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A LAW OF THE ITERATED LOGARITHM FOR THE
ASYMMETRIC STABLE LAW WITH
CHARACTERISTIC EXPONENT ONE

By J. L. MIINHEER
University of Leiden

A law of the iterated logarithm is proved using an extension of the
Borel-Cantelli lemma and the asymptotic expansion of the left tail of
this stable law.

1. Introduction. Let {X;} be a sequence of independent and identically dis-
tributed (i.i.d.) random variables with characteristic function (ch.f).

(1.1) f(t) = exp(—|f| — (2/m)it log [¢]) .

From this ch.f. it is easy to see that S, = X, + ... + X, and nX, + (2/7)nlogn
have the same distribution. In [8] Skorokhod gives the following asymptotic
expansions for the tails of the distribution function F of this stable law:

(1.2) l — F(x) ~x' for x— o0,

(1.3) F(x) ~ 2!P(U = 2(we)"texp(—nx/4)) for x— —oco,

where U is the normal random variable with EU = 0 and EU* = 1.

The main result of this note is the following law of the iterated logarithm (LIL).

THEOREM. Let ¢ be a positive monotonically increasing function on (0, co),
{X.} a sequence of i.i.d. random variables with ch.f. (1.1)and S, = X; + --- +
X,. Then

P((S, — (2/m)nlogn)/n < —¢p(n)i.o.) =0 or 1 according as

(1.4) (=A(t) exp(—A*t)/2)t'dt < 0 or = oo, where
A(t) = 2(re) "t exp(zp(1)/4) -

For random variables with finite second moment a version of the LIL of this

type is proved by Feller [4]. M. Lipschutz [6] has proved similar theorems

for continuous and positive random variables in the domain of attraction of

the asymmetric stable laws with characteristic exponent 0 < a < 1 and 1 <

a < 2 with some assumptions on the tails. In [1] L. Breiman suggests a LIL
of this type should hold for the stable law (1.1).

2. Proof. In the case of convergence of (1.4) we follow the proof for coin
tossing in Feller’s first book [5]. In this way we can also extend Lipschutz’s
result to the asymmetric stable law with 1 < a < 2 (this random variable is
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not positive a.e.). In the case of divergence of (1.4) the proof resembles
the proof of Lipschutz [6].
We apply the following extension of the Borel-Cantelli lemma.

LeMMA. Let {D,} be any sequence of events with 3, P(D,) = co; then
P(limsupD,) = ¢! if
2.1) lim inf {£7_, P(D,)}* L1 N P(D, N D) < c.
See for the proof for example Spitzer [9].
ProoF oF THE THEOREM. It is no loss of generality to suppose that
(2.2) (log log £)}/2 <.A(t) < 2 (log log 1)t .
The proof of this assertion follows the proofs of similar statements in lemmas
a, d, a’ and d’ in [6]. Then follows
(2.3) ¢(t) ~ 2/ logloglogt for t— oco.
By estimate (1.3) we have
(24)  P((S, — (2[m)nlogn)/n < —¢(n)) ~ 2P(U = A(n)
~ nle M 4(n)  for n— oo .
Assume the integral (1.4) converges. Define a sequence of integers {r,} by
n, = [exp(r/log r)] and consider the events:
4,2 (S, — 2[m)nlogn)/n < —o(n),
B.: min, g, ., (S, — (2/mnlogn)/n) < —o(n,),
C,: (S,,., — Q@mn,..logn, )n,., < —p(n,) .

Then lim sup 4, c lim sup B,. Therefore it suffices to prove Y P(B,) < co.
Next we define the event P, ; that i is the smallest number withn, < i< n,,,

for which
(Si — 2[m)ilogi)fi = —p(n,);
fori=n,+4+1,...,n.,, — 1 welet Q,, be the event that

(S,.,, — (2fmn,,1l0g n, 2)n, ., — (S; — (2m)ilog i)fi < 0.

Then
B,, = rr+l P

i=np 4l T

(X denotes the union of mutually exclusive events) and

Cr ) an+1_1 Pr,'i Q'r,i + Pr,n,,.,i_l *

i=np+1
It is easy to verify that P(Q, ;) =  for all i and therefore
(2.5) P(B,) = nit P(P,,) < 2P(C,) .

Convergence of the integral (1.4) is well known to be equivalent to (see [5]
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and [6])
(2.6) 5 exp(— 4¥(n,)[2)/A(n,) < oo .

From (2.4) and (2.6) it follows that }; P(C,) < oo and asa result 3 P(B,) < oo
by (2.5). Assume now that the integral (1.4) diverges, which implies divergence
of the sum in (2.6).

With the same sequence {r,} as before, we define the event D, by

0< S, < (2/n)n, logn, — n.p(n,).

It obviously suffices to prove P(D,i.0.) = 1.

The divergence of the sum in (2.6) together with (2.4) implies that Y} P(D,) =
oo. Since P(D, i.0.) is either zero or one, the lemma ensures that it suffices
to show that the lim inf in (2.1) is finite.

Consider P(D, n D,) for s > r.
P(D,N D) =PO<S, < —nor)+ (2/xn,logn N0<S,
= —np(n) + (2/m)n, logn,)
< P(D,)P(n,¢(n,) — (2/m)n, logn, < S, — S,
< —n(n) + (2/m)n, logn) < P(D)P(X < —n,o(n)/(n, — n,)
+ (2/z)(n/(n, — n,)) log n, — (2/x) log (n, — n,)) .
When n,/n, goes to zero
—n,p(n)/(n, — n,) + (2/)(n/(n, — n,)) log n, — (2/x) log (n, — n,)
= —¢(n,) + O((n,/n)logn,) .

With some calculations it follows that for each 6 > 0 and ¢ > 0 there exists
a number r, such that for all r = r, and s = r 4 (log r)**’ we have

2.7) P(D, N D) < (1 + ¢)P(D,)P(D,) .
Next we define a function ¢(n) by
(2.8) 2(ne) "t exp(ng(n)/4) = (221loglogn)t with 2> 1.
Then by (1.3) for all r
P((S,, — (2[m)n, logm,)n, < —¢(n,)) < Cr™1 with 1 <2, <2
and hence
P(D, N D,) < P((2/n)n, logn, — n,d(n,) < S, < (2/m)n, logn, — n.p(n,) N
0< S, < (2/n)n, logn, — n,o(n,)) + Cr~
< P(D,)P(S,,-,, < (2/m)n,logn, — n,¢(n,)
— (2/m)n, logn, + n.¢(n,)) + Cr~.
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Following the calculations in [6] we get for every r
(29)  T¥P(D,ND,) < kP(D,) + CL¥r~h < kP(D,) + Cllog N*rh,
where x restricts the summation to indices s with r < s < r 4 (logr)**?.
Combining (2.7) and (2.9), we get
lim inf {32, P(D,)}* 5oy Dy P(D, N D) < 1 +¢.
3. Remarks.
REMARK 1. Take ¢(t) = +(2/x) log (zed log log t) — (2/x) log 2 i.e., A(t) =
(22 log log #)t, then
3.1) P((S, — (2/m)nlogn)/n < ‘—<p(n) i.o.) = 0 or 1, according as
A>1 or 251,
This yields
3.2) liminf {(S, — (2/7)nlog n)/n 4 (2/x) log (e log log n)}
= (2/r)log2 a.s.
REMARK 2. Dividing by (2/z) nlog n throughout, (3.1) yields
(3.3) liminf S, /((2/z)nlogn) =1 a.s.

The result (3.3) was proved by Miller in [7] for positive random variables in
the domain of attraction of the stable law (1.1). For all distributions, con-
sidered in [7], the LIL (3.1) holds. From the expansion of the right tail of the
distribution, it is easy to prove

S, /(2/m)nlogn) —, 1,
EX, = oo and hence S,/n — oo a.s. From the paper of Chow and Robbins
[2] we know that
limsup §,/((2/m)nlogn) = co a.s.

REMARK 3. The theorem holds also for random variables in the domain of
attraction of the stable law (1.1) if we make some assumptions on the tails.
See for example Cramér [3] and Lipschutz [6]. It is difficult to give simple
conditions in terms of the tails of the distribution function of the random
variable in the domain of attraction.
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