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CONSISTENCY AND ASYMPTOTIC NORMALITY OF MLE’S FOR
EXPONENTIAL MODELS!

BY RoBERT H. BERK
Rutgers University

0. Summary. Conditions are given for the strong consistency and asymptotic
normality of the MLE (maximum likelihood estimator) for multiparameter
exponential models. Because of the special structure assumed, the conditions
are less restrictive than required by general theorems in this area. The tech-
nique involves certain convex functions:on Euclidean spaces that arise naturally
in the present context. Some examples are considered; among them, the
multinomial distribution. Some convexity and continuity properties of mul-
tivariate cumulant generating functions are also discussed.

1. Introduction. LetY,Y,, Y, --- bea sequence of m-dimensional random
variables. All distributions we consider render the sequence i.i.d. We work
with a natural exponential family of pdf’s for Y of the form

(1.1) P(y| o) = exp{o’y — c(w)}.

The pdf’s in (1.1) are relative to some o-finite measure v = 0 on R”. We say
v generates the exponential family p. The parameter » ranges in a subset Q
of the natural parameter set Q(v) = {w: § exp{w’y}dyv(y) < oo}) c R™. Clearly
c(w) = log § exp{w’y} dv(y) and Q(v) = (¢ < o0). Throughout, we assume
that Q(v) has non-empty interior Q°(v) and that the mapping @ — p(+ | ®) is
I — 1 on Q(v). This entails no essential loss of generality, as indicated below
in Section 2.

We consider consistency and asymptotic normality for the MLE of w in Q.
Section 2 contains some preliminary results; consistency is discussed in Section
3. In Section 4, the consistency results are extended to general exponential
families. Some examples are considered in Section 5 and asymptotic normality
is discussed in Section 6. The multinomial distribution is treated in Section
5 too. Although not quite an exponential family, with slight modification our
methods apply in this case as well. Besides illustrating a different approach
to this model, we are able to improve slightly on the results previously given
in the literature.

2. Convexity and continuity properties. We collect here some facts about the
function c. Many of these may be viewed as properties of multivariate Laplace
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transforms or cumulant generating functions. The reader is referred to
Eggleston (1958) for a general discussion of the facts about convexity cited
here. In the sequel, C(v) denotes the convex hull of the support of v: C(v) is
the smallest convex subset of R™ whose complement is a v-null set.

A. We note that Q(v) is a convex subset of R™. This follows directly from
the fact that h(w) = § exp{w’y} dy(y) is convex. It follows from Fatou’s
lemma that 4 is lower semi-continuous (Isc) on R™: if w, — w, lim inf A(w,) =
h(®). Thus ¢ = log h is also Isc. Moreover, ¢ is convex on R™. For if u,
v € R, it follows from Holder’s inequality that for 0 < ¢ < 1, h(tu + (1 —t)v) <
(h(w)) (D))"

Upon taking logarithms, we see that
(2.1 c(tu + (1 — tyw) < te(u) + (1 — He(v) .
Regarding strict inequality in (2.1), we may assert

LemMA 2.1. The following statements are equivalent.

(i) v is not supported on a flat.
(ii) c is strictly convex on Q(v).
(iii) @ —p(+|w)is 1 — 1 on Q(v).

PROOF. (i)« (ii). Choose u and v in Q(v), u == v. It is enough to consider
t = }in (2.1). The necessary and sufficient condition for equality in Schwarz’
inequality, applied to the preceding, shows that there is equality in (2.1) iff
(u — v)'y is a.s. constant [v]. This happens iff v is supported on a flat.

(i) = (iii). We have p(-|u) = p(+ [0)[] = u'y — c(u) = v'y — c(v)[s] =
(4 — v)'y = c(u) — c(v)[v] = v is supported on a flat. The first statement is
the negation of (iii); the last, the negation of (i). 0

By transferring v to a space of lower dimension, if necessary, we may always
arrange that 2.1 (i) holds. Thus the assumption that 2.1 (iii) holds entails no
essential loss of generality.

B. Let P, be the measure corresponding to p(.|w)dv. Since p cannot
vanish, for all w € Q(v), P, = v. In particular, C(P,) = C(v). Any P, gener-
ates the same exponential family as v, except that Q(P,) = Q(v) — 0 =
{v — w:v € Q(v)}. For many purposes, we may thus assume that v is a proba-
bility measure and that Q(v) contains the origin. A non-singular linear
transformation H of R™ yields a corresponding transformation of v and p:
Corresponding to the transformed variable HY is an isomorphic exponential
family of pdfs, generated by vH~' and with normalization function cH™*.
The common convex support of the family is C(vH~') = HC(v) and the new
index set is QWH™!) = HQ(v).

Assuming that Q°(v) = ¢ also entails no essential loss of generality. For
if Q(v) spans a flat of dimension r < m, by translating and rotating with
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an appropriate H, we may assume that Q(v) spans the subspace V =
{(0) -+ -y 0,) 0, = --- =0, =0}. Then as (y, ») ranges through R™ x Q(v),
p depends on y and w only through their first r coordinates. The measure v,
on R" induced by the projection (y;, - -+, y,) — ()1, - - -, y,) then generates
the same exponential family p, considered now as a function on R” x R".
Moreover, Q%(v,) = .

C. A direct consequence of convexity is that ¢ is continuous on Q°(v).
(See Theorem 24 of Eggleston, 1958.) In fact, c is infinitely differentiable on
Q°(v). This may be seen from the fact that the moment generating function
(mgf) of Y under P, is E, exp{u’ Y} = exp{c(u + 0) — c(w)}. If w e Q(v),
the mgf is finite as u ranges in a neighborhood of zero. Equivalently, letting
|y| denote Euclidean length in R™, Y| has a non-trivial mgf under P, for
€ Q°(v). Then all coordinates of Y have moments of all orders. On Q°(v),
we also have E Y = ¢(w), where ¢ = (dc/dw,, - - -, dc/dw,,)’ and E,[(Y — é()) X
(Y — é(w))'] = é(w), where ¢ = (9°c/dw;0w;). Because Y does not lie in a flat
[P,], ¢ is positive definite.

D. Forwe Q(v), E,Y exists if E,|Y| < co. Let Q(v) = {0 € Q(v): E,|Y| < 0}.
It is easily seen that Q,(v) is convex and Q,(v) D Q°(v). The mapping w — E,Y
of Q,(v) into R™ is an extension of ¢ from Q°(v) to Q,(v). We denote this ex-
tended mapping by ¢ also.

LeEMMA 2.2. The mapping ¢ is 1 — 1 on Q,(v).

Proor. For v, weQ(v), we have always E, log[p(Y|v)/p(Y|w)] < O.
Equality holds only if P, = P,, which, is view of 2.1 (iii), happens only if
v =o. Thus by taking v = @ e Q(v) and letting » = ¢(w), we obtain
0> E(v— )Y + c¢(w) — c(v) or
(2.2) vy — c(v) < 0 — c(w) .

Thus the LHS of (2.2) attains a unique maximum at o, which implies that
the correspondence w — 7 is unique. []

Then on Q,(v), one could alternatively parametrize the exponential family
by the expectation 7 = ¢é(w). The conceptual advantages in doing so are dis-
cussed below in Section 3.

E. Itis convenient to introduce the likelihood function g(y | 0)= 'y —c(w).
q represents the likelihood for the sufficient statistic Y, = Y7 Y,/n as well as
for a single observation. The properties of ¢ established above imply that
q(y| ) is concave and usc in w. In particular, ¢(y| +) attains a maximum on

any compact subset of R™.
In the sequel, the set of outcomes for which the likelihood is bounded plays

an important role. Accordingly, for ye R™ and ¥ < Q(v) we define

(2.3) gy | V) =sup{o'y — c(w): weV}.
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Since ¢ is linear in y, it follows that g(« | V) is convex and Isc. Let B(V) =
(g(+ | V) < o) and B(v) = B(Q(v)). Then for all ¥ c Q(v), B(V) is convex
and B(V) D B(v). Theorem 24 of Eggleston (1958) shows that g(.|V) is
continuous on B°(V') and a fortiori, on B°(v). The following lemma establishes
that B°(v) = @ and gives some relations among the sets we have considered.
C denotes the closure of C  R™.

Lemma 2.3. (i) ¢Qy(v)) c B(») c C(v).

(ii) If every support hyperplane intersects C(v) in a v-null set, then B(v) C C°(v).

(iii) ¢(Q%(v)) is open; thus B°(v) = (.

(iv) du(v)) < C°).

Proor. The first inclusion in (i) follows from (2.2). We establish the second
as follows. We note first that .

(2.4) e B(v) = inf {{ exp{w’(y — {)} dv(y): @ € Q(v)} > 0.

Since C(v) is closed and convex, if { ¢ C(v), there is a hyperplane through ¢,
one of whose closed half-spaces does not meet C(v). I.e., thereisan w = 0
in R™ so that w’(y — £) < 0 for y e C(v). As discussed in (B), we may assume
that v is a probability measure. Then for k > 0, {exp{ko'(y — ()} dv(y) < 1;
thuskw € Q(v) forallk > 0. Ask — oo, exp{ke’(y — {)} — 0 pointwise on C(v).
By dominated convergence, § exp{ko’(y — ()} dv(y) — 0 as k — co. Thus the
second condition in (2.3) is violated and £ ¢ B(v).

(ii) We remark first that 2.1 (i) is a necessary condition for the hypothesis.
Suppose then that { ¢ C°(v). Then there is a hyperplane through {, one of
whose open half-spaces does not meet C(v). I.e., for some w # 0, 0'(y — ) <0
for ye C(v). The hypothesis implies that v{ye C(v): o'(y — {) = 0} = 0;
hence o’(y — {) < 0 a.e. [v]. The previous argument then shows that { ¢ B(v).

(iii) We note that on Q°(v), the Jacobian matrix of ¢ is ¢. Since det ¢ > 0
on Q(v), it follows that ¢(Q%(v)) is open (see, e.g., Buck (1956), page 218,
Theorem 24). Since Q(v) = (&, it follows from (i) that B°(v) = .

(iv) If we Q,(v) and » = E Y ¢ C°(v), then for some v % 0, v'(y — ) =0
forye C(v). Le., v (Y —7)=0[P,]. But E,v'(Y — %) =0; thusv'(Y —7) =0
[P,]- That is P, is supported on a hyperplane, which contradicts 2.1 (i). []

3. Consistency for natural exponential families. Using the model (1.1), we

treat consistency for the MLE of w in Q — Q(v) based on Y;, ---,Y,. We do
not suppose that P, the actual distribution of Y is in the model. P will also
denote the distribution of the entire i.i.d. sequence Y, Y,, - - - . The normalized
likelihood function for Y,, --., Y, is

(3.1) nt Lrlog p(Yi| o) = ¢(Y, | ).

If a conventional MLE is to exist, ¢(Y, | -) must be bounded on Q. That is,
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we must have Y, € B(Q). Assuming 7 = E,Y exists, Y, — 7 w.p.1. Thus if
n e B(Q), then eventually Y, € B(Q). This condition on 7 is an essential
sufficient condition in the following theorem.

THEOREM 3.1. Suppose (i) Q is locally compact. (ii) E, Y| < co and n =
E.Y e BY(Q). (iii) g(7 | +) attains a unique maximum on Q at w say, and is bounded
below q(7| w) off neighborhoods of . Then w.p.1, q(Y,|+) eventually attains a
maximum on Q. If the maximizing point is unique, it is measurable. If v, is a
measurable maximizing point for ¢(Y, | +), then P(®, — ) = 1. If in addition, Q
is locally convex, q(X, | +) eventually attains a unique maximum on Q.

REMARK. Above, local compactness of Q refers to its relative topology.
This means that if U, is the closed e-sphere about we Q, then U, N Q is
compact for ¢ sufficiently small. We take an estimator @ in Q to be measurable
if for every relatively open V' C Q, (@ € V) is measurable. If the maximizing
point @,, is not assumed to be measurable, we can still assert that @, —  for
a set of outcomes having P-measure one.

Proor. Let S = {veQ:|v— | <¢}. Since Q is locally compact, we may
assume S is compact by taking ¢ sufficiently small. Let ¥ = Q — S. Since
w.p.l1 Y,—>7eB%Q), Y, is eventually in B°(Q). Then, by (iii) and the conti-
nuity of g(+|¥V), w.p.1 ¢(Y,|V)—>4q(n|V) < q(n|®). Since also w.p.1
q(Y,|w) — q(n| @), w.p.1 eventually ¢(Y,|w) > ¢(Y,|V). Thus eventually,
the global supremum of ¢(Y,|-) occurs on S. Since S is compact, ¢(Y, | +)
eventually attains its supremum on Q and all of its maximizing points are in
S. Because ¢ is arbitrary, for any measurable MLE w,,, P(®, — w) = 1.

If Q is locally convex, then for ¢ sufficiently small, S is convex as well as
compact. Since ¢(Y, | ) is strictly concave, it attains a unique maximum on
S. Then as soon as ¢(Y, | @) becomes and remains larger than ¢(Y,|V), this
unique maximizing point in S is the unique MLE on .

Suppose finally that ¢(Y, | -) attains a unique maximum on Q at @,. We
establish the measurability of w, as follows. Let W be a compact subset of
Q. Then (w,e W) = (¢(Y,| W) = q(Y,|Q)). Since g(-|W) and ¢( [Q) are
Isc and hence measurable, we conclude that @, is measurable. []

REMARK. The requirement that Q be locally compact is satisfied if Q is open
or closed. The effect of this condition is to assure that ¢(Y,|+) (eventually)
does attain a maximum on Q. If some such condition were not imposed, it
could happen that although ¢(Y, | +) is bounded on Q (as soon as Y, € B(Q)),
the supremum is never attained. One can also avoid this problem by con-
sidering almost-maximum likelihood estimators. I.e., choose @,, to satisfy
q9Y, | @,,) > q(Y,|Q) — d,, where 0 <, — 0 asn— oo. Sucha w,, always
exists and can be chosen to be measurable. Eventually @,, is in S too, so
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®,, — o on a set having P-measure one. Condition 3.1 (i) is unnecessary
with this approach.

If P is or resembles, in a certain sense, a distribution in Q N Q,(v), the
conditions of Theorem 3.1 may be verified.

LEMMA 3.2. Assume (i) E,|Y| < oo and for some w € Q N Q,(v), E,Y = EJY.

REeMARK. It follows from Lemma 2.2 that  must be unique.

Proor. We discuss only 3.1 (iii). It follows from (2.1) that ¢(y| ) attains
a unique maximum on Q(v) at w. If we replace Q by Q(v) in 3.1 (iii), the
desired boundedness is a fact generally true about strictly concave functions
on convex sets. A fortiori, the boundedness holds on Q < Q(v). [J

RemARrRk. Ifin 3.2 (i), 0 € Q N Q%v), 3.2 (ii) is redundant. This follows
from Lemma 2.3 (i and iii). Then the following corollary, which applies to
many common exponential families, is immediate.

CoROLLARY 3.3. Suppose Q c Qv). If for some we Q, E,Y = E)Y, 3.1

If E,)Y = E,Y for some o in Q(v), then 5 = E, Y € ¢(Q°(v)). Since ¢(Q°(v))
is open (2.3(iii)), w.p.1 Y, is eventually in ¢(Q°(v)). When that happens, or
more generally, if Y, € ¢(Q,(v)), ¢(Y,|+) has a unique maximum on Q(v) at
the point w, satisfying

(3.2) Hw,) =Y, .

This follows from (2.2), although it may be heuristically seen by formally
differentiating ¢(Y, |w) = @'Y, — c¢(w). (However, c is totally differentiable
only on Q°(v) in general.) An advantage of the parameterization 7 = ¢(w)
becomes evident here. The MLE for 7 in ¢(Q,(v)) is just Y,, which is visibly
consistent and asymptotically normal. (P. J. Bickel brought this fact to the
author’s attention.)

4. General exponential families. We extend the preceding results to general
exponential families. Let X, X, ... be a sequence of i.i.d. random variables
with values in &7 and having common distribution F. Fis efined on.%; a
measurable structure for 22", A general exponential model for X is a family
of pdf’s of the form

(4.1) S(x[0) = exp {27 a,(0)Bi(x) — 7(0)};

all pdf’s are relative to some o-finite measure p = 0 on .. The parameter
0 ranges in a parameter space ©. We consider the MLE for ¢ based on the
model f.
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Let 8(x) = (Bi(x)), - -+, B,.(x)) and Y = B(X). Clearly the MLE for 6 de-
pends only on Y,Y,, ... . The mapping 3 induces on R™ an exponential
family p (corresponding to f) of pdf’s for Y. By letting v = p8~* and a(f) =
(ay(0)s - - -5 a,(0)), the correspondence between fand p is given by

Sx]0) = p(B(x)| a(0)) »
where p is the natural exponential family induced by v. If we write w = a(6),
the corresponding range for w is Q = a(©). P = F3~'is the actual distribution
of Y.

In order that the basic condition 2.1 (i) hold for v, 8 must not lie in a flat
in R, [¢]. If the model fis identified (i.e., § — f(+ |#) is 1 — 1), then a: 0 — Q
must be 1 — 1. We henceforth assume z and a satisfy these conditions. Then
a=a'existsand a: Q — 0.

Under f, the normalized likelihood for X, - .., X, is

(4.2) g.(0) = n7 31 log fiX;]0) = «'(O)Y, — 7(0)
= a'(0)Y,, — c(a(0)) = ¢(Y,|a(0)) -

In order that convergence of the MLE in ® have meaning, ® must be a
topological space. We take measurability of an estimator @ ranging in © to
mean Borel measurability. Theorem 3.1 carries over as follows.

THEOREM 4.1. Suppose (i) B8 does not lie in a flat [p]. (ii) Conditions 3.1
(i-iii) hold for (p, Q, P). (iii) a: Q — O is continuous. Then w.p.1, g, eventually
attains a maximum on ©. If the maximizing point is unique, it is measurable. If
8, is a measurable maximizing point for g,, then F(6,— 0) = 1, where 6 = a(w).
If in addition, Q is locally convex, g, eventually attains a unique maximum on ©.

Proor. The theorem is a direct consequence of Theorem 3.1, using the
identifications made above and the 1 — 1 correspondence Q — ©. In parti-
cular: (a) g, attains a (unique) maximum on O iff ¢(Y, | -) attains a (unique)
maximum on Q (see (4.2)). (b) If w, is a measurable maximizing point for
q(Y,|+), then 8, = a(w,) is a maximizing point for g, and is measurable
(because a is continuous, hence measurable). (c) If w, — », by continuity
0n = a(wn) — a(a)) =4. [I

We interpret 3.1 (i-iii) in terms of (f, ©, F) under the plausible assumption
that « and a are continuous (and thus that ® and Q are homeomorphic).
Regarding 3.1 (i), we note that local compactness is a topological invariant.
Hence Q is locally compact iff ® is. Condition 3.1 (ii) requires that 5 =
E,p(X) exist and belong to B°(Q). Note that B(Q) may be defined intrinsically
in terms of f:

B@) = (ye R™: sup{@'(0)y — 1(6): 0 € 0} < oo} .

Similarly, we have the intrinsic representation
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Q() = {we R™: § exp(@/(x)} dp(x) < 0);
other analogous expressions may be given as well. Assuming the existence of
n, we interpret 3.1 (iii) by defining

9r(0) = Eplog fiX|0) = q(n| a(0)) -

Clearly ¢(» | -) attains a unique maximum on Q iff g, attains a unique maxi-
mum on 0. Let w and @ denote the respective maximizing points; o = a(f).
Moreover, ¢(7| -) is bounded below g(» '| o) off neighborhoods of w iff g, is
similarly bounded. E.g., if Uis an open neighborhood of 6, sup{g,(t):t¢ U}=
g(y|aU) and aU is open if a is continuous.

The import of the preceding discussion is that the whole development can
be done for (f, ©, F) directly, without explicitly cakculating (p, Q, P). Such
an approach is taken in Berk (1970), in a different context. We remark that
3.2 and 3.3 can be reformulated to apply directly to (f, Q, F).

5. Examples. The following indicates for some specific models the nature
of the conditions discussed above. The last example deals with the multi-
nomial distribution. Although it does. not fall precisely within the above
formulation, the same technique can be used to analyze it.

ExAMPLE 1. N(¢,0%). Weobtain the model f(x|§,0) =exp{— (x—§)*/20%} /o (27)t,
(6,0) e ®CR x (0, co0) upon taking &2~ = R, dp(x)=dx/(2x)t, B(x)=(x, —x*/2),
a(&, 0) = (§/d%, 1/o%) and (¢, 0) = —(§*/20* + logg). For the natural pa-
rameterization m = 2 and v is supported on the parabola (2y, = —y,?). Q(v) =
{(@, ®,): @, > 0} = R X (0, o) and ¢(w) = (0’ /w, — log @,)/2. It is straight-
forward to calculate that B(v) = (y,* < —2y,) = C°(v). (See, e.g. (6.2) of
Berk (1970) or note that ¢(Q(v)) = {E; ,,8(X): (&, 0) € ©} = C°(v) and see 2.3
(i, ii).) Since a is a homeomorphism, existence and consistency of the MLE
for locally compact © follows from 3.2. Of course, for ® = R x (0, o), the
MLE is easily exhibited and studied ad hoc.

An example where Q C Q(v) is the family N(d0, 6%), where 6 = 0 is fixed and
6 ranges in ® = R — {0}. The mapping « takes © into Q = {(v,, w,): ©,* = d*w,,
o, # 0}. Qislocally compact. Thus, assuming the model holds, g, eventually
attains a maximum on ©. (In fact, g, attains a unique maximum w.p.1 for
rn = 1.) When the model holds, consistency follows from 3.3.

The likelihood g, has two relative maxima, at (— X, = (6°X, + 4V,)})/2,
where X, = Y2 X /nand V, = Y7 X;*/n. The absolute maximum is at 8, =
(— 0X, + (sgn0X,)-(6°X,* 4 4V,)})/2 and consistency is easy to verify
directly.

If X ~ Fand E, X = £ # 0 and Var, X = ¢* < o0, @, converges w.p.1 to
the obvious limit, which is the 6 of 4.1. Note that unless §/¢ = J, F does
not resemble any distribution in the model in the sense of 3.2 (ii). Thus one
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must appeal directly to 3.1 (or 4.1). If £ = 0, 3.1 (iii) fails, for although g,
attains a maximum on O, it is not unique. Examination of @, shows that
w.p.1, limsup #, = ¢ and lim inf #, = — o, so that there is no consistent be-
havior in this case. One would not expect to have consistency if g, does not
attain a unique maximum. This point is further illustrated in the following
example.

ExaMpLE 2. Letv be Lebesgue measure on [0, 1]. Then p(y|w)=we*?/(e*—1),
0<y<1,0eR=9Q(). Here C(v) = (0, 1) = ¢(Q(v)), so also B°(v) = (0, 1)
(see 2.3 (i, ii)). Suppose Y ~ P and let » = E,Y. Ifpe (0, 1), then q(y|w) =
oy + log [w/(e* — 1)] has a unique maximum on Q(v) and the MLE is con-
sistent. If ¢ (0, 1), so that 3.2 (i) is violated, ¢(y|+) is unbounded. If
n¢[0, 1], then w.p.1, ¢(Y,|®) is eventually unbounded, so that no MLE
exists. If =1 and P(Y =1) < 1, Y, oscillates about 1, so that a MLE both
exists and does not exist infinitely often.

ExampLE 3. Gamma distribution. We consider the model f(x|w) =
w,1x1e7*[T'(w,) for x > 0, with du(x) = dx/x on &2~ = (0, o). The model
is already naturally parametrized, although it is more convenient to work
with (227, ) than (R?, v). Here Q(v) = {(®,, ®,): @, > 0, 0, > 0} = Q(»).
Taking Q = Q(v), if w € Q obtains, it follows from 3.3 that the MLE eventually
exists and is consistent. It does not seem possible to explicitly exhibit the
MLE for this model. Corresponding results hold for suitable Q — Q(v). The
case Q = (w, = 1) is treated in the classical way by Cramér (1946) page 504
Jff- Similar remarks apply to the family of beta distributions.

ExAMPLE 4. Multinomial distribution. The theorems of this paper do not
apply directly to a multinomial model unless all of the cell probabilities are
positive. With zero cell probabilities, the multinomial can be viewed as an
extended exponential model, with some components of w being allowed to
assume the value —co. We essentially adopt this point of view, but work
explicitly with the usual parameterization, the cell probabilities. With a bit
of circumlocution to allow for the value —oo, we use the preceding methods
to establish consistency in this case.

The sample space for one multinomial observation Y is K = {(1, 0, - - -, 0),
©,1,..-,0),..-,(0,0,---,0,1)} c R~ and the parameter set is II =
{reR":0 < r, )7 m,=1}. Il also serves as the sample space for the suf-
ficient statistic Y,. We choose as dominating measure v the counting measure
on K. Then the likelihood function for the outcome y e II is

(5.1) g(y|m)=logp(y|m) = 3 y;logm,,

where we define —c0+0 = 0. We note that for y ¢ II, ¢(y| +) is concave and
use on II (in fact, strictly concave where finite). Although ¢(.|r) is linear
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in y, it may not be continuous on II. The pathology occurs if the set
(9(+ | ™) = — o0) is not empty (which happens only if some components of =
vanish). Nevertheless, ¢(- | z) is continuous on the set where it is finite. We
denote this last set by A(xr) = {yeIl: 3] y,log r; > —oco}. Thus A(x) contains
those distributions dominated by z. Clearly A(x) is a closed convex subset of
II. (In fact, A(z) is the convex hull of the finite set A(r) N K.)

If VclI,qy|V)=sup{g(y|n):meV} is finite on the set A(V) =
U {A(r): meV}. Asgq(-]|V)is clearly convex, it therefore has the usual con-
tinuity properties of convex functions: it is continuous on the relative interior
of any convex subset of A(¥). In particular, g( | V) is continuous on A’(y),
the relative interior of A(y), for all 7 ¢ A(¥V). (Note that A%») may be charac-
terized as those points of A(») having positive barycentric coordinates, or as
those distributions in II equivalent to ».) The sets {A%(y): 7 € A(V)} form a
finite partition of A(¥) (into vertices, edges, faces, etc. of II). Since g(- | V)
is piecewise continuous on this finite partition, it is measurable.

We establish consistency along the lines of 3.1. We take Q c II locally
compact. Suppose P, the actual distribution of Y, is indexed by » € I. Sup-
pose further that ¢(y | -) attains a unique maximum on Q at = and is bounded
below g(7|x) off neighborhoods of . (In particular, if » e Q, this follows
as in 3.2, with = =7.) Referring to the proof of 3.1, we take V =
{veQ:|v—n|>e}. Then w.p.1,¢(Y,|V)—q(n|V), because w.p.1 Y, —7 € A7)
and ¢(-|V) is continuous on A’%y). The proof then continues as in 3.1 and
we conclude that w.p.l1 a MLE =, eQ eventually exists and (assuming
measurability) P(z, — ) = 1. If Q is locally convex, then we conclude that
z, is eventually unique and measurable. Note that the analog to assumption
3.1 (ii) is unnecessary here. The fact that Y, is eventually in A%») plays the
role of that condition.

If a: ® - Q c II is a reparametrization of Q, the assumption that a = a~
be continuous (as in 4.1) assures the consistency of the MLE 8, = a(=x,,).

A result much like the preceding is given by Rao (1957, 1965). His method
is somewhat different and he restricts attention to the case 7 € Q. His condition
for the eventual existence and consistency of an MLE is that for all » € Q, for
some ¢ >0, 4, ={rell:q(y|n) — q(n|7) < ¢} C Q. Since A4, contains an
open neighborhood (in II) of 7, such an Q is open in II and therefore locally
compact and locally convex. Thus under Rao’s conditions, the MLE is even-
tually unique. It is straightforward to verify that Rao’s demonstration holds
under the weaker condition that Q is locally compact. For the case of re-
parametrization, Rao’s condition Se. 2.1 (Rao, 1965) is just another way of
stating that a~* be continuous.

1

6. Asymptotic normality. With some further restrictions, we establish the
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asymptotic normality of the MLE. The conditions are somewhat weaker than
those used in more general settings. (E.g., Cramér (1946), page 500 f.)
Basically, we require that the likelihood be continuously differentiable in the
parameter.

We work with model (4.1), where we now suppose that © is an open subset
of R¥k < m) and that Q = «(0) c Q°(v). (We retain the identifications made
in Section 4.) We suppose further that « is continuously differentiable on ©
and that the matrix 4(0) = (0a,/00,),i=1,..-.,m,j=1, ..., kisof rank k
at every point of ©. (Because c is infinitely differentiable on Q°(v), any dif-
ferentiability condition for a is equivalent to one for f(x|+).) We assume that
F resembles the model in that for some (necessarily unique) 6 € 0, E.5(X) =
E,f(X) = ¢é(a(f)). Finally we suppose that (eventually) there is a measurable
MLE, say @,, based on g, and F(@, — 0) = 1. We define

(6.1) I(0) = A'(0)é(a(0))A(0) .
Because 4 is of full rank and ¢ is nonsingular, 7 is also nonsingular. 1(6) is
the Fisher information matrix for f{(.[6). (L.e., let g(f) = log fiX|0) =
a'(0)Y — c(a(f)). Then g(0) = (dg/ad,, - - -, 0g/dd,) = A'(6)[Y — é(a(F))] and
1(6) = Cov, g(9).)
THEOREM 6.1. Under the preceding conditions,
n@, — 0) — . N(0, I7'(9)) .

Proor. Since g, is differentiable on the open set ©, it follows that 8, satisfies
the likelihood equation g(8,) = 0. From (4.1) we see that g,(6) = Y,4(0) —
7(0) = [Y, — é(a(8))]A(6). Hence the likelihood equation becomes

(6.2) [, — d(a(8,)]4(8,) = 0.
Since 8, — 6 w.p. 1, by continuity of 4,
(6.3) A(B,) = A©6) + o,1),

where 0,(1) denotes a matrix, each of whose terms converges to zero in proba-
bility as n — co. (The analogous use of order symbols below will be clear
from the context.) Similarly,

«0,) — «(0) = (0, — 6)4'(0) + 0(10, — 0]),
so that
(6.4)  &(a(8,)) — da(0)) = [2(0.) — a(0)]é(a(9)) + o(|a(8,) — «(9)])
= (8, — O)4(0O)é((0)) + 0(0, — 0)) -
The likelihood equation (6.2) implies that
[Y. — da(8)]4(8,) = [d((0.)) — ((0))]4(0,) -
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Multiplying by »* and then using (6.3) and (6.4) gives

nY, — (a(@)][4(©) + o,(1)]
(6-5) = ni{d(«(8,)) — (a(9))][4(0) + o,(1)]
= n}[(@, — 0)4'(0)(a(0)) + 0(|6, — O]I[AF) + o,(1)]
= n¥8, — OIO)J + o (1)],
where J denotes the identity matrix of order k. The central limit theorem
applied to Y,,, together with Slutsky’s theorem, shows that the first term in
(6.5) is 0,(1). Since the last term in (6.5) is O (n}@, — 0)), it follows that
n¥@, — 0) is also O,(1). Hence the last term in (6.5) is n¥(@, — 0)1(0) + o0,(1)-
Since Y, — ¢(a(9))] — .. N(O, é(«(f))), we conclude from (6.5) that
n¥0, — 0)1(0) — . N(0, I(f)). Because I is invertible, n¥8, —0)—.
N, I70)). [

The foregoing theorem applies to Examples 1-3 of Section 5. For the multi-
nomial distribution, Rao (op cit.) obtained normality under much the same
conditions as those of this section. The following example shows what can
happen if some of the conditions assumed in this section are weakened.

Suppose f{x|f) is the N(6, 1) pdf and ® = [0, o). It is easily seen that
6,=X,if X,=0and 6, =0 if X, <0. Thus if E,X <0, 8, eventually
remains zero, so that @, is consistent (to # = 0) but not asymptotically normal
(except in some degenerate sense, perhaps). Note that the conditions of
Theorem 4.1 are satisfied with ¢ = 0. If E,X =0 and E/X® < oo, then
F(@, =0) = F(X, < 0) — } and again there is consistency but not asymptotic
normality. Here F does resemble § = 0 € O, but O is not open. If one takes
© = (0, o), then no bona fide MLE exists when X, < 0. Almost-MLE’s do
exist and when E,X < 0, exhibit behavior similar to the above. This example
indicates that the asymptotic behavior of n(@, — 6) can change markedly if
one relaxes either the condition that © be open or that F resemble some 6§
in 6.
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