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STATIONARY MEASURES FOR A CLASS OF STORAGE
MODELS DRIVEN BY A MARKOV CHAIN

By R. V. ERICKSON

Michigan State University

A storage model in which the growth rate is proportional to the level
of the dam plus a factor, both proportionality constant and factor depend-
ing on a finite Markov chain, is shown to be a Hunt process. Hitting dis-
tributions are shown to satisfy certain integral equations, communicating
and recurrence classes are studied, and stationary measures are shown to
exist when the dam is finite and the level has at least one recurrent linear
growth phase, and in some other cases as well.

1. Introduction. Recently Brockwell [5] considered a continuous time storage
model in which the level Y,, when not at a boundary, satisfies the differential
equation (d/dt)Y, = Z, where Z, is a finite state Markov chain. Many results
were obtained and it seemed not unlikely that much of the theory could be
carried over to the case in which

d

S Y= aZ)Y, +b(Z)

(1.1)
off the boundary, where @ and b are real-valued functions on the finite state
space of the Markov chain Z. Indeed, most of the calculations are essentially
identical.

On the other hand, it is quite impossible to use Brockwell’s techniques to
prove the existence and uniqueness of invariant measures for the process (Y,, Z,).
But the results given by Azéma, Kaplan-Duflo and Revuz [2] provide ready
answers to these questions. In fact, this reference should be of help in treating
a much more general class of storage models, including those considered by
Weldon [8] where (d/dt)Y, = Z, is a finite state semi-Markov process. We will
consider these questions elsewhere.

For a more detailed account of the history of these and other related models
we refer the reader to Brockwell [5].

In this paper we show that the process (Y,, Z,) is a Hunt process, where Z,
is a finite state Markov chain and Y, satisfies (1.1). We then examine the
potential theoretic exceptional sets and derive integral equations satisfied by
hitting distributions in order to study recurrence properties. Reference [2] pro-
vides invariant measures when there exist recurrent classes, conditions for which
are given in Section 5.

2. The process.’ The exterior forces governing the change in the storage level
Y, are assumed related to the (right-continuous) Markov chain Z,, with finite
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998 R. V. ERICKSON

state space M = {l, - .., m} and transition matrix exp(1Q), @ = (¢;;), i, je M,
q; = —4;, by the functions @, b: M — R. The level Y, is supposed to satisfy
(1.1) while Y, is in J = (a, f), —o0o < @ < § < 40, and Y, remains at the
boundary of J until the driving conditions change suitably to force the level
back into J.

More precisely, writing a; = a(i), b, = b(i), being given y € R define
2.1) h(t, y, i): = ey + (}e""="%b, ds

as the unique solution to the initial value problem
W) = ah(t) + b, hO) =),

introduce the deterministic exit time
(2.2) t,: = inf{t = O|A(t, y, i) e J~
(— = closure in the usual topology of R, ¢ = complement operator, infimum

of the empty set is taken as oo), and finally define the (known, deterministic,
nonrandom) function

(2.3) k(t, y, i): = Bt A Ty, p, 1)

(A = minimum). The process Y, is obtained by piecing together the k-functions
as follows: for a given path Z,(w) with jumps at times ¢, < #, < -- - through

the states z, to z, to z, - - - in M, if Y, = ye J~ is given, define inductively
(2.4) Y(w): = k(t — t,, Y, (), 2,)
fort, <t<t,,,n=0,1,...,¢,=0.

Notice that if Y,(w) = «, then Y, (0) = « until the first ¢, after s for which
T&Zn > 0’

It follows from the fact that Y,,, is uniquely determined by Y, and the driving
coefficients a(Z,), b(Z,), t < r < t + s, that the pair (Y, Z,) is a right-continuous
Markov process with state space E = J~ x M. But much more is true.

To see that X, = (Y,, Z,) is a very nice Markov process define the function
classes on E = J- x M (with discrete topology on M, and product topology
on E): B = bounded measurable, C = bounded continuous, C, = continuous
vanishing at infinity.

Define the semigroup of operators P, on B, t = 0, by

(2.5) P f(x) = E*f(X,) = E(f(Y,, Z)| (Y, Z,) = X) -
(2.6) THEOREM. If H is any of the above function classes, P.H C H.
Proor. If y(w) equals the number of jumps of Z (w) in [0, ), then
Ptf(y’ i) = Z::Of'n(y’ i)

where f,(y, i) = E¥(f(X,); v, = n).
But [N, fu(ps i) < || f]|l«P¥(v, = k), hence the series representation of P,f
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converges uniformly for f'e B, and it suffices to show that f, e H if fis. Now,
for example,

Joy: i) = P¥i(v, = O)f(k(t, y, i), i) and
Sy i) = Py, = 1) s $6 Ukt — 5, K(s, y, 0), J)qie™ ds
and the remaining f, have a similar form. Because k is linear in y, f, € H if
fis. [J
2.7 CoROLLARY. P,f(y, i)— f(y, i) as t— 0, uniformly for f ¢ C, and point-
wise for fe C.

ProoF. Since v depends only on the Markov chain Z,, P¥(v, = 0) — 0 uni-
formly in y. The result now follows from the above series representation of P, f
and the fact that k(¢, y,i) —» yast — 0. []

Combining these results with the basic existence theorem for Hunt processes
given in Blumenthal and Getoor ([4] page 46—whose notation and terminology
we follow consistently), we have

(2.8) CoRrOLLARY. The process X, = (Y,, Z,) is equivalent to a Hunt process
and a (non-strong) Feller process.

RemaRk. If X," = (Y,", Z,") is the Hunt version of our process with state
space E =J- x M, then Z" is a right continuous version of the Markov chain
Z. If we construct our process X = (Y, Z") using Z" then Y is right continuous
by construction and hence the paths of ¥ and Y* are equal a.s., i.e. for each
initial point (y, i) there is a measurable set A = A,; such that P¥A = 1 and
forwe A, Y, (w) = Y,"(w) for t = 0. This will be used without comment in the
following sections.

From now on we write X = (Y, Z) for the above Hunt version X* = (Y*, Z").

The results of Azéma, Kaplan-Duflo and Revus [1], [2], [3] imply the ex-
istence of invariant measures for X on recurrent classes if X satisfies hypothesis
(L) (see [2] page 158, [7] page 160, [4] page 196 and Theorem (3.6) below).

In order to determine if X has this property we must look at potential theo-
retic exceptional sets and the fine topology for X. This we do in the following
section.

3. Exceptional sets and fine topology for X. Looking at the functions 4in (2.1)
we see that

ah; + b, =0 implies h(t, h;, i) = h, forall teR.

Such points h; = (k;, i) € E are called holding points for k. Notice that each line
(segment) E;: = J~ X {i} has at most one holding point unless a; = 0 = b,, in
which case E; is termed a holding line.

Clearly, if a; < 0, h; € E is an attracting holding point (for k) in the sense that
k(t,y,i) > h; all ye E; as t — oo, while if —co < #;, < @ and @, < 0 then
k(t, y,i) — a for all ye E; as t — oo and @; = (a, i) is termed an attracting
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boundary point while 8, = (B, i) is a repelling boundary point. In case h, = a,, a,
is given the obvious rubric. If a; > 0, attracting and repelling are everywhere
interchanged in the terminology above. If a; = 0 < b;, think of B, as an at-
tracting boundary point (in E if 8 < oo0).

Observe that an attracting holding point h, is reached by k(z, y, i) in a finite
time only when y = A,.

To discuss exceptional sets and fine topology of X we partition the boundary
operator 9 in the product E-topology into four components: given 4, B C E,
denote the E-complement by 4° = E\4, B\C = B N C¢, define

H = {holding points and attracting boundary points for k in E},
0, A ={(y,i)c0A\H|3e = e(y,i) > 03k(t, p,i)e 4,0 < t < ¢}
(B.1) 8, A4={(y,i)cdA\H|3e = &(y,i) > 05k(k, y,i)e 4,0 < t < ¢},
0ued = {(y,)) € 04A\H|3t,, s, | 03 k(t,, y, i) € A, k(s,, y,i)€ 49 and
0,A=04NH.

Notice that 9,,4 = d,, A° = d,, 4° (° = interior operator in product topology
of E). '

The points in H are holding points for X ([4] page 91), while those in H* are
instantaneous. The boundary operators are termed exit, entrance, alternating and
holding, respectively, for obvious reasons.

This decomposition makes it easy to characterize finely open sets ([4] page 85),
i.e. sets from which the process does not immediately exit.

Introducing the entrance and hitting times for A C E:

(3.2) D () = inf {t = 0| X,() € 4}
T () = inf {t > 0| X,(0) € 4}

and observing that X, follows the known path (k(t, y, i), i) until the first jump,
we perceive that given 4 C Eand xe 4, x e A° U 0,, 4 implies P*(T .. > 0) =1,
x ¢ d,4 implies P*(Ty,, >0) =1, xed, A implies P*(T,..=0) =1, and
X € 0,,4 implies P*(T, = 0) = 1, where for x = (y, i), B, = {(k(s,, y, i), i) €
A°|s, | 0}. This gives

(3.3) THEOREM. A set A C E is finely open iff A C A° U 0,,4° U 0, 4.

Thus, for example, an interval [c, d) C E; is finely open and finely closed if
k(t, ¢, i) is a strictly increasing function of ¢ while (c, d) is just finely open. If
there are no holding lines, every fingly open set of the form 4° U 9,,4° U 9,4
is a countable union of certain half open intervals and points. On the other
hand, every subset of a holding line is finely open.

For a (nearly) Borel set 4, the set A" of regular points for A are those points start-
ing from which 4 is hit immediately ([4] page 61), i.e. A" = {x| P*(T, = 0) = 1}.

- We exhibit 4" below as well as the finely closed sets (i.e. complements of
finely open sets). Part (a) below follows from remarks preceding Theorem 3.3;
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the statement in part (c) is true in general ([4] pages 87, 199) but it and the
representation are immediate in the present set-up.

3.4) THEOREM. (a) A" = A° U 0,,4° U 0,, AU (4N 3d,4). (b) A4 =
0,,4AN A. (c) Ais finely closed iff A" C A and the fine closure of A is A U A" =
AU o,,4° U d,,A.

We now characterize the potential theoretic exceptional sets associated with
X. (See [4] page 79 for precise definitions.)
Let 4 denote Lebesgue measure on E.

(3.5) THEOREM. Let A be a subset of E. (a) Aispolariff 4 = . (b) 4 is
thin iff 4 is countable and A N H = @ and there exists no sequence {t,} strictly
decreasing to zero such that k(t,, y, i) € A all n and some (y,i)e E. (c) A is semi-
polar iff 4 is countable and A N H = . (d) A universally measurable set A ([4]
page 2) is null (has potential zero) iff (4) =0and AN H = Q.

Proor. (a) Clear. (b) By definition 4 is thin iff A" = @ iff (by Theorem 3.4)
A° =@, AN A=ANA" NH=ANH= @ and d,;,4 = ¢. The first of
these requirements follows if 4 is countable and the third if there is no such
sequence of #’s. Conversely, let 4 be thin. Then 4 N H = @ and no such ¢
sequence can exist, else (y, i) = lim, (k(¢,, y, i), i) € A”. It remains to show 4
countable when thin. Write each E;\H as a countable union of compact inter-
vals [;; with end points in 4 and I;; N H = . If any [;; = [a,, a;] is such that
A;; = I; N A is uncountable we get a contradiction: assuming k(t, a,, i) is in-
creasing in ¢, there is a smallest #, > O such that T, = {t < t,|k(t, a,, i) € 4,;} is
uncountable, else there is a r-sequence. But then T\\{t} = Us, {t <1, —
n='|k(t, a,, i) € 4;;} is countable. Replace a, by a, if k(t, a,, i) is decreasing. This
proves (b). (c) A semipolar set is defined as a countable union of thin sets,
nonholding points are thin, so (c) follows trivially from (b). (d) Now suppose
A is null. If x = (y, i) is a holding point for X, then starting from x the average
time in x is at least 1/g, > 0; so AN H = @. Writing 4 = J;., U7, 4;; as
in (b), with 4;;, = [a,;,, a;;,] N A N E; and k(¢;;, a;;, i) = a;;, t;; > 0, starting
from a;; the average time in 4;; is at least exp[—gq;t;] 59 1, (K(s, a;;, 1) ds,
implying A(4,;) = 0 if 4 is null. The obvious modification gives the result when
t;; < 0. Conversely, if A(4) =0 and 4 N H = ¢, on each visit to E; X can
spend only zero time in 4,; (it has a positive velocity across [a;;;, a;;,]). But
each path visits E; only countably often and thus 4 is null. []

(3.6) COROLLARY. The following are equivalent: (a) X satisfies hypothesis (L),
(b) there exists a finite (reference) measure p on the universally measurable sets such
that p(A) = 0 exactly when A is null, (¢) X has no holding lines.

Proor. The equivalence of the latter two statements is obvious from (3.5),
‘and that of the first two is well known (the proof of this is nearly that of ([4]
page 197, Proposition (1.2)). [
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The existence of an invariant measure for X with no holding lines is now
insured by [2] if X has any recurrent states.

In order to determine which states, if any, are recurrent we derive integral
equations satisfied by the hitting distributions of X in the next section. Included
are integral equations for other functions of interest. In the section following
we take up the question of invariant measures.

4. Calculations. In this section we obtain integral equations satisfied by vari-
ous functions of interest to anyone applying our models to storage problems.
We characterize the solutions corresponding to these probabilistic functions and
give iterative procedures for their calculation. This is important, for the in-
tegral equations will not always have unique solutions.

The technique used is the powerful “method of first jump.’”” Since all the
proofs are basically the same we will content ourselves with proving only one
of the following theorems. Nor will we state in great detail any but the theorem
on hitting distributions.

Recall that the finite Markov chain Z on M = {1, ..., m} has transition
matrix exp (tQ). Write ¢, = —gq,;, write r,; = ¢,;/¢; and =,; = 0 if ¢; # 0, and
T, = 0,n,;,=1ifq,=0,i,je M, i=+j From II = (Tt‘ij), i,je M.

We first look at the infinitesimal generator .97 of the semigroup P,

4.1) THEOREM. For f € B,
(4.2)  Pf(y, i) = etusf(k(t, y, i), i)

+ X7 o Pof(k(t — s, 9, 0), j)g; exp[—qi(t — )] ds ,
and thus for fe C!

(4.3) Sy, i) = ;903 J) + (@y + b)f' (. 1),

where ' is the appropriate one-sided derivative on the repelling boundary point for k.

For U any measurable subset of E, write U; = U N E; and D = D, ;., where
“—" denotes product topology closure and D, is defined in (3.2). Denote the
deterministic exit time by

(4.4) t,, = inf{t > O|k(t, y, i) € E\U} .

4.5) THEOREM. For he B, set f(x) = E*h(X ). (a) f is a solution of the in-
tegral equation

(4.6) @(p, i) = exp[—q:t,]h(k(t,, y, i), 0)
+ 27 $ovi p(k(s, . 1), ]), qie” " ds .
(b) For he B and nonnegative, f is the smallest nonnegative solution of (4.5).
(¢) f is the unique bounded solution to (4.6) in case Z is irreducible and there is
some i for which sup{t,;|ye U} = K < 0.
(d) The functions f,(y, i) = E¥(h(X}); v < n), v = number of jumps of Z before
time D, increase to f and can be calculated inductively by noting that
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4.7 Sy, 1) = exp[—q.t,:Jh(k(ty;, y, 1), i)
Sors(s D) = fo(p, §) + 2 mi; Sive fulk(s, 5 0), j)gie™ % ds .
(e) For U open, f satisfies the differential equation

(4.8) Ay, i) = (@y + b)f'(»: ) + X;9::/(,)) =0, (y,)eU\H U 9,, U

with boundary conditions

Zi9: /() =0, (y,)e(UnH)UIHU
f i) =hy, i), (»1)ed,UU3,UUEU .
Again ' is one-sided differentiation in 0,,U.

Proor. (a) Use the strong Markov property, noting that prior to the first
jump of Z, X is deterministic. The first term in (4.6) corresponds to no Z-jump
before X enters E\U~, the second to a jump to j by Z at time s before X enters
E\U-. (b) and (d) (4.7) follows from the strong Markov property, and if 4 is
nonnegative and ¢ is a nonnegative solution of (4.6) then by induction f, < o,
implying f =lim f, < ¢. (c) If ¢,, ¢, are bounded and satisfy (4.6), then ¢ =
©, — ¢, satisfies

Wy, D) = 27, Sin k(s, y, 1), j)qie™7e ds .
Set ¢, = sup{|¢(y, D)||y € E}}, I € M, so that
©) o = Z:j ﬂlj¢j and ¢; < Zj ﬂij¢j §& qem e ds .

In obvious matrix notation, 0 < ¥ < II¥. Irreducibility of Z implies the ex-
istence of a probability vector r with r = rIl and each component strictly posi-
tive. Thus we must have ¥ = II¥, else r¥ < II¥ = r¥. But this implies
0 < V¥ = cl, 1 a column of ones, and the second inequality in (*) implies 0 <
c < ce %%, Thus ¢ =0 and ¥ = 0 and ¢, = ¢,. (¢) This can be checked di-
rectly if the change of variable s — k(s, y, i) is made in (4.6). It is also a corol-
lary of the fact that the infinitesimal generator and characteristic operator
coincide on a certain class of functions, see Dynkin ([6] pages 46 and 143) and
our Theorem (2.6). []
Using the notation D = D,,,., and other notation above, define

Ly(y,i) = E¥(e™"), 2>0
and, for g nonnegative bounded measurable on U-,
F(y,i) = Ev {? g(X,) ds .

We content ourselves with displaying the integral equations satisfied by L, and
F and a remark on uniqueness. Statements and proofs of other results paral-
leling those given in the preceding theorem are easy and left to the reader.

"(4.9)  THEOREM. For each 2 >0, L, is the unique solution of the integral
equation
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Ly(y, i) = exp[—1,:(2 + ¢.)]
+ 25 mi; S6vi Ly(k(s, 5 1), j)q: exp[— (2 + g;)s] ds .

(4.10) THEOREM. The function F is the smallest nonnegative solution of the in-
tegral equation

(I)(y, i) = exp[_qi t’!ﬂ] Sslli g(k(s, y, i), l') ds
+ Sevi [§6 9(k(r, y, i), i) dr]q; e~ ds
+ Zi 5 S(t)yi (I)(k(s, Y 1)’ i)qie—qis ds .

5. Invariant measures for X. Azéma, Kaplan-Duflo and Revuz [1], [2], [3]
study recurrence and transience properties of standard processes, a class which
includes Hunt processes. (Here we are using the terminology of ([4] page 45);
c.f. ([1] page 187).) They then prove the existence and partial uniqueness of
invariant measures for such processes having recurrent states. We review their
terminology first.

Recall that x ¢ E is finitely recurrent iff P*(X, € V'i.0.) = P*(limsup,_, [ x,.y,
= 1) = 1 for every Ve 7,(x) = {V D {x}| V is nearly Borel and finely open},
while otherwise x is finely transient and then there is a Ve 77,(x) such that
P*(X,e Vi.o.) = 0([1] page 188). Further x leads to y (write x — y) iff
P*(T, < o0) > 0 for all Ve 7,(y), and x communicates with y iff x — y and
y — x (write x « y). Finally, x is essential if for each y for which x — y we
have y — x.

It is shown that “—” is an equivalence relation ([1] page 198), and that fine
recurrence and essential-ness are class properties ([1] page 198, 199). Also, an
essential class is finely closed ([1] page 199) and a recurrence class is essential.
An almost Borel set 4 C E is stable if P*(X,c A for all t > 0) = 1 for each
x e A ([1] page 200).

It is shown ([1] page 202) that disjoint recurrent classes are contained in dis-
joint finely closed, stable sets (called conservative classes) when hypothesis (L) is
satisfied. This and additional reasoning imply that each conservative class sup-
ports a unique invariant measure ([2] page 162).

For our processes, each essential class is stable and finely closed when there
are no holding lines. Thus the invariant measure is supported by the recurrent
class itself.

From now on assume X has no holding lines and Z is irreducible. The second
assumption is harmless for each recurrent class K for Z leads to a family of lines
U:<xE; in which essential classes of X must be contained, and each family may
be studied separately.

For each i with a; = 0 define h, = —b,/a;, and when a, = 0 set h; = + .
Say h; or h; = (h;, i) is attracting if a; < 0 or if a; = 0 < b;. Otherwise &; is
repelling.

(5.1 THEOREM. For the process X each essential class is finely closed and stable.
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Since Z is irreducible, X has at most three essential classes, each easily determined
in any specific case.

Proor. We have already noted that in general essential classes are finely
closed. A proof of the remaining statements is given by an exhaustive study of
cases. For simplicity we restrict ourselves to the cases when —oco < a < 8 < 0
and when there is i and j with h; = h;. Let 52, = {h|h, < a}, 55, =
{h;|h; > B} and ZZ7 = {h;|a < h, < B}. Say S5Z,is at. (rep., both) if H, + ¢ and
every h; is attracting (repelling; 3h;, h; € 5 ,, h; attracting, h; repelling). Simi-
lar statements are made about 577 and 5. The unique essential class for X
is £ when &#°, is both, when Sy 1s both, and when &£, and 577, are each at. or
rep. When 57, is at. or 527 is rep. (1) and &£ is void or rep. the unique es-
sential class is @ X M, (2) and &£ is at. the unique essential class is the fine
closure of [a, h) X M, h = h,,, ., = max{h,e 57 |h;at}, (3)and 5 is both,
the unique essential class is the fine closure of [a, h) X M, where h = h, ..
if every repelling h; € 5 is greater equal h,,, ., , and the unique essential class
is E otherwise. The case &Z°, rep. or 97 at. is similar. Finally suppose
G, U= and FZ =+ {h}: (1) If 5F is rep. then « X M and 8 X M are
the only essential classes. (2) If 5 is at. then the unique essential class is the
fine closure of (Au;y 015 Amax.ae) X M, By o, = min {; | b, e 527}, (3) If £ is
both the unique essential class is E unless either A,y rop. < Amin.ar. OF Apag.ar. <
Brnin.rep. When it is the fine closure of (A, ..., f]1 X M or [a, by, .) X M,
respectively. It is easy to verify the above statements and also to check that
the given essential classes are stable. []

Unfortunately we are unable to determine in general when an essential
class is recurrent. We do have the following result which should cover many
applications.

(5.2) THEOREM. Suppose either (a) —oo < a < 8 < oo and there is an h; ¢
[a, B], or (b) —oc0 < @ < B = oo, every a; = 0 and either (i) every b, < 0 or (ii)
there are b; < 0 < b; and the matrix —B~'Q, B = diag|[b,, - - -, b, ], has Jordan
Sform with blocks J; = 2, + N, and 2, = 0, Re 2, > 0 for i + 1. Then the unique
essential class K is recurrent and stable and X has a unique (up to a multiplicative
constant) invariant measure supported by K.

Proor. The first case considered is H, U H, # ¢, in the notation of Theorem
5.1. Suppose, without loss of generality, 4, < a is repelling. We show that
(85 7) is finely recurrent and in K which implies that K is a recurrent class: For
Ty = inf{t > 0| X, = (B, i)}, f(y, j) = P*(T < oo) is the unique solution of
(4.6) with A = 1, for the hypothesis of Theorem 4.5. (c) holds. Since the func-
tion identically equal one also satisfies (4.6) with A = 1, we have

P¥(Ty < 00) =1 for all (y,j)eE.

But, for U(x, V) = E® " I(X,)dt, we have by the strong Markov property
(c.f. [4] page 69), for V = {8, i},
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b
q:
1 . ;
=T 205 7 U(B, 1, V)PP (T < oo)
1 .
=—4+U@BiV).
q:
Thus (B, i) is finely recurrent ([1] page 188). Case (b i) is trivial for then
K = a x M. In case (b ii) the vector function f{y) with components f(y, j) =
PYi(T,; < oo) satisfies the differential equation Bf’ + Qf = 0 (see (4.6), (4.8)),
and the conditions guarantee that the only bounded solution of this is the con-
stant function. Now f = 1 and argue as above. The existence and uniqueness
of an invariant measure p for X with ¢(E\K) = 0 is proved in ([2] page 162). []
We give an example to show that condition (b ii) is not vacuous in Section 6.
Define the potential measures U*(x, 4) = E* {7 e I (X,)dt, « = 0. 1t is
shown ([2] page 165) that the invariant measure is equivalent to U*(x, +) for
each x in the recurrent class K and « > 0. But each U*(x, +) is absolutely con-
tinuous with respect to the reference measure

o=21+v
where 2 is Lebesgue on E and v is counting measure on H (which is finite

since X has no holding lines). This follows since U(x, 4) = 0 iff p(4) = 0 and
Us(x, +) S U'(, +).

UB, 5 V)=—4 X;m; UB: Js V)

(5.3) THEOREM. In general, if p is an invariant measure for X on a recurrence
class, then 1 is absolutely continuous with respect to the reference measure p for X
and p(E) < oo.

Proor. The first statement is contained in the above remarks. To see that »
is finite, define the additive functionals 4, = {} IEi(Xs) ds=S\i1,(Z)ds. A<t
so that A* is integrable ([2] page 166). But almost surely lim,_., 4,'/t = r, >0,
where r = (r, - - -, r,) is the unique positive invariant vector for the finite state
Markov chain Z. Now y#(E) < oo follows from ([2] page 173). [I

6. Conclusion. There may exist a non-finite invariant measure when X has no
recurrent states: take —a = 8 = +o00, M = {1}, a, = 0 < b, (uniform motion
to the right) and ¢ = Lebesgue measure on £ = R. On the other hand, when
X is as above but « = 0, X has no invariant measure.

There may exist non-compact recurrent classes: take « =0, f = + o0, M =
{1,2}, |g;;] = 1, all 4, j, and @, =0 = a,, 0 < b, < —b,. The vector function
f(y) with components f{(y, i) = P*(T,,, < oo) satisfies the differential equation
Bf’ + Qf =0 (see (4.6), (4.8), h = 1) and — BQ has eigenvalues 0, (b, 4 b,)/b,b,;
the only probabilistic solution is f = 1 and as in Theorem 5.1, (0, 2) is recurrent,
and E is a recurrent class.

We believe that condition (b ii) of Theorem 5.1 is too strong, but we are
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unable to relax it or treat in general the question of recurrence when no line
E; can be deterministically traversed in a finite time.

Acknowledgment. I am indebted to Professor P. Brockwell for many stimulat-
ing discussions and for drawing my attention to problems in the theory of
storage models.
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