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ON THE VARIANCE OF THE NUMBER OF ZEROS OF A
STATIONARY GAUSSIAN PROCESS

By DONALD GEMAN
University of Massachusetts

For a real, stationary Gaussian process X(¢), it is well known that the
mean number of zeros of X(¢) in a bounded interval is finite exactly when
the covariance function r(¢) is twice differentiable. Cramér and Leadbetter
have shown that the variance of the number of zeros of X(¢) in a bounded
interval is finite if (r//(¢) — r//(0))/¢ is integrable around the origin. We show
that this condition is also necessary. Applying this result, we then answer
the question raised by several authors regarding the connection, if any,
between the existence of the variance and the existénce of continuously
differentiable sample paths. We exhibit counterexamples in both directions.

1. Introduction. Let (Q, &, P) be a probability space and X{(¢, w), or just
X(?), a real, separable, stationary Gaussian process (SGP) on (—oo0, +0) x Q
with covariance r(f) and spectrum F(d1). The mean number of zeros of X{(¢) in
a finite interval is finite if and only if

(1) A, = § 2F(dA) < oo ;
equivalently, r(f) e C® where C'*' denotes the class of real functions with a kth

continuous derivative. In [2] it is shown that a sufficient condition for the ex-
istence of the variance of the number of zeros of X(¢) in a finite interval is

(2) Sgﬂ)_t—r"@)dt< oo for some 4> 0.

Also, the question of necessity is raised. In Section 2 we show that (2) is, in
fact, necessary. Section 3 deals with the mean number of zeros of X(¢) “given
X(©0) =0."

Applying the result of Section 2, we then consider the relationship of the
number of zeros of X(¢) to the smoothness of its trajectories. In the absence of
(1) the trajectories are non-differentiable a.s. On the other hand, it is also
known that if

3) ri(f) — r'(0) = O(log ™) as t—0*, some a> 1,

then X(t) e C* a.s. Clearly, (2) and (3) are close. Consequently, Qualls [7]
and Ylvisdker [9] have raised the question of whether the existence of the vari-
ance is either necessary or sufficient for X(¢) e C* a.s. In Section 4 we provide
counterexamples in both directions.

2. A necessary condition for the variance. For convenience take EX(f) = 0,
r(0) = EX*(t) = 1, and concentrate F(d2) on (0, oo) so that
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r(t) = {5 cos AtF(dA) .
As we are assuming 1, = —r”’(0) < oo, it follows that X{(¢) is differentiable in
quadratic mean:

E[w _ X’(t):|z—> 0 as h—0

for every t € (— oo, + o0) where X’(¢) is a SGP with covariance function —r"(?).
Of course, E denotes expectation.

Throughout this section we will assume that F(dZ) is not purely discrete.
This insures that the joint normal distribution of (X{(0), X(z), X'(0), X'(¢)) is
nonsingular (see [2] pages 203-204). In fact, the only available expression for
the second moment of the number of zeros of X(¢) involves the mixed distribu-
tion of X(¢) and X'(7). Specifically (see [1]),

4) EN*0, T) = EN(0, T) + §7 ¢ dt, dt, §=., §=. |xy|p,(0, 0, x, y)dx dy ,

where N(0, T) denotes the number of zeros of X{(¢), te (0, T), p, denotes the
joint density of (X(,), X(t,), X'(t,), X'(t,)), t = [t — #;| > 0, and the equality in
(4) persists if either side is infinite.

THEOREM. With X(t) as above

ENY0, T) < o if and only if ggﬂtt_’"(_’)dz < oo

for some 6 > 0.

Proor. The “if” part appears in [2], provided that F(d?) is not purely discrete.

For the converse, we first outline a standard reduction of the integral in (4).
The joint density of (X(#,), X(,), X'(t,), X'(t,)) depends only on the difference
|t, — 1,| so that, changing variables, the integral in (4) can be rewritten

250(T—0¥(@yde, W) = §2 §2. [xp|p0, 0, x, y) dx dy ,

in which p, is thus taken as the joint density of (X(0), X(¢), X'(0), X’(¢)). More-
over, it is easily seen that W(z) is integrable away from the origin; hence the
problem reduces to showing that if (2, + r”(¢))/t diverges on (0, d) then so does
(). (Notice that 2, + r’’(f) = 0¥z.) Now let A = A(¢) denote the covariance
matrix corresponding to p,. Writing p, in terms of A and its cofactors, then
changing variables we have

|A[E

T(r) =
@ 42 M2,

" §7a [yl eXp — 3 + y* — 203y) dxdy,

where |A| = det A, M,; is the cofactor of A;;, and p = —M,,/M,,. Change
variables once again to obtain

A

V)= "I
) 2rM3(1 — %)}

2§70 [XY|9(x, y, p)dx dy,
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wherein ¢(x, y, p) is the bivariate normal density with zero mean, unit vari-
ances, and covariance p. Finally, |A[}/((1 — p%)iM%) reduces to M/(1 — r¥(t))}.

We can now make some estimates. Viewed as a function of p, the integral
above, call it £(p), is continuous at p = 0 and obviously £(0) = 2z~'. So choose
B > 0 such that (o) = =~! whenever |p(f)] < 8. Observing that £(p) > |p| for
every ¢, and letting S = {|o(?)| < B}, S° = {|o(?)| = B}

FW(t) dt = § 005 Eo(0)) D) __ gy

(1 — r@)t
My(2)
+ Sw0.anse E(o(2 ))(1 2(t))’3 t
! 33(’)
= mln( s :B) So( 2(t))’2

(Actually, it can be shown that df/dp = (2 arcsin p)/r and hence &£(p) =
2[p arcsin p + (1 — p*)}]/r = 2/x. But our estimate will suffice.) Noting that
(I — r¥(1))? ~ 2,'# we have shown that

EW(t)dt < oo = §5M33(t) dt < oo

To conclude the proof, observe that My(f) = A,(1 — r*(t)) — (r'(t))’ € C™.
Integrating by parts

2 Mal0) g — MO _ gy () () 1) gy,
I 22 b t t
But 2,(1 — r*(t))/* — 2,2 as t — 0* and r/(¢)/t > — 2, as t — 0*. It follows that
M,(r)/# is integrable over (0, ) exactly when (4, + r”(¢))/t is integrable over
(0, 0).

3. Conditional processes. We can view condition (2) in another light. Since
2, < oo, we can condition X(¢) on the null set (X(0) = 0) in the “horizontal-
window” sense of Kac and Slepian [4]. The conditional “Palm” distribution
may be viewed as the extension of the (consistent) set of finite-dimensional
distributions

lim, , (O X(8) < B[ N(—e,0) = 1), ti#1,/=1

The conditional process, call it X(¢), is neither stationary (X,(0) = 0 a.s.) nor
Gaussian but admits the decomposition ([8]):

() X() = Z(1) + A7 (0)¢

where Z(t) is a Gaussian process, EZ(t) = 0, EZ(t)Z(s) = r(t — s5) — r(t)r(s) —

“1r'(t)r'(s), and & is a single variable, independent of Z(¢)Vt, with the Rayleigh
density 1|x| exp —4x* on (— oo, c0). It can be shown (see [3]) that the variance
of the number of zeros of X(¢), 0 < t < T, is finite exactly when the mean
number of zeros of X(¢) is finite in a neighborhood of the origin.
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Now let X,(f) denote X(#) conditioned on (X(0) = 0) in the ordinary sense so
that the finite-dimensional distributions of X(¢) are ratios of normal densities.
A short calculation yields EX(#) = 0, EX,(1)X,(s) = r(t — 5) — r(t)r(s). Hence,

(6) X(t) = Z(t) + 2, ()€,

where Z(t) is as in (5) and £ is independent of Z(#)V¢ but is now standard normal
instead of Rayleigh.

Comparing (5) and (6), in particular the distribution of § and €, conditions
for the existence of the mean number of zeros of X(z), t € (0, T), ought to be
similar, though more restrictive, than (2). From the proof in Section 1 we
know that (2) holds precisely when

sg’LZt:@ dt < o forsome 0> O(EZXt) = LMy(t)).
After an easy calculation (applying the formula in [2] page 285) we find that
the mean number of zeros of X,(#) exists in a neighborhood of the origin if and
only if

sg(EZ:z(t))i dt < o for some o6 >0.

4. Two counterexamples. In view of the theorem, it is not difficult to specify a
class of processes for which X(¢) e C* a.s. but EN*0, T) = +oco. Our example
will rely on the fact (see [7]) that (2) is equivalent to

) (o [log (1 + 2)]AF(dA) < oo .

To begin with, let {«,},, and {8,},.., be nonnegative sequences of real numbers,
the former square summable. If {7,},., and {7,},>, are all independent and
standard normal, then

X(t) = Xino1 @(7, €08 Bt + 7, 5in B,1)
represents a SGP with zero mean and covariance
r(t) = EX(1)X(0) = X7, a,’cos B,t.

Obviously, F(d2) is purely discrete with jumps of magnitude «,’ at the points
B,, n= 1. It is immediate that 2, = —r"(0) < co whenever {r,},., is square
summable, 7, = «,f8,, # = 1.

Assuming this,

—r'(f) = L7’ cos Bt .

Defer, momentarily, the problem of the discrete spectrum. The idea is to
choose the sequences so that (7) fails but X(#) e C a.s. First, we provide for
differentiability by strengthening our assumption on {y,},., from square sum-
mability to summability. To see that X’(f) is continuous a.s., observe that

St T B[] + [7al} < o0
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so that
Zia-1 Ta{0a €08 Byt + 7, sin f,1}

converges uniformly a.s. Now choose {«,},., and {8,},-, such that

§5 [log (1 + D]XF(A2) = Zigo 1. log (1 + B,) = +oo.
(For example, take 8, = 2", a, = (n2")7%.) Finally, let ¥(#) be any SGP in-
dependent of X(f) such that Y(f) e C* a.s. and the spectrum G(d2) of Y(¢) is
continuous. Our example, then, is the SGP X(¢) + Y(f) with spectrum F(d2) +
G(d?).

Our second example, that of an SGP with EN*0, T) < oo but X(f) ¢ C% a.s.,
could also be developed by way of random trigonometric series. However, ap-
plying the following recent result [5] on the continuity of Gaussian processes,
it is no more difficult to find an example with an absolutely continuous spectrum.

THEOREM (Marcus and Shepp). Let X(t) be an SGP with covariance ¢(y). Let
W(n) be any non-decreasing function such that for some d > 0, (¢(0) — ¢(n))t =
U(n) =0,0=< 9 < 0. If the integral
Y(n)dy _ oo
7[log 7*

then the trajectories of X(t) are discontinuous a.s.

®) §

Our plan, simply, is to locate a characteristic function ¢(f) e C* for which
(2) holds with ¢"'(¢) — ¢"'(0) in place of 4, 4+ r”’(¢) and for which (8) holds for
some monotonic minorant W(z) of [¢”(f) — ¢"'(0)]%.

Let0 < ¢ < 1 and choose £ > 0 so that (log x)~*(log, x)~'~¢(log, x = log (log x))
decreases for x > £. Now define

9(x) = —CH'(|x])/2, ¥ = €
=0, ¥ < €
where H(x) = (log x)~*(log, x)~'~¢, x = &, and C, = 1/H(§). H(x) is slowly vary-
ing as x — oo, g,(x) is a probability density, and if Fand ¢ are the corresponding

distribution function and characteristic function, respectively, it follows that
I — F(x) + F(—x) = CH(x), x=¢

which implies that

%) 1 — ¢y(x) ~ C,H(1/x) as x) 0.

(See, e.g., [6].)

Now consider the probability density g,(x) = C,x~%g,(x) (where g,(x) =0,
|x| < &, and C, is the normalizing constant), and corresponding characteristic
function ¢, so that

(10) —@,"(%) = Cypy(X)Vx .

We may now apply the the theorem above. Regard ¢, as the covariance of
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a SGP. Since —¢"(0) = 4, = C, < o0, —¢,” is the covariance of the quadratic
mean derivative X’(¢). By (9) and (10) there exists a 0 < < 1/£ such that

EQX'(t + 7) — X'(OF = 2(C, + ¢, (7))
= CGH(j7) = ¥(;), 0<y<i.

Obviously, ¥(y) is nonnegative and increasing. Moreover,

s U
Sgn[l(ovT?;l[Z = (C,G,)} §2[n]log n||log, n|"+9?] " dy = oo .

Consequently, X’(¢) is discontinuous a.s.
On the other hand, by (9) and (10) again

13 S 970 4y < 26, §3 [n)log l[log, Y] dy < oo
Ui
for small 6 > 0. Hence EN?*(0, T) < oo.
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