i = 0} is a uniformly mixing stationary process, i.e., |E(yk Fean)—
E(y.) E(yk+n)[ < ¢, and ) ¢ < oo where y, and §, are any random variables
bounded by 1 measurable o({y, {y, -+, {,) and o({}, {4, ---) respectively. Subject to
this condition it is easy to show provided E log ¢;(1) = 0 that M,({) = max, ., P,
tends to oo w.p. 1 and therefore a fortiori a,({) — oo w.p. 1. For the case where {;
arei.i.d. this is a known fact emanating from fluctuation theory.

It is an easy matter to combine (45), (46) and (47) and thereby infer the conclusion

1 P, 1
3 1 s | emt— . e— — M < . e
(48) lim, an(C)[l ey 1—s:| 1 uniformly for 0 < s < 1 in probability

is equivalent to

(49) li ! (Z P/ ) 0 in probabilit
im,_, ., =5 - = in probability.
Zj=1Pj j=1Zf 1 P P y
A little care in the analysis reveals also that (49) is equivalent to the assertion
1—gy(e”) 1 |
(50) P{’ 1= 9.00) —1+it| >80 >p,00

which in turn under the stipulation of exchangeability (see Definition 1) asserts that
Z,Ja D) | Z, # 0 converges in law to an exponentially distributed random variable.

The validation of (49) for the general critical case is unsettled and appears rather
delicate. It is interesting to point out that Kaplan [3] has exhibited a rather general
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example in the critical case where the limit relation (49) does not hold w.p. 1. The
equivalence of (48) and (49) w.p. 1 is also correct but in view of Kaplan’s example
is a vacuous statement.

A special case for which (49) has immediate relevance is where ¢ (1) = 1. Then
clearly P; = 1and the left side of (49) is asymptotically (log n)/n — 0. In this special
circumstance a,(0) ~ n/2 E(p7,(1)) and 1—g,(s) > 0 as n > oo w.p. 1. Of course,
the limit relation (50) then prevails.
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