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LARGE SAMPLE TESTS FOR THE EQUALITY
OF TWO COVARIANCE MATRICES!

By M. W. J. LAYARD
University of California, Davis

0. Introduction. It iswell known that the standard normal-theory techniques
for testing hypotheses about variances are extremely non-robust, even asymp-
totically, against departures from the assumed normality of the underlying
distributions. As Box [4] points out, the reason for this frailty is that the
relevant statistics, though asymptotically normal under general conditions, do
not incorporate a corrective component to ensure the stability of the asymp-
totic variance under departures from normality. (By way of contrast, the
t-statistic is “‘self-normalizing.”)

Not surprisingly, the same difficulty arises in the multivariate case when we
test hypotheses about covariance matrices. There is a well-developed body of
normal-theory procedures for testing such hypotheses as the equality of two
covariance matrices, independence of sets of variates, sphericity, etc., as well
as for testing hypotheses about certain functions of covariance matrices, such
as correlation coefficients and regression coefficients. It is the purpose of this
paper to point out that the standard tests for equality of two covariance matrices
are non-robust against departures from normality, and to discuss several proce-
dures which are, at least asymptotically, robust. The non-robustness of
normal-theory tests about correlation coefficients and the structure of covari-
ance matrices will be discussed elsewhere.

In Section 1 we describe some notation and state some large-sample theory
results which are needed in the sequel.

Section 2 demonstrates the non-robustness of two normal-theory tests for
the equality of two covariance matrices. If Sand T are the sample covariance
matrices, then in the normal case the characteristic roots of ST constitute a
maximal invariant (under the full linear group), and the normal-theory tests
which have been proposed employ functions of those roots. The two tests
examined are the likelihood-ratio test, which uses a function of all the roots,
and Roy and Gnanadesikan’s test, which is based on the smallest and largest
roots.

Section 3 considers four asymptotically robust procedures for testing the
equality of two covariance matrices. The first of these, which is based on the
elementary symmetric functions of the roots of S7-* (where S and T are the
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sample covariance matrices), does not appear to have much practical utility.
The remaining three tests exploit the asymptotic normality of the second-order
moments by treating the problem as a test for equality of mean vectors. They

are

(i) a “standard error” test, in which the vector of differences of the
transformed second-order sample moments is standardized by means of an
estimate of its asymptotic covariance matrix;

(ii) a test based on Box’s [4] idea of dividing the data into groups, com-
puting certain functions of the second-order moments for each group, and
treating the resulting statistics as approximately normal;

(iii) a test based on the jackknife procedure (Quenouille [15], Tukey [17],
Miller [11]). ) .

In Section 4 we make some asymptotic comparisons of the above three tests
for some simple classes of alternatives, using the concepts of Pitman efficiency
and approximate Bahadur efficiency. In terms of these comparisons, it is seen
that the Box test with small group sizes is somewhat less powerful than the
standard error and jackknife tests, and that the latter tests are not inferior to
the normal-theory likelihood-ratio test when the distributions are infact normal.

1. Notation and preliminary results. In this section we set up some notation
and state some results from large sample theory which will be needed in
subsequent sections. Since the discussion throughout the paper is mainly
confined to bivariate distributions, the notation is established for that case.
The notation diag(v,, v,, - - -, v;) is used for the diagonal matrix whose diagonal

elements are (v, vy, « - -, ¥;).
Suppose we have a sample of n i.i.d. observations (X;, Y;) from a bivariate

distribution with distribution function F(x, y) and finite fourth moments.
Denote the central moments by

p; = E(X — EX)(Y — EY),

> — l:,uzo ,uujl ,
P Pz
and the sample covariance matrix by
S — [szo suj| .
sll s()2
Then it is well known (see, e.g., Cramér [5] page 365), that
ni(s — p) -, N©O,T),

the covariance matrix by

where
8" = (8305 Soz» S11) » 1= (05 Poas 1)
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and
Moo — Mo a2 — Maollez a1 — Paolu
(1.1) I'= Hos — Mo Paz — Moz P
Moz — Ph
(The symbol — . denotes convergence in distribution, and N(0, I') denotes
the multivariate normal distribution with mean vector 0 and covariance
matrix I'.)

Suppose we are considering the asymptotic distribution of the sample corre-
lation coefficient, § = s,,(5,5,,) %, or of a function of the roots of |S — 7] = 0
(where T is the sample covariance matrix of a second sample from a distri-
bution with the same covariance matrix gnd fourth moments). It is easily seen
that a transformation of the observations with matrikx diag (x5!, pyst) leaves
such a statistic unchanged, so that we can without loss of generality assume
Ms = o = 1. This transformation has the effect of multiplying s by the
matrix diag(ss's #es's (a0 t0s) *). Noting that

Pao = £y + 3115 Yo = Kgy + 3t iy
Pos = Ko + 315 ths = K5 + 3ptea i
Par = Koy + oo tlon + 245
(where the «;; are the fourth-order cumulants of the bivariate distribution),
and defining the standardized cumulants
Ao = Kyln Ay = Ky prig? przt
Aoy = Koyl Ay = Kyg i} g
Ay = Koy ' L'
we see that we can assume
Ao+ 2 Ay + 20 Ay + 2p
(1.2) = Ao + 2 A + 20
Ay + (1 + 0%
(Note that 4,, and 4,, are the kurtoses of the marginal distributions.) In the
bivariate normal case, in which all the 4;; vanish, we have

2 2p° 20
(1.3) I' = 2 20
1 +p?

(Cf. Anderson [1] page 77). In the case of a bivariate distribution with i.i.d.
components, we have I' = diag(2 + 7,2 + r, 1), where y is the common
kurtosis of the marginal distributions.

In the characteristic roots problem we can multiply the observations by X~
and leave the roots unchanged, in which case I' can again be assumed to be a
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function of p and the 2;;, though not so simple an expression as (1.2).
However, in the normal case I' takes the particularly simple form diag(2, 2, 1).
The remarks above extend in an obvious way to the case of p-variate
distributions, the matrix I' being a function of correlation coefficients and
fourth-order standardized cumulants.
For ease of reference we state without proof some results from large-sample
theory which are used in the sequel.

THEOREM 1.1. If g: E? — E* is a continuous function and {X,} is a sequence
of p-dimensional random vectors such that

X, X, then g(X,)—,09(X).

THEOREM 1.2. Let {X,} be a sequence of random vectors such that X, — _ X,
and let {B,} be a sequence of symmetric random matrices such that B, —, B, where
B is a positive definite symmetric matrix of real elements. (The symbol — , denotes
convergence in probability.) Then

X,'B,"'X, -, X'BX

THEOREM 1.3. Suppose {X,} is a sequence of p-dimensional random vectors

such that
(X, — 1) -, NO, ).

(i) Let f: E? — E* be a function admitting continuous first partial derivatives
at p, at least one of which does not vanish at p. Then n¥(f(X,) — f(1)) —.
N(0, A’ A), where A is the p X k matrix of first partials of f evaluated at 1.

(ii) Let f: E* — E* be a function admitting continuous second partials at p, at
least one of which does not vanish at p, and such that all the first partials vanish
at p. Then n(f(X,) — f(r)) — .3 X'BX, where X ~ N(0, Z) and B is the p X p
symmetric matrix of second partials of f evaluated at .

2. Non-robustness of normal-theory procedures for testing ¥, = X,. Suppose
we have independent samples of size n and m respectively from two p-variate

distributions with cdf’s Fand G, covariance matrices 2, and ¥, and finite fourth
moments. The problem is to test

Hy: F(xy, -0, %,) = G + &, -+ X, + &),
where &, - - -, §, are unspecified constants,
vS.H,: 2, + %, .

(H,implies Z, = X, but in general the reverse implication does not hold, though
it does in the normal case. The choice of H, rather than the more general
hypothesis Z, = X, ensures that the fourth moments of the two distributions

are equal.)
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If F and G are assumed to be normal cdf’s, then the sample covariance
matrices S and T, together with the sample mean vectors, form a set of
sufficient statistics. A maximal invariant (under the full linear group) for
testing H, can be shown to be 91 < 92 < v <9,,, the ordered roots of the
equation S — AT| = 0. The normal-theory procedures which have been
proposed for testing H, are based on these roots. The likelihood-ratio test and
Roy and Gnanadesikan’s test, which we examine here, are consistent.
Hotelling’s test [10], which is based on the sum of the roots (tr ST-"), is not
consistent against all alternatives in H,; nor is a test based on a product of
the roots (|ST71|) (tr X, X,7! = p does not imply X, = X,; nor does |Z, 2,7} =1).
That these functions of the roots are not asymptotically robust is demonstrated
in Sub-section 3.1. ‘

2.1. The likelihood-ratio test for H,. The normal-theory likelihood-ratio
criterion for testing H, is ([1] page 248)
A= |nS|”/2|mT|’”’Z|ns + mTl—(n+m)/2,(n + m)(n+m)pl2n—npl2m—mp12

— ‘S‘nﬂlT'mﬂlaS + ‘BTI—(n+m)I2
(where @ = n(n + m)™, B =m(n + m)™)

= [12-, 91‘”/2(“0:‘ + p)~tntmiz,
THEOREM 2.1. The asymptotic distribution of —2 log 2 under H,, as n and m
tend to infinity in constant ratio, is that of 3,252 c,U,, where the c, are functions

of correlation coefficients and standardized fourth-order cumulants and the U, are
independent y,* variates.

Proor. (For notational simplicity, we prove the result for p = 2; the
extension to general p is straightforward). As we saw in Section 1, we can
take X = I without loss of generality. Now

—2log 2 = (n + m)(log|aS + BT| — alog|S| — Blog|T])
= (n+ m) Y, log(ad;, + B) —n Y% logd,.
The function
(n + m) log(n(n + m)~'y + m(n + m)™) — nlog y (y > 0)

has a minimum of 0 at y = 1, so —2 log 2 has a minimum of 0 at 6,=46,=1.
Since

0,=0,=1=8S=T,

if follows that the first partials of —21log A with respect to the sample moments
vanish at S = T'= X. Since

w6 Gl — (Gl N (0.5 7)),
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we have by Theorem 1.3 (i) that

(s, ) — (g 19) — N (0] " /‘;)P]) .

Now
— 2log 2 = nf(s, ¥)
= n((log |aS + pT])/a — log |S| — (B/a) log |T]) .
Since f(y, 1) = 0, we have by Theorem 1.3 (ii) that nf(s, t) —_ 3 X’BX, where

X~ N<O’ l:(l; (a/?@)l"])

and B is the 6 x 6 matrix of second partials of f evaluated at (y, p). We find

that
B= [ b —D}
—-D D
where D = BE = S diag(l, 1,2). We thus have L X"BX = Z'CZ, where Z ~
N(0, I) and

c=7[% anllZe F ar]

“2Lo0 a«tJ]L—E E 0 altl’

so that L X’BX = Zc,U,, where the c; are the eigenvalues of C and the U, are
independent y,* variates. The eigenvalues of C are those of

L[ﬁF o][ E —E]_[ 1fTE  —LpT

2L0 alll—E E —4aTE  alE |’
Since
BTE—cl —4pTE |_| —cl 0 |_ _asllrg_e
—%aTE  4aTE—cl| |—4alTE JTE—cl 2 ’

we see that ¢; = 0, i = 1, 2, 3, while c,, ¢;, ¢, are the eigenvalues of 1['E, and
are thus functions of p and the 2,;. [

The non-robustness of the likelihood-ratio criterion is clearly illustrated by
the following corollary.

COROLLARY 2.1. Suppose F is the cdf of a bivariate distribution whose com-
ponents are i.i.d. with common kurtosis y. Then under H,

_210g A e (1 + %T)(Ul + Uz) + Us s
where the U, are independent y,* variates.

Proor. For this case we have I' = diag(y + 2,7 + 2, 1). Hence $['E =
diag(1 + 47,1 +47,1),0¢c, =¢; =1+ 47, ¢, = 1. []
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In the case of a bivariate normal distribution, the limiting distribution is
x> which we know independently from Wilks’ theorem ([18] page 418).

It is at once evident that the normal-theory likelihood-ratio criterion is not
asymptotically robust. If we had y > 0, the critical constant obtained from
the y,* distribution would be too small and the significance level greater than
the nominal figure, while if y < 0 the opposite situation would obtain.

2.2. Roy and Gnanadesikan’s test for H,. A consistent test for H, proposed
by Roy and Gnanadesikan [16] for the normal case is: accept if ¢, < 6, <
5,, < c,, where the c; are suitably chosen critical constants. We demonstrate
the non-robustness of this test by deriving the asymptotic distribution of 4,
and 6, in the bivariate case.

THEOREM 2.2. Suppose F is the cdf of a bivariate distribution. Then, under H,,
(wmf(n + )@, 6) — (1, D) = (X — (6! + X0 X, + (X + X)),
where (X,, X,, X;) ~ N(0, C) and C is a function of the correlation coefficient and

the standardized fourth-order cumulants.

Proor. We have

91, 92 = (Spotos + Soalao — 28t + ((Swolos + Seatao — 25, t,) — 4|S| |T|)é)/2|T| >

or, after a little rearrangement,

0., 0, = fi(s, 1) & ((flss D) + 4fi(s, D fi(s, D),

where

f1(S, t) = (Szotoz + Soala — 2'~5‘11t11)/2'|1—'|

fi(s, ) = (Soatao — Saotos)/2| T

Sa($s 1) = (Soatus — Po2Su1)/2| T

f4(S’ 1) = (Syotyy — loosin)/2|T] -
We first find the joint asymptotic distribution of the f(s, f). Asin Sub-section
2.1, we take L = I, we have samples of size n and m and we let » and m go
to infinity in constant ratio. The matrix of first partials of f{s, t) = (fi(s, ?),
-+, fi(s, t)) evaluated at (u, p) is

A:L[ 4, A2]
2 l—4, —4,

where
1 —1 0 0
A = 1 1 and A, = 0 0
0O O -1 —1

By Theorem 1.3 (i) under H,
nB(f(s, 1) — fle, 1)) = WPH(fs, 1) — (1,0, 0,0)) — . N, B),
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where

B=pd [g (a/()ﬂ)F]A

_1 [AI'I‘AI A{I‘Aﬂ
4 L 4,TA, AT4,]°

which is a function of p and the 2;;. We see that all the elements of 4, T 4,
are equal, which means that n*gtf; and ntptf, are asymptotically equal. Now
(nm)(n + m)¥(@,, 8,) — (1, 1)) = nii@, — 1, 8, — 1) isa continuous function
of mB¥(f(s, t) — (¢, 1)), so by Theorem 1.1
(rmf(n + )G 0) — (1, 1) = (X — (X + X0 X, + (X + X)),
where (X, X,, X;) ~ N(0, C), and
bll b12 2b13
C=|by by 2by|. i
2b,, 2b, 4b,
COROLLARY 2.2. Suppose F is the cdf of a bivariate distribution whose com-
ponents are i.i.d. with common kurtosis y. Then under H,
(rnm|(n + m)(0,, 0)) — (1, 1))
= (L + 32— (L + 312" + ZO)L (L + 320+ (L + 39)2° + 22,
where (Z,, Z,, Z;) ~ N(0, I).
Proor. We have I' = diag(y + 2,y + 2, 1), so that

B:[Bl 0}
0 B,
where
. 1 1 i i
Bl=d1ag<1+_r,1+_r> and B, = .
2 2 i %

In the normal case, y = 0, and (mm/(n + m))¥f, — 1) —>_ U + V, where
U~ NO,1), V ~(x5)tand U and V are independent. The joint density of
Yy=U+Vand Y,=U—Vis

Sror,(Vo p0) = 27027y — p)exp (=27 + 1)), m>»>0
= 0, otherwise ,

which agrees with the density derived by another method—see Gleser [8]
page 162.

It is clear that the test is not robust. If y > 0, the critical points derived
from the normal theory are too small in absolute value, and the significance
level is greater than the nominal value, while if y < 0, the opposite situation
obtains.
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The method used above cannot be applied to the case of general p-dimensional
distributions because of the impossibility of representing the 8, as explicit
functions of the second-order sample moments. However, the calculations
for the bivariate case suffice to demonstrate the non-robustness of the test.

3. Large-sample tests for equality of covariance matrices. In this section we
describe several tests for H, which have the property of asymptotic robustness.
In seeking a large sample test for £, = X, we might first look for a univariate
function of the second-order sample moments which is asymptotically normal.
We need, in order to have a test which is consistent against any alternative,
a function which assumes a certain value in the null hypothesis (i.e. S = T'= X)
and which assumes that value nowhere ¢lse. But to have asymptotic normality,
we want the function to have a linear approximation at the null hypothesis
(i.e., to have at least one non-vanishing first partial there). The question is,
can these requirements be simultaneously met? They can, for example, in the
univariate case, since the function s/ satisfies them. It is not clear that it is
possible to do so in higher dimensions. In the bivariate case, for example,
we want a differentiable real-valued function defined on E°, which has a
constant value on a 3-dimensional subspace (a hyperplane through the origin),
does not assume that value off the hyperplane and does not have an extremum
onthe hyperplane. We have seen that the normal-theory likelihood-ratio crite-
rion fails the third requirement; so does another obvious choice, Z(s;; — #,;)*
On the other hand, the function |S|/|T| fails the second requirement, since
|S| = |T| =S =T.

If we are interested in testing only against a restricted class of alternatives
—a subclass of H,—there may be a function which fails the second require-
ment but nevertheless yields a test consistent against the subclass. In general,
however, we want a test consistent against all alternatives, so we need to find
some approach other than that of an asymptotically normal univariate test
statistic. The four large-sample tests discussed below are consistent; the last
three have a common basic idea, that of exploiting the asymptotic normality
of the second-order moments by treating the problem as a test for equality of
mean vectors.

3.1. A test based on the elementary symmetric functions of the roots of ST™.
Suppose we wish to test H, (see Section 2), where we have two p-dimensional
populations. Now

3, =2, allrootsof X X, equal 1le=e,=(), k=1,...,p,

where e, is the kth elementary symmetric function of the roots. Hence we
might consider using the vector (¢, - - -, €,) as a test criterion for H,, where
é, is the kth elementary symmetric function of the roots of ST
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In the bivariate case, with both samples of size #, we find using Theorem

1.3 (i) that under H,
. N ot o
n(E0, — 2, T[ 0, — 1) —_ N (o, Lz UJ) ,
where
0" = 24 + A — 40(Ay + Aig) + 2(1 — p)Ap)(1 — 0 4 8.

(The asymptotic distribution has rank 1 under H,, but this is not necessarily
the case under H,.)

Since if #, and 6, are not equal to 1 we must have X6, = 2 or [] 8, 1, for
large samples an intuitively reasonable test procedure is: reject if

(n(20, — 2)6, i ([1 6, — 1)67)

lies outside the square with center at (0, 0) and side A, where A is obtained
from the standard normal distribution function. Here ¢ is a consistent esti-
mate of ¢ obtained from both samples.

It can be shown that the asymptotic distribution of the ¢, is also of rank 1
in the p-variate case. Hence the same idea is theoretically applicable to a test
of H, for any value of p. But an explicit representation of the asymptotic
covariance matrix, such as we gave above in the bivariate case, would be very
tedious to compute for a particular p > 2. As regards the practical worth of
the test, the fact that the limiting distribution of the statistic has rank 1 leads
one to suspect that the convergence may be rather slow. This matter could
be investigated by Monte Carlo methods; a more immediate objection is the
difficulty of deriving the asymptotic distribution for the case of more than two
dimensions. The author suggests that one of the three tests next to be discussed
would be a better choice for practical purposes.

3.2. A “standard error” test. Since the second-order sample moments are
asymptotically multivariate normal, a possible approach to the problem of
testing for equality of covariance matrices is to treat it as a test for equality
of mean vectors. One way to do this is simply to normalize the difference
vector by means of an estimate of its covariance matrix, and to use the fact
that the inner product of the resulting vector is asymptotically y* distributed.
However, we may hope to hasten the convergence to normality by using
transformations of the second-order sample moments. The log transformation
of the sample variance is generally supposed to have beneficial effects in this
direction. Further, the tanh™ transformation of g, the sample correlation
coefficient, is well known to have useful properties in the normal case. Gayen
[6] considered the distribution of tanh~4 in samples from non-normal popula-
tions specified by an Edgeworth expansion. He found that for samples of
moderate size, the distribution of tanh™p is approximately normal, though
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the approach to normality is not in general as rapid as in the normal case.

Consequently, we propose using as a test statistic the vector ¢(s) — ¢(?),
where ¢(s)’ = (log sy, log s,,, tanh™'p,) and ¢(t) = (log t,, log t,, tanh~p,),
normalized by an estimate of its covariance matrix (here §, = §,,(8,5,,) "%, §; =
tu(tzotoz)ﬁi)'

THEOREM 3.1. Suppose we have samples of size n and m respectively from two
bivariate populations with finite fourth moments. Then under H, (see Section 2),
as n and m tend to infinity in constant ratio,

(0(s) — o)y (T + m Ty (p(s) — o(t) — . 15* s

where [ * isa consistent estimate of the asymptotic covariance matrix o f ¢(s) obtained
by substituting sample quantities for population moments, and1’,* is similarly defined.

Proor. By Theorem 1.3 (i) we have that under H,, as n — oo,
ni(p(s) — ¢(p)) — .. N(O, AT 4),

where I' is the asymptotic covariance matrix (1.1) of s and 4 is the matrix of
first partials of ¢ evaluated at X:

pr' 0 —p[2m(1 — 0%)
A=10 g —p2p(1 — p%)
0 0 1/(pao o) (1 — %)
(Since
10 —p/2(1 — )
A = diag(pa's s (Patte)™)| 0 1 —p/2(1 — 0% |,
0 0 1/(1—p)
the matrix A'T'4 depends only on p and the 2;;—cf. Section 1). Similarly,
under H,,

m¥(p(t) — ¢(p)) — .. N(O, AT 4) .
Hence, letting AT A = I'*, we see by Theorem 1.1 that

n(p(s) — ¢(1) — . N(O, (1 + n/m)I'™).
An application of Theorem 1.2 completes the proof. []
The extension to the p-variate case is immediate, with y,* replaced by 32 .1, .-

3.3. A generalization of Box’s test. The following test is a generalization
of that proposed by Box [4] for the equality of variances. Split each sample
randomly into groups, each of size k = 2 (we assume n and m are divisible by
k). Compute ¢(s'"), j =1, - .., n/k, where s is the vector of second-order
moments computed from the jth group of the first sample. Compute the same
quantities for the m/k groups of the second sample. The n’ = n/k vectors
computed from the first sample, and the m’ = m/k vectors from the second
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sample, have approximately the multivariate normal distribution with equal
covariance matrices under H,. That being so, we may take the statistic

U=nm@ + m)" A%
to have approximately Hotelling’s T distribution with 3 and n’ + m’ — 2 df.
Here X = ' 1%, o(sY¥) — m'2 3™ (') and A is the pooled estimate
(on n’ + m’ — 2 df) of the common covariance matrix. (Of course, under
H,, U—_ y?asn, m tend to infinity.) It may be preferable in practice to

use a non-pooled estimate of the covariance matrix of X—cf. Sub-section 3.2.

In the p-variate case, for an analogously defined statistic U, we have U —
Aot /2°

3.4. A test using the jackknife. A discussion of the jackknife and its appli-
cability to testing problems is contained, for example, in Miller [11]. The
following theorem, which is an extension of a theorem in Miller [12], provides
the justification for the use of the jackknife in the problem we are considering.
It is proved for a group size of 1, but is valid for larger group sizes.

Suppose we have a sample of size n from a bivariate distribution with

covariance matrix
T — [#zo #11]
Pu o He?

and finite fourth moments. Let g: E* — E* 1 < k < 3, be a function whose
second partial derivatives are bounded in an interval about p. Let g(s) =
(9:(5), - -+, 94(5))’, and denote the jackknife estimator of g,(z) by
gi(1) = ngy(s) — (n — D™ 31 95(5) »
and the ith pseudo-value by
9;' (1) = ng;(s) — (n — 1)g,(s)) »
where s;, is the vector of second-order moments computed from the n — 1

observations obtained by excluding the ith. Let

a() = @1 -5 Gp) >
and let
g () = (951> -+ 5 Gi(w) -

TueorREM 3.2. (i) m¥(G(p) — 9(p)) — . N(0, A'T A), where I’ is the asymptotic
covariance matrix (1.1) of s, and A is the matrix of first partials of g evaluated at %.

(i) (r — )7 X (@) — GG (1) — §(p)) = ATA.
Proor. (i) Since
ni(G(p) — 9(1) = nH(9(s) — 9() — (n — D7t T2 (9(50) — 9(5)) »
and n¥(g(s) — 9(p)) — . N(0, AT A) by Theorem 1.3 (i), we need only show
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that n® 312, (9(ss)) — 9(5)) converges to zero in probability. The fourth and
lower order sample moments converge in probability to the corresponding
population moments. As a consequence of a theorem of Pratt [14], it suffices
to show that if {(x;, y;)} is a sequence of (nonrandom) vectors such that the
sequences {n~' 37, |x;|}, {n™' N1, %2, {n! X, x4, etc., converge, then
nt 3 (9:(50) — 95(5)) — 0, where g,(s;)) and g,(s) are computed from the
first n terms of the sequence {(x;, y,)} according to the formulas given earlier.
We first note that max, _, ., {(x, — %)*/n} — 0, which implies s,y ;) — f1,, uniformly
in i, since .
Sy = Sp0 — n(n — 1) — 2)7((x; — X — n7 [io(x; — %))

Similarly, we see that sy, — p, and s, — gy, uniformly in i. Now by
Taylor’s theorem,

9,(54)) — 9;(5) = (54 — YA + 4(s;) — 8)'By(ss) — 9) »

where A is the vector of first partials of g, evaluated at 5, and B, is the symmetric
matrix of second partials of g, evaluated at {;, a point on the line segment
joining s, and s. We have

2 (95(80) — 9,(9) = $%(n — 1)(n — 2) X1, 2/B; 7,

(where, for example, z;, = (x; — X)* — n~ }7_, (x; — %)*). Let us consider the
expression (n — 1)~ 3, b, 2%, (a similar argument applies to the other terms).
Now {; — p uniformly in i, since s, — g uniformly in i. By assumption, the
second partials are bounded in a neighborhood of 4, so for n sufficiently large
the b;,, are bounded. Also we have (n — 1)~ 37, 22 — p,, — 12, so for n
sufficiently large (n — 1)~ 337, b, ;22 is bounded. Hence

n6/2(n - 1)_2(n - 2)_2 i1 bi:llzgl —0.
(ii)
(n— )7 X, @) — ()@ () — ()Y
=@ — D7 X (—(m— Dy(sy)

+ (= Dn 32, 9(5y) —n(n — 2)7'A'Z, + n(n — 2)7'A'Z)

X (— (1 — 1)g(s) + (n — Dt T1_0(s,5)

—nn—2)'A'Z, + n(n — 2)7'4A'Z,)
where Z;, = (X; — X)* —n' 37_, (X; — X)?, etc. It is easy to verify that
n(n — 2)7A'(n — 1) 31, Z,ZYA —, AT A, so we need only show that the
elements of the remaining terms converge to zero in probability. We illustrate

the method, again using Pratt’s theorem. Since (g(s;, — g(s)) = (54 — 8)C,,
where C; is the matrix of first partials of g evaluated at ¢,, a point on the line
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segment joining s, and s, we have, recalling that
Sp — 8= —nn— 1) (n—2)"z,
(n— 1) B (= — Dg(s)) + (n — Dn™* T3, 9(5;) — n(n — 2)7'A'z,)
X (=(r— 1)g(s5) + (n — D! 305, 9(s ;) — n(n — 2)7A4'z;)
=nin—2)n — 1)7 X, (G — Az — n7 154 (C; — 4)'z)
X ((C.— Ayz, — w7 T3, (C; — Ayz,) .

Since s, — p uniformly in i, and the first partials are continuous in a neigh-
borhood of y, we have C; — 4 uniformly ini. Considerd, ,; the af element
of D, = (n— 1)y 3r, (C, — A)z,z/(C, — A). For ¢ > 0 and r sufficiently
large .
gl < € 230 Dia(n— 1) 200 220 -
Since (n — 1)~ 3 7, |z;,z,,| converges by assumption, and ¢ is arbitrary, we
have d, ., — 0. A similar analysis shows that the a8 elements of all other
matrix terms go to zero. []

Since s is a multivariate U-statistic, this theorem could also be proved using
an extension of a theorem of Arvesen [2].

We now apply the theorem to the function

@(12) = (10g f1a9, 10g f105, tanh=" (e, (pg0 202) ™)) -

Suppose we have two samples of size n and m from bivariate populations, and
we wish to test H,. Let

Lix = (n — 17 T (85() — )@ () — Su())’
and

Dyr = (m — 1) Tr (84 (0) — G()@i () — up))
where ¢ (1) and ¢,(y) are calculated from the jth sample. Then, asn, m — oo
in constant ratio,

(@) — P (T 4 D)) — Golw) — o 2
(cf. Sub-section 3.2).

The theorem extends in an obvious fashion to p-variate distributions, with
asymptotic degrees of freedom p(p + 1)/2.

4. Asymptotic comparisons.

4.1. Pitman efficiency. Though Pitman’s [13] criterion of asymptotic relative
efficiency is commonly applied to test statistics which have limiting normal
distributions, it can also be applied to cases where the limiting distributions
of the two test statistics are the same, but not normal, provided the two power
functions can be made asymptotically equal by an appropriate choice of
sample sizes. The method used here follows Hannan [9].
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Suppose we have samples of size n from two bivariate populations with
cdf’s F and G respectively. Let {¥,} be a family of cdf’s indexed by a real
parameter 6. Consider the hypothesis H,: F = G = ¥, versus the alternative
H, . F = 111’,,0, G =71, 0 + 6, and consider the sequence of alternatives given
by 0, = 6, + n%. Let T, = (T,,, Ty,, T;,) be a statistic computed from the
two samples, and let

E0 Tn = #n(ﬂ) ’ C0V0 Tn = Zn(a) ’ COV‘,( in? jn) = azn(a)ajn(ﬁ)pwn(ﬁ) 4

and

do

¢, = lim, _..( ) /n%om(ao) :

0=0,
Then assuming that 7, is asymptotically multivariate normal under ¢, and
under 6¢,, and that certain regularity conditions are satisfied, the quantity
nc'R7(6,)c (where ¢’ = (¢, ¢, ¢;), R(0,) = (p:(0,)) and p;5(0,) = lim, ., 0;;,(0,))
is the limiting Pitman efficacy for a test based on the statistic (T, — s,(6,))’ X
ZHONT, — pa(6,)). If we have two sequences of test statistics 7. and T
satisfying the regularity conditions, the ratio

&R (0)erfes Ry (6,)cy

is the Pitman relative efficiency of 7™ with respect to 7.
Now suppose ¥, is the N(0, #B) cdf, where

B — l:tuzo #uj' ,
Par o Hoz
and let§, = 1. Let T, = ¢(s) — ¢(#). Then 1, (#) = (—log 6, —log¥, 0y,
and the statistic of Sub-section 3.2, nT,®"([',* + [',*)1T, ™, is asymptotically
equivalent to the statistic 7,V “~(1)T,"”. We assume that the necessary

regularity conditions hold and that nX, (1) — 2I'*, where 2I'* is the asymp-
totic covariance matrix of n*T, under H,, i.e.

4 4p* 2p]
2I'* = 4 20
2
We find ¢;; = ¢, = — 4, ¢;; = 0 and
L3 — o) =3l =) =27
RY(1) = L+ 301 — o) —27% |,

1+ 0

so that ¢/R,7(1)c; = 4. If we let T,” = ¢,(1) — ¢y(¢) (see Sub-section 3.4),
we similarly find that ¢,’R,™*c, = }, so that the Pitman relative efficiency of
the jackknife test to the standard error test is unity. This statement is true
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for any sequence of alternatives for which the regularity conditions hold—
the two procedures are asymptotically equivalent. Let T,® be the statistic X
of the Box test (Sub-section 3.3). We have p,®(0) = (—logé, —logé, 0Y,
and the asymptotic (n' — oo, k fixed) covariance matrix of (#')*7T,® under H,
is 2A, where A is the covariance matrix of ¢(s)). Now the covariance
matrix of s/ under H, is

2k — 1) Yk — 1) + 1k(k — 1)) p(2)(k — 1) — 1/k(k — 1))
A 2/(k — 1) p(2)(k — 1) — 1jk(k — 1) | 4,
(1 + o))k — 1)

where 4 = diag (1, f1oas (120 t2)?)- Expanding @(s') about g = (p, pog> t111)'s
and ignoring terms of order k2, we find that A =~ (k — 1)™'I'*. Hence ¢, =
(k/(k — 1))¥c,, and since R,7(1) = R,7'(1), we have ¢,/R,”'(1)c, =~ (k — 1)/2k,
and the approximate Pitman relative efficiency of the Box test to the standard
error test.is (k — 1)/k. This result reflects the loss of information incurred
in dividing the data into groups.

If ¥, is the cdf of a nonnormal bivariate distribution with covariance matrix

0 [ﬂzo ﬂll]
Hu Po

and finite fourth moments, the efficacies are not simple expressions, and the
relative efficiency will depend on p and the 2,;. However if the distribution
has i.i.d. components with common kurtosis 7, we readily find that the
approximate Pitman relative effiiciency of the Box test to the standard error
test is (2 + 7)/(2K/(k — 1) + 7).

The meaning of asymptotic relative efficiency in a multivariate situation is
somewhat clouded by the fact that one can define different sequences of
alternatives converging at the same rate to the same null hypothesis but yielding

different relative efficiencies. For example, let ¥, be the cdf of a bivariate
distribution with covariance matrix

[1 +0 af :|
al 14+6
and finite fourth moments. Let ¢, = 0, and suppose ¥, corresponds to i.i.d.
components with common kurtosis y. We find that the approximate Pitman
relative efficiency of the Box test to the standard error test is

((2k[(k — 1) + 7)™ + a®(k — D/2K)[((2 + 1) + 327,
which corresponds to the expression given in the previous paragraph only if
a =0.

4.2. Approximate Bahadur efficiency. Suppose {T,}, i = 1, 2, are sequences
of test statistics, and that the test rule is to reject H, if T, is “large.” Also
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suppose that under H,, F,«& — F%, where F,« is the cdf of 7,0, If x is the
observed outcome of the enxperiment, the appnroximate “attained level™ of the
test based on 7, is L,")(x) = 1 — F'(T,"(x)). The experimenter will reject
H, for “small” values of L,"(x), so if an alternative w ¢ H, is true, T, is
better than 7, for given xif L,V (x) < L, (x). If plim(log L, (X)/log L,®(X))
is a constant ¢, ,(»), this quantity is a possible measure of asymptotic relative
efficiency at w, with ¢, , > 1 indicating that {T,"} is the superior sequence of
test statistics. The measure ¢, ,, known as approximate Bahadur efficiency,
was introduced by Bahadur [3] and generalized by Gleser (1964); they give
sufficient conditions for plim (log L,"(X)/log L,(X)) to be a constant. They
also point out that there is a serious difficulty in the interpretation of ¢, ,as a
measure of asymptotic relative eﬁiciencyf thatis, it is possible for two equivalent
test statistics not to have a relative efficiency of 1 everywhere in H,. This
difficulty would not arise if instead of L,”(x) we used the exact attained levels,
1 — F,0(T,"(x)), but to do so may be difficult or impossible. The justification
for coribsidering approximate Bahadur efficiency is that it is easy to compute,
may be the only measure readily available, and in some cases can be shown to
be a good approximation to the measure based on exact levels, at least for
alternatives close to H,.

Briefly, the sufficient conditions of Bahadur and Gleser in the present context
are as follows: Let w index the family consisting of pairs of bivariate popula-
tions having finite fourth moments. Let {T,"}, {T,®} be two sequences of
real-valued test statistics such that

(i) Fra(y) — FP(y), Yo € H, (see Section 2), where 2 log(l — F®(y))=
—ayi(l +o(l))asy — oo, a;, >0, r, > 0;
(ii) plim(n~*T,") = hy(w), 0 < hy(®) < oo, Yo € H,;

(iii) t,r, = tyr,.

Under these conditions ¢, ,(w) = a,(h,(0))"1/ay(h(w))™2. The quantity a,(h,(w))":
is called the slope of the sequence {T,"} at w.

We note that if Fis the y,* cdf for any k, then F satisfies the condition of
(i) above with @ = 1, r = 1 [3]. With this information we can compute some
relative efficiencies for the tests considered in previous sections.

First consider the normal-theory likelihood-ratio criterion for H,, when
both samples are of sizen: —2log 2 = — nlog ([]2_, 40,(9; + 1)~%). Consider
the alternative

z = [#20 #11:| , D, =192, 7> 0.

Pu o Hoz
The roots of |2,%,7* — 0I| = 0 are 6, = 0, = 5", and plim((—2 log 2)/n) =
2log((1 + 7%)*/47), so condition (ii) is satisfied with # = 1. Since under H,
and the normality assumption —2log 2 has a limiting y* distribution, condition
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(i) is satisfied with @ = 1, r = 1, and the slope of the likelihood-ratio test at
the given alternative is 2 log((1 + 7)?/4y). The standard error test statistic is
n(o(s) — go(t)'(f‘l* + f‘z*)‘l(gp(s) — ¢(t)). For the given alternative, and under
the normality assumption,

SO

plim(p(s) — ()Y + T*)(p(s) — (1))

L+ o 2(1 =0 —0"2(1 — p?) ][—IOg 7}}
—p2(1 — %) 1+ p2(1 — p?)lL—logy

.

= (—logy, —log v)i[

= 3(log ),
so condition (ii) is satisfied with # = 1. The statistic has a limiting y* distri-
bution under H,, so condition (i) is satisfied with a = 1and r = 1. The
approximate Bahadur efficiency of the likelihood-ratio test to the standard
error test is thus 4 log((1 + »)*/4n)/(log »)*. The limit of this expression as
7 — 1 is 1, and the limit as » — oo (or as » — 0) is 0. For 5 = 2, the efficiency
is .981, and for » = 4 is .929.

Now consider the alternative

21:|:‘U20 Oila 222021, W>O
0 o

Suppose the distributions under H, and H, have independent marginals with
finite fourth moments and common kurotosis y. In this case

'*=r*=dag2+72+4+7,1),
and the slope of the standard error test is
plim(p(s) — ¢(1))'("y* + D) (e(s) — (1) = (log 0)*/(2 + 7) -
Thesslope of the Box test is similarly found to be approximately (log »)*/(2k/(k —
1) + 7), so the approximate relative efficiency of the Box test to the standard
error test is (2 + 7)/(2k/(k — 1) + 7), which is independent of 7 and coincides
with the approximate Pitman relative efficiency.
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