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DISTRIBUTION FREE TESTS FOR SYMMETRY BASED ON
THE NUMBER OF POSITIVE SUMS

By D. L. Burbick

San Diego State College

Let Xi, Xz, ..., X~ be independent identically distributed random
variables with common continuous distribution function F. Designate
by S a nonempty set of subsets of the integers {1,2, ..., N} and by
&= A F) the mapping which assigns to each set I € _Z, I = {1,
f2, ..., tx} the partial sum 3::cs Xi;. Define the random variable
N = N(_#) as the number of positive sums in the range of &

N(_#) has been shown to be distribution free when F is the distri-
bution function of a symmetric random variable if .# = {1,2, ..., N}
or 7 = power set of {1,2, ..., N}. Several other nontrivial examples
of this phenomenon have been discovered—all by different methods.
This paper presents a unified method that derives all previously known
results, provides a constructive method for obtaining infinitely many
essentially different sets . with this property, and finally provides a
powerful necessary condition on any such set._# that yields a complete
characterization of those sets .. for which N(_¥ ) is distribution free
and .~ contains all £ element subsets of {1,2, ..., N} where k = 2,3,
., N—1.

1. Summary and introduction. Let X, X, - - -, X, be independent identically
distributed random variables with the common continuous distribution func-
tion F. Designate by 7 a nonempty set of subsets of the integers 1, 2, ..., K
and by &= S4.”) the mapping which assigns to each set Ie¢. .7, I = {t,,
L, -+ -, 4} the partial sum 37,.., X, . Define the random variable N = N(_*")
as the number of positive sums in the range of .&“. Previous authors have
investigated sets .7 for which N(_#") is distribution free if X is symmetrically
distributed; i.e. if F(—x) = 1 — F(x). This paper presents a mapping with a
simple geometrical interpretation that yields a unified proof of all known cases
of sets .7 for which N(_#) is distribution free. Inaddition, a very restrictive
necessary condition is derived from the mapping that enables the author to
characterize all sets _# for which N(_#") is distribution free that have all subsets
of 1,2, ..., K with jelementsif 3 < j < K — 1.

2. A theorem of Friedman, Katz and Koopmans. Let a = (a,, a,, - - -, a,) be
a K-tuple of real numbers. An s-permutation of a, ¢(a) is an assignment of
signs at each coordinate of a followed by a permutation of the coordinates
of the resulting vector, i.e., a vector of the form (¢; a; , ¢, a; , - - -, ¢;,.a;, ) Where
¢e;==+1,j=1,2,...,K. Thisconcept was introduced by E. Sparre-Andersen
(1949). There are a total of 2¥K! s-permutations of any @ and the set of points
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s(a) = {e(a)}, with ¢ an s-permutation, is called the s-orbit of a. A vector a
with coordinates satisfying 0 < @, < a, < ... < a, is said to be in normal
form. For a rule .# and I e .~ let g(a, I) be that function which assigns to
I={t,t, -, 4} thesum 3, ., a,.. If o(ca, I) # O for all s-permutations ¢
and for all subsets I of the integers 1 through K then q is said to be admissible.

Let V(a) denote the number of positive sums in {o(a, I): Ie .#'}. Clearly
0 < V(a) < number of elements in .. Denote the number of elements in ..
by dand for 0 < j < d set f,(/) equal to the frequency with which ¥(a) equals
J as ¢ ranges over all s-permutations of an admissible vector a.

THEOREM 1. (Friedman-Katz-Koopmans (1966)). In order that N = N(_*)
be distribution free over the set of all continuous symmetric distributions, it is suf-
ficient that for all j, 0 < j < 0, f,(j) be independent of a for all admissible vectors
a. In this case, if f,(j) = f(j), P(N(F) = J) = f(j)-

The question of the necessity of the condition of this theorem was left open
in [1].

3. A proof of the necessity of the condition in the theorem of Friedman, Katz,
and Koopmans.

THEOREM 2. Consider in R¥ the set of K vectors x = (x,, X,, - - -, X)) such that
0 < x, < x,< -+ < xy and let this region be divided into open subregions, to be
called a-regions, by hyperplanes of the form Y, n,x, = 0, 5, = 1, 0, or —1, where
notall y; = 0. The points in these a-regions are just the admissible vectors in normal
form.

Let p, denote the probability that the normal form of the vector (X}, X,, - - -,
Xy) lies in the ith a-region. For a and b points of the same a-region, f,(j) =
f,(j). Consequently

P(N(7) = k) = L, p.f(F)

where f;(k) denotes the frequency f,(k) for a an element of the ith a-region.
The p;’s are the integrals of the characteristic functions of a-regions times
2¥K! under an arbitrary continuous symmetric distribution function F and the
fi(k)’s are constants depending only on the regions. Using the completeness
of the order statistic (Lehmann (1959)) and the fact each admissible order
statistic is in just one a-region it follows that f(k) = P(N(.*) = k) for all i.

One consequence of this proofis that the conditional expected value of N(..#")
given the normal form of the sample vector is independent of the normal form.

4. The role of the N-hypercube in the combinatorial problem. As a consequence
of Sections 3 and 4, the investigation of whether a test for symmetry based on
a set .7 is distribution free may be reduced to the question of whether, for
all admissible K vectors a, f,(k) is independent of a for each k. For a fixed
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vector a these frequencies can be calculated from a simple geometrical model.
The set of points in the s-orbit of (a,, a,, - - -, a,) are the vertices of a K dimen-
sional box, if one ignores those points obtained by permuting the coordinates.
The question of whether a sum 37, €, %, €&, = £ 1, 0, is positive becomes the
question of whether a certain point of symmetry of the K-hyperbox, that is a
point whose vector is (¢;@,)X,, ¢, = =1, 0 is on the positive side of the K-
hyperplane };X, x;, = 0. The effect of permuting the coordinates of @ may be
thought of as arising from permuting the integers 1 through K in the sets of
integers making up .”; informally one may speak of permuting the test %
and say that the permuted test describes sums to be formed exactly as .7 did.
The frequencies f,(k) which the Friedman-Katz-Koopmans theorem require
to be independent may be thought of as arising first from assigning one of the
2K possible combinations of signs to the vector a—thereby choosing a quadrant
of the K-hyperbox determined by a. Second, one of the K! permutations of
the integers 1 through K is selected and the elements of the sets in .7 are
permutated using it. Third, corresponding to each set 7 in the permuted test,
the symmetric point of the K hyperbox which has just those nonzero coordinates
corresponding to numbers in / is examined to see if it is on the positive side
of the K-hyperplane )%, x; = 0; each of these points on the positive side of

K, x; = 0 corresponds to a positive sum for that s-permutation. Fourth, the
number of such positive sums at the third step is counted—if there are k£ an
s-permutation of the vector a has been found yielding k positive sums. Fifth,
as all possible s-permutations are considered the number of times there are k
positive points at step four is totaled—this number divided by 2¥K! is f (k).
The procedure just described will be called the counting process determined by
. A set of points counted over at step four is called a constellation determined
by .

Under the linear transformation X;’ = X,/a, the K dimensional hyperbox
determined by a becomes the standard hypercube. The hyperplane >/, X; =0
becomes the hyperplane X, a, X’ = 0. The counting process determined by
. on the hyperbox corresponds in the obvious way with a counting process
on the symmetric points of the K-hypercube. All that is now variable is the
plane through the center of the K-hypercube. If the counting process yields
the same frequencies of k points in a‘constellation on the positive side of any
plane through the origin of the K hypercube, it follows that the frequencies
of the Friedman-Katz-Koopmans theorem (Theorem 1) are independent of a
and that N(_#) is distribution free.

5. A theorem on the deformation of hyperplanes.

THEOREM 3. Let H, and H, be two hyperplanes through the origin which do not
meet any of the points of symmetry of a K hypercube. Then there exists a con-
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tinuously parametrized family of hyperplanes H(t), 0 < t < 1, such that H(0) = H,
and H(1) = H, for whichno H(t),0 < t < 1 contains more than one pair of opposite
symmetric points of the K-hypercube.

The proof of this theorem is omitted.

6. The method of proof of the invariance of the counting process determined by
7. The proceeding theorem makes it possible to conclude that if the counting
process determined by _” remains invariant as a K — 1 dimensional hyperplane
is deformed into another K — 1 dimensional hyperplane only passing over a
single pair of diametrically opposite symmetric points then N(_#") is distribution
free.

The following theorem shows that the existence of certain kinds of maps
guarantees that the count of the number of constellations with k positive points
will be the same every time a moving hyperplane passes over symmetric points
of the K hypercube.

THEOREM 4. If for all symmetric points s of the K-hypercube there exists ¢, a
one-to-one map of points on constellations containing s to points on constellations
containing s which maps constellations containing s to constellations containing s
such that for every point p in the domain of ¢, p and ¢ (p) lie on opposite sides
of any hyperplane which passes through the origin and the point s, then N(_") is
distribution free.

Proor. Consider as a moving hyperplane H(r) just passes over s, with s
assigned first to its positive side and then to its negative side. A constellation
with k points on the positive side of H(r) initially is mapped by ¢, to a constel-
lation with k points, on the negative side of H(r) after H(r) passes over s.
Project this resulting constellation diametrically through the origin to get a
one to one correspondence of constellations with & points on the positive side
of H(r) initially to constellations with k points on the positive side of H(r)
after H(r) passes over s.

7. The determination of a natural mapping. Consider the map:

o(z2) = —z if z.s=0

o(2) =85 —z if z.s+0 and (s—2z)-s+0

o(z) =25 — z if z.s#+0 and (s—2z)-s=0.
It is clear in each case that the component of the image vector normal to s is
the negative of the component of z normal tos. Consequently the image vector
lies on the other side from z of any hyperplane through s and the origin. It is
easily verified that ¢,(z) maps points on the same constellation to symmetric

points of the K-hypercube. All known .. for which N(_#") is distribution
free have the property that ¢, takes constellations to constellations. These
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include:
A ={1n{,2 -, {1,2, -+, K} (E. Sparre Andersen (1949))
Sy = 2L Kl (Kraft and Van Eeden (1964))
7, = {all two element subsets of {1, 2, - .., K}}
(Friedman, Katz, Koopmans (1966))
7, = {all subsets of {1, 2, - - -, K} with an even number of elements}
(Hartigan (1969))
= A01,2, -+, K}} (Friedman, Katz, Koopmans (1966))
=S 01,2, .-, K}} (K even)

S =15 {1L2h - (L2, - KL KL K K — 1, - (KK — 1, -, 2)),

The method of proof of the properties of the natural mapping on all known
rules is exactly the same. Only a proof that _~#, is distribution free will be
offered here.

THEOREM 5. N(7), 7 = 7, as listed is distribution free.

Proor. Represent the constellation schematically as a collection of K-tuples
in the following way. The case K = 5 is used here for illustration:

(1,0,0,0,0) 0,0,0,0,1)
(1,1,0,0,0) 0,0,0,1, 1)
(1,1,1,0,0) 0,0,1,1, 1)
(1,1,1,1,0) 0,1,1,1, 1)
1,1,1,1, 1) = (1,1,1,1,1).

Let s be, say, (1,1, 1,0, 0) then ¢, ,,,, yields the image constellation:
0,0,1,0,0) 0,0,0,0, —1)
0,1,1,0,0) 0,0,0, —1, —1)
(1,1,1,0,0) (1,0,0, —1, —1)
(1,1,1, —1,0) (1,1,0, -1, —1)
(L ,1, -1, -1) = (1,1,1, -1, —1).

This image set is easily seen to be an s-permutation of the original constel-
lation; it is easily verified that this represents the general situation.

8. Analgorithm for generating distribution free rules. The easiest way to prove
that N(_#) is distribution free is to show that images of constellations under
the mappings ¢,, s on the constellation, are constellations. This is especially
easy when the image of a constellation is obtained from the constellation by
interchanging signs.
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Given an arbitrary collection of subsets of {1, 2, - . ., K}, it is an easy matter
to construct a smallest rule .# which has the proceeding desirable property.
For example if {1, 2,3} and {3, 4, 5} are to be in . then ¢, , ,,,(0,0,1,1,1) =
(1,1,0, —1, —1) shows that (1, 1, 0, 1, 1) must also represent a point in %}
or {1,2,4,5}e.”. . may thus be closed in this fashion yielding the desired
rule.

The importance of this algorithm is that it indicates the enormous variety
of rules . for which N(_#) is distribution free. At first glance, it might be
supposed that application of this algorithm could always lead to only a few
rules. However, it is easily verified that if the sets of integers one begins with
are all unchanged under a permutation of the integers 1 through K then the
resulting rule _# is made up of sets which are also unchanged under the same
permutation. This leads to the conclusion that there are at least as many dis-
tinct rules . using K observations for which N(_”")is distribution free as there
are non isomorphic finite products of permutation groups of ¢; elements where
2 t;, = K.

9. A proof of the necessity of the hypercube formulation and a necessary condition
that follows from it.

THEOREM 6. If N(_*) is distribution free then the counting process determined
by .7 yields the same frequencies for all hyperplanes through the origin not meeting
the symmetric points of the hypercube.

The proof of this theorem is omitted as it is a straightforward consequence
of the necessity of the condition in the Friedman-Katz-Koopmans theorem and
the manner in which the counting process is induced on the hypercube.

The next theorem is crucial to the arguments of Section 10 and will be referred
to as the opposite point theorem.

THEOREM 7. Let N(#) be distribution free. Let z and s both lie on the same
constellation of .7 and let ¢, be the natural mapping associated with s. Then ¢ (z)
lies on as many constellations containing s as z does.

Proor. The theorem is obviously true if ¢,(z) = —z or ¢,(z) = 2s — z. For
the case ¢,(z) = s — z the following lemmas are needed.

LemMA 7.1. Let z and s be on the same constellation and let ¢,(2) = s — z then
if v is a symmetric point of the hypercube that is on a constellation with s such
that v and z always lie on opposite sides of any hyperplane through the origin and
sthenv = ¢ (z) = s — z.

Proor. The vector v is of the form as — fz where 8 > 0. It is easily shown
that « = 1 and 8 = 1.

LEMMA 7.2. Let N(.7") be distribution free. Let s be a point on a constellation
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determined by .7 and H denote a hyperplane through the origin and s. If the sign
of s is not counted there are as many constellations containing s with k points on
the positive side of H as there are constellations containing s with k points on the
negative side of H.

Proor oF LEMMA. The lemma is a consequence of equating the number of
constellations containing s and —s with k positive points if s is assigned to the
positive side of H to the number of constellations containing s and —s with k
positive points if s is assigned to the negative side of H and manipulating the
resulting linear equations.

LeEMMA 7.3. Let N(*") be distribution free and let z and s lie on a constellation
determined by .7 with $(z) = s — z. Let H be a hyperplane passing through the
origin and the points s and z. Assume no sign has been assigned to s or z. Define
variables as follows:

x(k) = number of constellations with k points on the positive side of H
containing z and s butnot ¢(z),

y(k) = number of constellations with k points on the positive side of H
containing ¢(z) and s but not z.

Then, if  denotes the number of points in a constellation of % minus two,

X(k) + x(0 — k) = y(k) + y(6 — k)
for all k.

Proor oF LEMMA. For the purposes of the bookkeeping involved in this proof
it is convenient to exhibit the following table of variables.

TABLE 1

Constellation contains

variable # of # of points on # of points on

constellations positive side of H negative side of H 2 $s(2)
x(k) k o—k yes yes no
y(k) k o —k yes no yes
x(k) 0—k k yes yes no
y(k) d—k k yes no yes
u(k) k o—1—-k yes yes yes
u(k) o—1—k , k yes yes yes
w(k) k o+ 1—k yes no no
w(k) o+ 1—k k yes no no

In terms of these variables the lemma states:
x(k) + x(k) = y(k) + y(k) .
If z is assigned a positive sign, then by the last lemma:

wik) + x(k — 1) + u(k — 1) + yk) = w(k) + 2(k) + a(k — 1) + ¢k — 1) .
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If z is assigned a negative sign:

wik) + x(k) + u(k — 1) 4 y(k — 1) = w(k) + x(k — 1) + a(k — 1) + j(k) .
Therefore, by subtracting the first equation from the second:

x(k) — x(k = 1) + ytk — 1) — y(k) = x(k — 1) — x(k) + J(k) — y(k —1).

Setting k equal to zero and using induction one obtains:

x(k) — y(k) = y(k) — x(k)
or

x(k) + x(k) = y(k) + J(k) -
Restatement and proof of the opposite point theorem (Theorem 7):
The opposite point theorem states that ¢,(z) lies on as many constellations

containing s as z does. There are two cases to consider. If the d of the last
lemma is odd, then

2 x(k) + x(3 — k)

equals the number of constellations containing s and z but not ¢ (z) which, in
turn, equals
TS y(k) + p(k) 5

the number of constellations containing s and ¢,(z) but not z. If the number
of constellations containing z, sand ¢,(z) are added, the number of constellations
containing s and z equals the number of constellations containing s and ¢(z).
The case J is even is treated similarly. Thus the opposite point theorem is
proved.

10. The determination of all of the distribution free band rules. A rule .~ is
a band rule if _# contains all subsets of {1, 2, - .., K} with k elements where
2 < k<K

THEOREM 8. The only band rules 7, for which N(_#") is distribution free are
oy HF 4y Fy and P as listed earlier.

Proor. The following lemma relates the opposite point theorem (Theorem 7)
to set operations a band rule must be closed under. The final theorem then is
obtained by closing the band rules under the indicated set operations.

LeMMA 8.1. Let z and s be points on a constellation of a rule .7, where N(.*")
is distribution free. Let z and s represent, respectively, an a and a 8 element subset
of 7 where # contains all subsets of {1, 2, - .-, K} with a and j elements. Let
&,(2) have y nonzero entries. Then.* contains all y element subsetsof {1,2, - - -, K}.

PrOO¥ OF LEMMA. .7 contains all y element subsets of {1, 2, - - -, K} if and
only if all rules obtained by permuting . contain any one specified y element
subset of {1, 2, -- ., K}. Letsand z both lie in the positive quadrant. Identify
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with the vector s — z the vector ¢ that has the same zero entries as s — z but
lies in the positive quadrant of R¥. Obviously ¢ and s — z lie on the same
number of constellations containing s. A constellation containing s and ¢
contains z. By the opposite point theorem, ¢ lies on as many constellations
containing s as z does. Thus each time s and z lie on the same constellation,
t lies on that constellation. Restricting attention to the positive quadrant, it
follows that the y element subset of {1, 2, - .., K} that corresponds to ¢ must
appear in every permutation of 7.

The following lemma follows by repeated application of the last lemma.

LEMMA 8.2. Let N(_*) be distribution free and let % contain all p element
subsets of {1, 2, -+, K} where 2 < p < K, then _# contains all 7) element subsets
of {1,2, - - -, K} where v is an integer of the form p + 2y (r an integer) which does
not exceed K — 1. If p is odd, .7 also contains all subsets of {1, 2, - - -, K} with
an even number of elements except possibly {1, 2, - .-, K}.

Proor. Since p < K and ..” contains all p element subsets of {1, 2, - - -, K}
by hypothesis it is possible to choose a K-tuple s with p nonzero entries and
then another, z, that differs from it in only two places that lie on the same
constellation. By computing ¢,(z) = s — z one concludes from the previous
lemma that _# contains all two element subsets of {1, 2, ..., K}. As.* con-
tains all two element subsets of {1, 2, - - ., K} it is possible to choose a K-tuple,
t, with only two nonzero entries, that are in the same places as nonzero entries
of s, that lies on the same constellation as s. By computing ¢ () = s — ¢ one
concludes that _# contains all subsets of {1, 2, ..., K} with p — 2 elements.
The result that _# contains all subsets with o — 2y (7 an integer) elements
follows by induction. The remainder of the proof follows from similar con-
siderations and is omitted here.

Lemma 8.2 is now applied to determine possible band rules, ..”, that yield
distribution free statistics, N(.*). The simplest consequence of this lemma
is that if N(_7) is distribution free and _# contains all subsets of {1, 2, ..., K}
with o elements, where p is an odd integer such that 2 < p < K then .7 is
either the Kraft-Van Eeden rule _#, or the Friedman-Katz-Koopmans rule _7,.
If 7 contains only sets with an even number of elements and is a band rule,
the sweep-out lemma also applies directly and it follows that _# must be
Hartigan’s rule .7, or the rule 7.

The case when .# contains a set with an odd number of elements and p is
even requires further argument.

LemMma 8.3. If 7 contains a subset I with an odd number of elements then .*
contains all one element subsets of I.

This lemma is illustrated in the following example.
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ExampLE. K=61={1,2,3,4,5)}.

Lets=(1,1,1,1,1,0). Bythesweep-outlemma(l,2, 3,4)e /. Therefore
z=(1,1,1,1,0,0) lies on a constellation with 5. Now ¢,(z) = s — z = (0,
0,0,0,1,0). Aszlies on every constellation containing s, by the opposite
point theorem s — z lies on every constellation containing s. Thus {5} e I.
Considering ..” ’s arising from permuting the integers 1 through 5, it follows
that {1}, {2}, {3}, {4} and {5} are all elements of ._”.

From the preceding lemma, it follows that _# contains a one element subset
J. The proof is best continued by example.

EXAMPLE.

K=6J=1{1}
z=(1,1,1,1,0,0)
t=(1,0,0,0,0,0)

$(H)=z—1t=(0,1,1,1,0,0).

Now z — ¢ lies on as many constellations containing z as t does. It is easily
seen that v = (0, 1, 0, 0, 0, 0) lies on as many constellations containing z as ¢
does. Thus v lies on as many constellations containing zas z — ¢ does. By the
last lemma if z — ¢ is on a constellation in the positive quadrant then v is on
that constellation. Thus everytime v and z lie on the same constellation z — ¢
lies on that constellation. That is if {2} is in a rule obtained by permuting %
then {2, 3, 4} is in that rule. This shows by the last lemma that if {2} is in a
rule obtained by permuting .7 then {4} is in the rule. From this it readily
follows that .7 contains every one element subset of {1, 2, 3,4, 5, 6} - .~ then
contains all subsets of {1, 2, 3,4, 5, 6} with three elements by lookingatz — ¢t =
{0,1,1, 1,0, 0} and applying Lemma 8.1. This reduces the problem to a case
already considered where p is odd and the theorem is proved.

A rule 7 is said to be symmetric if it is invariant under all permutations.

CoROLLARY. The only symmetric rules, .7, for which N(_*) is distribution
free are:
F=(li)ie(l,2, -, K}
= ({12, -, K}
S =i fyijefl,2, -, K}
S ={{i,j}:i,je{l,2, .-, K} and i # j}
" = any band rule 7 for which N(_#") is distribution free.
Proor. If 7 issymmetricandis notaband ruleand {1, 2, - - -, K} €7 then

cannot contain a singleton set or a doubleton set as the opposite point theorem
would make . a band rule.
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11. The Sparre-Andersen type rules. A rule .~ is of Sparre-Andersen type if
the sets in . form a chain under set inclusion. The following theorem is an
easy consequence of the opposite point theorem and has application to random
walk theory.

THEOREM 9. Let 7 be of Sparre-Andersen type. If N(_*) is distribution free
there exists an integer d which is a divisor of K such that % is obtained by permuting

{{,2,.--,d},{1,2,---,2d}, .-, {1,2, ..., id}} 1<i<K/d.
The proof is omitted here.

12. A limitation of technique used in this paper. An interesting question is
if N(#") distribution free implies that the natural mapping maps constellations
to constellations. It is not possible using the technique of this paper—that is
considering the linear equations that occur among the frequencies as a result
of considering a finite number of different positions for a hyperplane through
the origin—to derive even the result that the same number of constellations
must pass through s, z, and ¢ as through s, ¢,(z), and ¢,(f). By considering the
general form of such linear equations it is possible to demonstrate the last
statement cannot be derived no matter how many additional points are con-
sidered. Attempts to program a computer to search for a counter example
lead to formidable storage problems. The author conjectures that either a
counter example exists or the problem is undecidable.
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