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CONTINUITY PROPERTIES OF SOME GAUSSIAN PROCESSES

By CHRISTOPHER PRESTON
Cornell University

Let (S, d) be a compact metric space; let (Q, F,Pbea probability
space, and for each €S let X;: Q — R be a random variable, with
E(X;) =0 and such that {X:}:.s forms a Gaussian process. In this
paper we find sufficient conditions for the Gaussian process {X:}tes to
admit a separable and measurable model whose sample functions are
continuous with probability one. The conditions involve the covariance,
E(X, X;), of the process and also the e-entropy of S.

1. Introduction. Let (S, d) be a compact metric space, let (Q, &, P) be a
probability space, and for each ¢ € S let X, : Q — R be a random variable such
that {X,},.s forms a Gaussian process. We are interested in finding conditions
under which this process has a model whose sample functions 4re continuous
with probability one, i.e., such that X,(w): § — R is continuous (as a function
of ¢) for almost all w e Q. ’

We will make the following assumptions about the process:

(i) It has mean zero, i.e. for all e S we have E(X,) = 0.
(ii) It has a continuous covariance, i.e. if we define K: § X S — R by
K(s, t) = E(X,X,) then we require that K is continuous.

A problem which is essentially the same as the one stated above is the
following: Suppose we are given K: S X S — R such that K is continuous and
positive definite. Then by the Kolmogorov Consistency Theorem there exists
a Gaussian process {X,},. s with E(X,) = 0 for all e S and E(X,X,) = K(s, ?)
for any s, 1€ S. For what functions K does there exist a model of the process
whose sample functions are continuous with probability one?

In order to state our results we need to introduce some notation:

(a) Foranyxe Sandr >0 welet B,(x) ={yeS:d(x,y) <r}; B,(x)is called
the open ball with radius r and centre x.

(b) For any ¢ > 0 N(¢) will denote the minimum number of open balls of
radius ¢ required to cover S.

(c) We let H(c) = log N(c); H(e) is called the e-entropy of S.

(d) r,S), the exponent of entropy of S, is given by

ry(S) = limsup,_, {Tlc%ggg%} .
(e) Let a = sup{d(x, y): x, ye S}.
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The main result of this paper is:

I. A sufficient condition for a Gaussian process {X,},. s to admit a separable
and measurable model whose sample functions are continuous with probability
one is that if we set

V() = SUPy (.0 <au (E(IX, — X[}
then we have
{5 [log (rm )H(2ar)]* dv(r) < oo .
Furthermore there is a model in which
|X,(0) — X,(0)] < 20 §¢? [log B(w) + 2(log (r™*) + 2)H(2ar)]* dv(r)

where B: Q — R isa random variable with E(B) < 4(2)t. (Note: we can express
this result in terms of the covariance, since E(|X, — X,|*) = K(s, s) — 2K(s, t) +
K(t,t).) Applying I to some particular cases we get.

II. Suppose S is a compact subset of a real Hilbert space & (with the
metric on S induced by the norm on 5£°). Let (x, y) denote the inner product
of x and y in 7% it is simple to verify that K: § X § — R, given by K(x, y) =
(x, y), is continuous and positive definite on S. If r,(S) < 2 there exists a
Gaussian process {X,},.s With E(X,X,) = (s, t) and such that {X,},. s has a sepa-
rable and measurable model whose sample functions are continuous with proba-
bility one. This result was proved by Dudley in [1]. We prove further here
that there is a model such that given any  with 0 < 6 < 1 — 3r,(S) then there
exists D: Q — RU{oo} such that D is finite with probability one and

1X,(0) — X,(0)| £ D(w)[d(s, )]’ for all s,teS.

(Note: In [1] Dudley conjectures that if r,(S) < 2 then {X,},.s cannot have a
model whose sample functions are continuous with probability one, and this
conjecture is still unsettled.)

III. Suppose S is any compact metric space with ry(S) < 2. Then there
exists a Gaussian process {X,},. s such that

(a) E(X,X,) = exp[—%(d(s, x,) — d(t, x,))"] for some point x, € S.

(b) {X,},.sadmits a separable and measurable model whose sample functions

are continuous with probability one.

The method of obtaining these results is a generalization of that used by
Garsia et al in [2], [3], and [4] to obtain similar results in the case that either
Sis[0, 1]or Sisa cube in R*. We use an extension of a real variable lemma
of Garsia, Rodemich and Rumsey to show that the Karhunen-Loéve expansion
of the Gaussian process converges uniformly with probability one.

2. The proof of the main result. Let <7 denote the Borel subsets of S, and
let ¢ be a finite, nonnegative Borel measure on (S, &), with the property that



CONTINUITY PROPERTIES OF SOME GAUSSIAN PROCESSES 287

(B,(x)) >0 forallxeSand r >0. Let K: S x S — R be continuous and
positive definite on S. By Mercer’s theorem there exist ¢, : S — Rand 1, > 0
forn=1,2, ... such that

(i) ¢, is continuous for each n.
(i) {@,)7_. is an orthonormal system in %S, <Z, p).
(iif) 2,0,(x) = § K(x, t)¢,(t) dp(t) for all n and all xe S.
(iv) 1.1 4,9.(5),(t) converges uniformly to K(s, £) in S x S.

Letf,:Q >R, n=1,2,...,bea sequence of independent Gaussian random
variables with E(@,) = 0 and E(f,’) = 1. For any n> 1 and ¢ € S define X,™:
Q - R by

X, M(0) = 214 b (00 () -

({X, ™} is called the Karhunen-Loéve expansion of a Gaussian process having
covariance K.) Note we have for fixed e S and n that X, is a Gaussian
random variable with mean zero, and for fixed w € Q and n that X,™ (o) is a
continuous function of te S. Suppose that with probability one we have
{X,"}_, converges uniformly as n — co. Then defining X,: Q — R by

X,(0) = lim,_,, X,"(w) if it exists
=0 otherwise,

it is simple to verify that {X,},. is a Gaussian process which is separable
and measurable, and has continuous sample functions with probability one.
Also we have {X,},.; has mean zero and E(X,X,) = lim,_, E(X,™X,™) =
lim, . 7., 4,0,(8)¢, () = K(s, f). We will show that if the covariance K
satisfies certain conditions then we do have {X,}x_, converges uniformly with
probability one.

At this point we make the following remarks:

A. The uniform convergence with probability one of the-Karhunen-Loéve
expansion of a Gaussian process {X,},.s is (from the above) clearly sufficient
to establish the existence of a version of the process which has continuous
sample functions with probability one. The condition is also necessary; this
is proved in [5] by Jain and Kallianpur, using the ideas of It6 and Nisio [6].

B. The proof, to be given below, that for certain covariances the Karhunen-
Loéve expansion of the process converges uniformly with probability one, also
shows that for the same covariances we have the uniform convergence with
probability one of the expansion of the process with respect to any orthonormal
basis for the reproducing Hilbert space of the covariance kernel.

Let 4 be the Borel measure on (S, %) as before; define m: Rt — R* by
m(r) = inf,. s p(B,(x)). Let ¢: R — R* be continuous, symmetric (i.e. ¢(f) =
¢(—1)), convex increasing (for te R*), with ¢(0) = 0; let p: R — R* be
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continuous and increasing, with p(0) = 0. The proof of our results depends
heavily on the following lemma:

LEMMA 1. Let fe £XS, &, p) and suppose that
— fiY)
0§ ¢ (M) dp(s)dp(t) = ¢, < oo .
old(s, 1) °

Suppose also that

b (S ) dp here  p(u) = p(2u) .

597 ( Gay) W) < 0 where p(u) = p(2u)
Then there exists g: S — R with g con‘tinuous and g = f a.e. Furthermore we have

— g(y)| < 10 §it=m g (_CO‘ >d- :

909 — ) £ 10 5500 97 () o)

Proor. This is given in [7].

LetK, ¢,, 2, and X, be as before. We define AK: S X S — R by AK(s, t) =
K(s,s)—2K(s,t)+ K(t,t). ThusAK(s,t)= Y3, 4,(¢,(5)—¢,(2)). Leto: R*->R*
be continuous, increasing with ¢(0) = 0 and such that o(v) > sup,, ,, <. {AK(s, )}
We now have:

LEMMA 2. Suppose

¥ [log(m(i/z) >:r di(u) < oo, (where 6(u) = o(2u)) .

Then with probability one we have {X,™}>_, converges uniformly on S as n — oo.
Further we have

1 X, (@) — X, ()] < 20 (¢ [log <%)T dé(u),

B(w) = sup, §§ exp } {X’”)‘j()d(; j?)‘”’(“’) F du(s) dutty

and E(B) < 4(2){u(S)T"

Proor. The proof is exactly the same as in [3] or [4] and so we omit it.

We now construct a suitable measure ¢ on S that will enable us to get results
involving the e-entropy of S. Recall that @ = sup {d(x, y): x, ye S}; a <
since S is compact.

LEMMA 3. There exists a nonnegative Borel measure p on (S, &) with p(S) = 1
and such that if B is any open ball with radius r then p(B) = [T72)" N(27%a)]™,
where (r) is the integer part of (log (r~*)/log 2).

Proor. Foranyn=1,2,...,andfor 1 < i, < N(27%a) for j < n we define
B(i,, i, - - -, i,) to be an open ball of radius 27"« such that
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() B(y, -+« i,y J) N By, -+, i,_) N --- N B(iy, i) N B(i,) # @ for any
1 £j< NQ27"a).
(i) URE™ B(hy -+, dyaf) D B(i) 0 Bliyy i) 0 -+ 0 Bliyy -+ -, 4,)-
(iif) Y¥e'o B(i) = S.
It is clear how open balls with these properties can be constructed inductively.
Choose p(i,, -- -, i,) € B(i,, - -+, i,) N +++ N B(i,, i,) N B(i;) in such a way that
ply, - i) =p(fis - -, Jo) iff iy =j, fork=1, ... n Let E(n)={B(i,, - -, i,):
1 <i; < NQ2ia),j=1,...,n},and let _#Z(n) = {p(i,, - - -, i,): 1 £i; S N2 a),
Jj=1,.--,n}. Then it is easy to verify that:
(i) &(n) consists of T]z_, N(27*a) open balls of radius 27"a.
(ii) The elements of &7(n) cover S for each n.
(iii) _#(n) consists of [[z_, N(2~*a) points.
(iv) If m < nand Be &'(m) then there are least []7_,,,, N(2 *a) points from
A (n) in B.
Let p, be the Borel measure on (S, <Z') given by

ta = [I121 N(z_ka)]—l Dive i o

(Here p, denotes the unit point mass at x.)
We now have:

i p(S)y=1forn=1,2, ...,

(if) If m < nand Be &7 (m) then p,(B) = [, N2 *a)] ™.
But S is separable so there exists a subsequence {z, }7, and a nonnegative
Borel measure x on (S, &) such that p, —,.p as k— oo. Thus we have
#(S) = 1 and if Be &(n) then p(B) = lim, . , (B) = [[[}-i NQ*e)] . If
A is any open ball in S with radius r and 2=""'a < r < 27"« then there exists
Be &(n 4+ 2) with B c 4 and so

m(4) = [IHENQ )] = [I1%5"7 N2 )]
We are now in a position to prove:

THEOREM 1. A sufficient condition for the Gaussian process {X,},. s to admit a
separable and measurable model whose sample functions are continuous with proba-
bility one is that if we set

v(U) = SUPy(,,y <o {E(| X, — X[}
then we have
{3 [log (r)H(2ar)]t dv(r) < oo .
Furthermore there is a model in which
[X,(@) — X,()| < 20§80 [log B(w) + 2(log (™) + 2)H(2an)]* do(r)
where B: Q — R is a random variable with E(B) < 4(2)%.
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Proor. Let K(s, t) = E(X,X,), sO V(1) = SUPy,.+y<au {AK(S, £)}1. Let p be the
Borel measure constructed in Lemma 3. Then

m(r) = inf,.s p(B,(5) Z ([ NE 4] Z [Na2r)[-ros
Therefore log (1/m(r/2)) < (log (r~*) + 2) log N(2ar) = (log (r™) + 2)H(2ar).
Hence from Lemma 2 we have that if {}[(log (r™") + 2)H(2ar)]*dv(r) < o

then with probability one {X,™};_,, the Karhunen-Loéve expansion of the
process, converges uniformly on S. We also have

X, ™(0) — X, (@)| < 20 §¢* [log B(w) + 2(log (™) + 2)H(2an]dv(r) .
Letting n — oo completes the proof of the theorem.

ReMARrk. Forcertainmetric space§ whose structure is better known Lemma 3
can be improved, and thus Theorem 1 can be improved in these cases; for
example, if § = [0, 1]* then clearly the best thing to do is to put x equal to
Lebesgue measure on [0, 1]*. Then in this case the condition in Theorem 1
can be replaced by the condition that

$i[HQ2ar)]tdv(r) < oo .
This gives the same result as Garsia in [4].

3. Auxiliary results.

THEOREM 2. Let 57 be a real Hilbert space, and let S be a compact subset of
. If ry(S) < 2 then there exists a Gaussian process {X,},. s with E(X, X,) = (s, t)
(where (s, t) denotes the inner product of s and t in 52°), and such that {X,}, . s has
a separable and measurable model whose sample functions are continuous with proba-
bility one. Further, there is a model such that given any 6 with0 < 6 < 1 — 3ry(S)
then there exists D: Q@ — R U {co} such that D is finite with probability one and

1X,(0) — X,(0) < D(w)[d(s, 1)]° forall s teS.

Proor. If E(X,X,) = (s, t) then E(|X, — X,|*) = (s — ¢, s — t), and s0 v(u) =
SUPy (s <20 LE(| X, — X,|)} = 2u. Since r,(S) < 2 there exists £, < 2and 7, > 0
such that if ¢ < 5, then log H(e) < &, log (¢7?), i.e. H(e) < (¢7")%. Thus
{3 [log (r")H(2ar)]*dv(r) < co and so we can apply Theorem 1. Hence we
have there exists a model of the process in which

| X(@) — Xy()| < 40 §5°" [log B(w) + 2(log (r™") + 2)H(2ar)]*dr

where B: Q — R is such that E(B) < 4(2)t. Take 6 with 0 < 0 < 1 — 3r,(S)
and let £ = 2 — 2. We thus have r(S) < ¢ < 2, and so there exists » > 0
such that if

e < n then 2(log(c7) + 2)H(2ac) < (¢71)° .

Therefore if d(s, ) < » we have
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[ X(@) — Xy(0)| < 40 3 [log B(w) + (r)]Hdr
< 40[log B(w)]? §¢=* dr 4 40 §¢=? (r~)2dr
= 40[log B(w)]¥d(s, t) + 40(o7)[d(s, t)]°
< 40{[log B(w)]* + (97)}d(s, O]’ -
We can thus clearly find D: Q — R U {oo} such that D(w) < co whenever
B(w) < oo and
[ X, (0) — X(0)| < D(w)[d(s, )]’ forall s,7eS.
Let S be an arbitrary compact metric space. There is an obvious way of
constructing continuous positive definite functions K on § X S to be used as
covariance functions for Gaussian processes on S; namely let g: R — IR be
continuous and positive definite, let x,e S and define K(s, t) = g(d(s, x,)
—d(t, x,)). Clearly K is positive definite. We have AK(s, t) = 2[9(0) —
9(d(s,x,) — d(t, x,))] and so
SUPy (s, s [AK(s, 1)]F < sup, <, [2(9(0) — g())]}
since |d(s, x,) — d(t, x,)| < d(s, t). Using this observation we immediately have:
LeEMMA 4. Let g: R — R be continuous and positive definite, and let x,¢e S.
Define G(u) = sup,,, [2(9(0) — g(r))]} and suppose
{3 [log (r)H(2ar)]* dG(r) < oo .
Then there exists a Gaussian process {X,},. s such that
@) E(X,X) = g(d(s, x)) — d(t, x,))-
(b) {X.},cs admits a separable and measurable model whose sample functions
are continuous with probability one.

Finally, from Lemma 4 we have:

THEOREM 3. Suppose r|(S) < 2, and let x,c€ S. Then there exists a Gaussian
process {X,},. s such that

(@) E(X,X,) = exp[—3(d(s, x) — d(t, x,))’].

(b) {X.}.cs admits a separable and measurable model whose sample functions
are continuous with probability one.

ProoF. Let g(f) = e **?; then g is continuous and positive definite and
G(u) = sup, ., [2(9(0) — 9(r))]* = [2(9(0) — g(2u))]t. Now since r(S) < 2 there
exists § < 2 and » > 0 such that if ¢ < » then H(¢) < (¢7!)*. But it is easy to
check that

§5 [log (r=)(r™) ¥ dG(r) < oo
and so
3 [log (r")H(2ar)]*dG(r) < oo .

The result thus follows from Lemma 4.
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