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SOME ASYMPTOTIC RESULTS ON
RANDOM RANK STATISTICS
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Michigan State University

This paper deals with two different problems. The first one deals with
asymptotic normality of simple linear rank statistics based on random
number of observations X;, henceforth called random rank statistics, under
the alternative where each X; has a different distribution F;. The second
problem deals with showing that the random rank statistics as a function
of the regression parameter in the simple linear regression model is as-
ymptotically uniformly linear (hence continuous) in that parameter. Obvi-
ously the two problems are different and could be solyed in separate papers
but for certain lemmas which are common to the solution of both of these
problems. It is suggested not to try to apply the result of Section 3 to
Section 4, unless mentioned explicitly. The results of Section 2 are the
results which are common, to some extent, to the solution of these two
problems.

Pyke and Schorack [11] proved asymptotic normality of a class of two
sample random rank statistics under two sample alternatives. Our theorem
3.1 could be thought of as a generalization of the result of [11] to more than
two samples situation. Our score function ¢ is in smaller class than that
of [11]. On the other hand our methods yield the asymptotic normality for
random rank-sign statistics. This is also contained in Section 3. Section 2
proves a basic lemma about weak convergence of random weighted empiri-
cal cumulatives to a tied down continuous Gaussian process.

In [5] and [7] asymptotic uniform linearity of rank statistics based on
nonrandom number of observations was proved. In[5]conditions are very
general on ¢ and underlying distribution F whereas conditions in [7] are
quite stringent. But in [7] we do not need any artificial condition like (2.1)
of [5] on underlying regression constants. However in both of these refer-
ences, regression scores were assumed to be bounded. In Section 4 here we
extend the results of [7] to random rank and random rank-sign statistics and
to the case where regression scores need not be bounded. In Section 5 we
show how the results of Section 4 can be used to construct a bounded length
confidence interval for a regression parameter using rank sign statistics with
asymptotic (as length — 0) coverage probability achieved.

Apart from applying Theorem 3.1 to the i.i.d. case, as is mentioned in
the remark at the end of Section 5, it is hoped that Theorem 3.1 can be found
applicable in some other interesting situations.

1. Assumptions and notation. Suppose X;, i = 1 are independent random vari-
ables with cdf’s F;, i = 1, ¢;, i = 1 are some real numbers and {N,} a sequence
of positive integer valued random variables. All the random variables are as-
sumed to be defined on the same probability space (Q, .27, P) and all probability
in this paper will be computed under the probability measure P, unless otherwise
specified. Let
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(1.1) u(x) =1 if x>0
=0 if x < 0.
Define for an integer n
(1.2) ‘ R\ = 25 u(X; — X;) .
Let, for a real number b > 0,
& ={p: ¢:[0,1]1— Real line, ¢ absolutely continuous,
(1.3) ¢’ exists a.e. such that ||¢/||, = §}|¢'(W)| du < b < oo,
o) = ') dv | VO<u<l1l, and
¢’ continuous on [0, 1]}.
Clearly ¢ € ©"= ¢ is bounded, uniformly continuous, square integrable and ¢’
is uniformly continuous.
Define fora g ¢ &
(1'4) Sn =n" ZZZL=1 ciSD(Rin/(n + 1))
(1.5) e =17 30006 § p(n™ Dh Fi(%)) dF(x) .
Our problem is to show that under suitable conditions on the underlying objects
AN A(Sy, — ty,)5,7") — N(0, 1) for some sequence {s,} of positive real numbers.
We begin by stating certain assumptions. To begin with all the limits in the
sequel will be taken as r — oo, unless otherwise specified. By 7(X) we will

mean the law of random variable X.
About {N,} we assume that there exist positive integers {a,} and {b,} such that

a, <b,,

(1.6) a,— oo, b, — oo, b.la, — 1
and if 4, = [a, < N, £ b,], then
(1.7 P4,]1—-1.

A,° will denote complement of 4,.
About {c;} and {F;} we assume that all {F;} are continuous and that

(1 ’8) limn—'m maxléién ciz/Z;";l ci2 - 0 .

Let o, =n' 32 b2
We further assume that Vx, y

(1.9) lim, ., n7le.2 31, ¢ {Fy(%) A Fy(»)H1 — Fi(x) v F(y)} = K(x, y)

exists. Let Gy(u) = F(tanz(u — §)) for 0 <u < 1. Assume, for 0 <u < 1,
0 <wv< 1, that

(1.10) lim,_, max, ;... SUP|,_, 155 |Gi() — G,(v)] = 0.
Furthermore assume that

(1.11) Tl Oaype — 1
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or equivalently
(1.12) 2itie? et —> 1.
This implies in view of (1.6) and (1.7) that
(1.13) o%,./0%,. and ¢} [o} ,— 1 in probability.
We also remark here that
(1.14) P[max,g;cy, ¢/max,gq, ¢ < 11— 1.
A condition like (1.11) will be used in Section 2 whereas conclusions like
(1.14) and (1.13) will be used in the proof of Theorem 3.1.
Next we introduce some notation se that we can represent S, asa Chernoff-
Savage type statistic.
For a real number x and an integer n define
(115)  m,() =n" Sr,cux — X)), m,x) = nt i, e Fi(®)
and
(1.16) H,(x) =n1Yr ux— X,), H,(x) =n?t 3 Fy(x).
Under the above notation we have

Sy, = § o Hr ) dma, (3

r

and
My, = § So(ﬁzv,(x)) dmNT(x) .
Also define
(1.17) L, =n¥m, —m,), Z,=niH,—H,).

Right away, since N,/(N, + 1) — 1 in probability, we may without loss of gener-
ality write

(1.18) Sy, = § p(Hy, (x)) dmy, (x) .

Also define

(1.19)  I(®) = a,7 Titi(e; — ¢) § [y — %) — Fi(»)]e'(HAy)) dF(y)

where H, = H, .
Furthermore let

(1.20) S, =n1yr, LX)
(l ’21) sr2 = Var (ariSA'a,) = a'r_:l Zg;l Var (l’L’I'(X‘L)) °

We will need these definitions in proving our main theorem. Before closing
this section we state one of the important conditions that is needed.
We need an existence of a constant 0 < k < oo such that

(1.22) lim sup max,;, ¢’/s,* < k < oo.
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It may be noted that (1.22) implies that
(1.23) lim sup,_,, max,_;.,, c’0;% < o
which in turn implies (1.8).

For any cdf G we define

G~ Y(u) = inf {x; G(x) = u} 0sugl.

Finally for any function f on the real line, || f|| will denote the usual “sup”
norm and || fG™'|| will stand for sup,_,, | AG~'(«))|.

2. Some weak convergence results. L.et

2.1) Wu(x) = n7t 2 difu(x — X;) — Fi(x)] = n}V,(x) (say)

where n is an integer, {d;} are some constants.

From [8] we recall the following

LemMma 2.1. If{d;} and {F}} satisfy conditions like (1,8), (1.9) and (1.10) then
Ve >0
(2.2) lim,_o lim,, o, P[SUPy,—yi1<5 | Wa(X) — Wo(p)| > €0,0] = 0
and
(2.3) lim, &0 W,(x), —00 £ X < +00) = LA(WLUX), —x < x < +0)
where W, is a continuous Gaussian process with W,(+o00) = Owp 1, EW,* = 0 and
Cov (Wy'(x), Wi(y)) = Ku(%, y)-

REMARK. In [8], the above lemma was proved for the processes defined on
[0, 1]. The above W, processes may be transformed to the ones on [0, 1] by
taking X, to U; = (1/x) tan™' X; + 1. With this transformation the weak con-
vergence of the processes on [0, 1] is equivalent to that of the processes defined
on the extended real line, above. Also the condition (2.9) of [8] is implied by
the condition (1.10) above because F; get transformed to G, defined above.

Our objective is to show that the process W, _are relatively compact as r — oo.
Before we proceed further we state an inequality here, the proof of which is
straightforward generalization of one given in real random variable case on
page 45 in [1]. Also see [2] for measurability considerations.

INEQUALITY. Let D[ — o0, + oo] be the space of functions on [— oo, + o], the
elements of which are right continuous and have left limit. Let {Y,} be sequence of
independent 1v’s in D[ — oo, +oo]land T; = }}i_, Y,. Then Ve > 0

(2.4) Prob [max,_;, || T;|| > 2¢] < Prob[||T,|| > e](1 — 7,)™
where

(2.5) Ny = MaX; .oy Prob [||T, — Ti|| > €] .
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LeEMMA 2.2. In addition to the condition of Lemma 2.1 assume that {a,}, {b,} and
{N,} satisfy (1.6) and (1.7) and that {d;} satisfies a condition like (1.11). Then Ve >0
(2.6) limg_o lim, .. P[SUP|._yizs | Wi, (%) — Wy, (D) > €oy,a] =0
and
27 AowuWy (%), —00 S X< 400) > L(W/(X), —c0 S X = +0).
Consequently
(2:8) L0534l W) = (W)
where W, is the same as in Lemma 2.1 and ||W /|| is bounded rv’s.

Proor. The proof consists of comparing random processes with nonrandom
processes.

In what follows ¢, = g, ,.
First we show that

(2.9) a, te, N|Vy, =V, |—0 in probability.

Let
Yi(x) = diu(x — X;) — Fi(x)] a,<i<b,
Ty(x) = Do, dilu(x — X;) — Fi(x)] a,<j=b..

Then {Y;} are independent rv’s and ¥; € D[— oo, +oco] and (2.4) is applicable to
Ti(x) = Vix) =V, ().
Therefore
(2.10)  P[||Vy, — V. || > 2ea}0,] < P[max ||V, — V, || > 2ea,}0,] + P[4,]
< P[|T,,l| > eato, (1 — 1,)7" + P(4,)
where “max” in the first inequality is taken over ¢, < j < b, and
Ve = maxa,gyébr P[HVbr - V;“ > Eariar] .
Using (1.11) it is easy to show that Var (a,7t¢,7'T, (x)) — 0 for each fixed x.
Using (2.2) and (1.11) one shows that
SUPL,_yzs | T, (%) — T, (M)la, 0, -0 in probability
as r — oo and then ¢ — 0.

Consequently a,~*¢,7||T, || — 0 in probability.

Similarly one can show that 7, — 0. Combining these conclusions with (1.7)
and (2.10) we have (2.9).

In view of the fact that a,"%¢,7"||V, || is bounded in probability in the limit,
which follows in view of Lemma 2.1, (2.9) implies that the rv’s ¢,7'a, ||V ||
are bounded in probability in the limit. Using this conclusion, (1.13) and (1.7)
it is easy to conclude that

o3t Wy, —a, %,V ||—> 0  in probability.
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Combining all the above arguments and using (1.11) we have essentially proved
lloxte Wy, — 0,7 W, || >0 in probability.
Therefore (2.7) and (2.6) are proved in view of Lemma 2.1. []
COROLLARY 2.1. Under the conditions of Lemma 2.2 we have Ve > 0

@.11)  lim,_glim, ., P[sup;,_,<; [Ly,(*) — Ly, ()] > oy, ] =0,

(2-12) lim,_, lim, ... P[SUP|,_yi<5 |Zw,(¥) — Zy,(0)| > ] =0,
(2.13) lim P[||L,, Hy: — Ly, B3l > coy,] = 0,
(2.14) lim P[||Ly, — L,,|| > eoy,] <0,
(2.15) lim P[||Z,, — Z,,|| > ] =0,
and
(2.16) lim P[||Ly, Ay, — Ly H|l > ey, ] =0.
Furthermore Ve > 03b(¢) = b and r,or = ry=
(2.17) Pl|Zy | > b] < e,
(2.18) Ploy,l| Ly, Il > 0] < e
Also

Lot Ly, ll) = LWL and  ZX(||Zy,I) = L (W) -

Proor. Putd, = ¢, in W,, then W, = L, and (2.11), (2.14) and (2.18) are
consequences of Lemma 2.2 and its proof.

Put d, = 1 in W, to get W, = Z, and then (2.12), (2.15) and (2.17) are con-
sequences of Lemma 2.2 and its proof.

The proof of (2.13) uses (2.11) and (2.17) and is similar to that of Theorem A6
of [6].

The proof of (2.16) uses the fact

|Hy7. — H;}|| -0  in probability

(2.11) and is similar to that of (2.13). [J

3. Asymptotic normality of random rank statistics. Here we will state and prove
our main

Treorem 3.1. Under (1.3), (1.6), (1.7), (1.9), (1.10), (1.11) and (1.22) we have
3.1) L5, NSy, — ) = N, 1)

uniformly in all ¢ € M where M is a relatively compact subset of & with respect to
the norm ||¢'||,.

Proor. Our method of proof is decomposition method of S, — py, and then
showing S, — p, behaves like S, .
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We have the following decomposition.
N’r%(SN,r - :UN,.) =N, SD(HNr) d(mzv, - ﬁ"N,) + N} § 50’(171%)(1{1\!, - HN,) dmzv,
+ N, § [¢(Hy,) — SD(HN,)] d(mzv, — my)
+ N} § [QD(HN,) - SD(HN,) — (Hy, — ﬁNT)‘P'(ﬁN,)] dmzv,
= B,y + By, + Ey, + Eyy, (say).
Note that conditions (1.6), (1.7), (1.8), (1.9) and (1.10) allow us to apply results

of Corollary 2.1 and we will invoke these results without going through mention

of assumptions, etc.
We first shown that

3.2) s, E;y | =0 in probability i=1,2
and then show, with B, = B,, + B, , that ‘
s,”(By, — B,,)—0 in probability

and then show that B, is nothing but ariﬁar.

Before proceeding note that since

Pla%,. = N, X ¢ < maxg, ¢l — 1

we have in view of (1.22) that
(3.3) Ploy /s, < k] — 1.

Using P[Ly (+oc0) = 0] = 1Vr = 1 and integrating R,, term by parts one
gets

5,7 Eu,| < (5,705, )05%| Ly, H3: — Ly H3|[|¢/]l, >0 in probability

in view of (3.3) and (2.13).

To prove (3.2) for E,,_term one proceedsas follows. Note that P, & Hy ]=
lvr>1,
(3-4) P[||dry, [dH || < max,gg, le]] =1,
and that Ve > 03b =b(e) and r;or = ry=
(3.5) H, =H, + za, tV|z| <b
with probability at least 1 — . (3.5) follows from (2.17).

Using (1.22), (3.4) and (3.5) along with an argument used in ([3] page 629),
we conclude (3.2) for E,, term.

Now consider B, . Denote L, by L, and H, by H,. Integrating by parts
we have

lim P[§ SD(ﬁN,) dLy = —§ Ly, dSD(ﬁN,,)] =1.
Consequently
sr_1|BlNr - Bla,,.l é Sr_lllLN,,ﬁI_V: - Lrﬁr_lll ||€D’||1
< 5, '0x,. x| Ly, Hy, — Ly, H,7|

+ [|Ly, H, " — LA }|¢"]], -
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s,"loy,, is bounded in probability by (3.3). First term on the right-hand side
of the above inequality tends to zero in probability by (2.15) while the second
term tends to zero in probability by the proof of Lemma 2.1. Hence

(3.6) s, '|Byy, — By, | —0 in probability.
Next consider B, :
By, — By, = § ¢'(Hy )2y, difty, — § ¢'(H,)Z,d,
= S {¢'(Ay) — ¢ AN Zy, i, + § ' (7,)Zy, d(y, — 1)
+ § (AN Zy, — Z,) di,
=1, + 1, +1,.
Now observe that in view of (1.7)
||Hy, — H,]| >0 in probai)ility.
Using this fact along with uniform continuity of ¢’, (1.22) and (2.17) it is easy
to see that
3.7) s, 4, —0 in probability.
Again, using (1.22), (2.14), the fact that m, < H, and the assumption ||¢'||, < oo,
it is easy to see that
(3.8) s,7YI,] — 0  in probability.
Finally write m, = m,_
L = 2y -
= \i¢'Z, A, d(my A, — m,H,7)
so that
(3.9) |5,7L,| < [|Zy, H, 7|5, §3 |4 [dOmy, H,7F — i, H,7)
—0 in probablllty
because of (2.17), the fact that
s, Y|my H,* —m H | —0  in probability
and that |¢’| is continuous.
Combining (3.9), (3.8), (3.7) and (3.6) one has proved
(3.10) s,7'|By, — B, | =0 in probability.
Now integrating by parts the B,, term and adjusting for constants arising thereby
one gets
P[B,, = — {2 {{2 ¢'(H,(y)) d7(y)} dZ,,(%)] = 1 Vrz1.
After some simple algebra one gets

G.11) By, = a7 N {o, 7 Xinae, § My — X) — EO)le'(H.09) dE;(0)}
wpl forall r=1.
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Using ¢(u) = ¢ ¢’'(v) dv, we have similarly

(312) Blar = _ar_i Z;ﬁl;l ci{ar_l ‘;21 So—ow [u(y - A,z) - F;(y)]go'(ﬁr(y)) dFJ(y)}
wpl.

Consequently

Ba,T = Bla,. + B2a,.
(3.13) =a, 7 Ninda, 7 Din(e — ) § [uy — X)) — E()]e'(H,(y)) dFy(y)}
= a'r_t Z:ﬁl;I l@r(‘xlz) = a’rigar
where /;,(x) and S‘ar are defined by (1.19) and (1.20). Therefore in view of (3.10)
and (3.2) it is enough to show that

(3.14) A(s,7'a, 1S, ) — N(0, 1) .

But it is not hard to show that the summands s,~'a,~#/,,(X) satisfy Lindberg-Feller
condition, thereby enabling us to conclude (3.14). Consequently (3.1) is proved
for each fixed ¢ € M.

The fact about uniformity in ¢ € M follows because all the four terms E,,
and B;, i = 1,2, may be shown to satisfy Lipschitz condition in the norm ||¢’||,.
This can be done in the same way as was done in [3]. []

Note. It may be noted that the condition (1.22) is similar to (2.16) of [4].

REMARK. 1. Theorem 3.1 is true also for random rank-sign statistics. To
see this we introduce

(3.15) S, =nt T e o(RY/(n 4 1)) sgn (x;)
where
(3.16) R\ = Ziau(l X — X))
Also let
(3.17) vu(X) = n7t JL cu(x — X;) sgn (X))

5.(%) = n7 T1, esgn (x)F(x) — 2F0)u(x)]
H (%)) = n7 S, u(x] — (X))

=1

(3.18) H, () = nt S, [F(xl) — F(— )]
= n7 St sgn (E) — F(—v)
(3.19) L, (%) = m(s,(x) — 2,(x))

Z,(x]) = m(H,*(|x]) — H,*(|x)))
In view of these definitions and that of W, in (2.1), we have, if d; = ¢; in (2.1)
L (%) = Wy, (%) sgn () — 2W,, (O)u(x)
and, if d; = 1 in (2.1),
Zy (%) = Wy (%) — Wy (=(1%)
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so that all the conclusions of Corollary 2.1 remain valid also for L} and Z}_
process. Therefore we state the following theorem, the proof of which is precisely
similar to that of Theorem 3.1 in view of the above remarks and hence omitted.

THEOREM 3.2. Assume (1.3), (1.6), (1.7), (1.8), (1.9) and (1.10) and (1.11) are
true. Then existence of a constant k* such that

(3.20) lim sup max,_, ., |4’ /v, < k* < oo
entails

(3.21) lim (v, "N A(S¥, — 115,)) = MO, 1)
where .

ey, =N, 201§ ‘P(ﬁzv,(lym sgu () dF(y)
v, = a4, Tir, Var {I5(X))
with
(3-22)  L(x) = a7 i l(e; — cisgn (x)(§ [#(yl — %)) — Gi(IyD]
X sgn (y)¢'(H,*(|y])) dFy(y)]
where
(3.23) G:(1yl) = F(lyD) — F(—=1yl) -
REMARK 2. It is not hard to see that in both these theorem s,> and v,> may
be replaced by
S?V,,- = 1\"7'_l Zi‘/:'rl Var (lz'r(Xz))
and
vy, = N, 2 Var (If(X)))
respectively, which is slight improvement over having asymptotic variance en-
tirely devoid of N,.
RemARK 3. Conditions (1.6) and (1.7) are equivalent to saying that there exists
a sequence n, — oo such that
N,/n,— 1 in probability.
REMARK 4. All the above and following results remain valid if r is taken to
be in set of positive numbers instead of in the set of positive integers.

REMARK 5. Finally all the above results remain valid if {d;}, {X;} and {c;} are
replaced by {d,,}, {X;,} and {c,,} respectively so longjas dependence on r is via a,
or {b,} only and not via N,.

4. Asymptotic uniform linearity (AUL) of random rank statistics in regression
parameter. In this section we take

“.1) Fi(y) = F(y + tx,)

or equivalently X; = X’ — tx;, where X}/ are i.i.d. F, F a cdf, {x;} some real
numbers and ¢ is the regression parameter of interest.
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S.(8), W,(t, +), L,(t, +) etc. will denote the corresponding statistics and pro-
cesses S,, W,(+), L,(+) etc. based on the above {X;}. Thus, for example, S,(¢)
is the rank statistic based on the ranks of {X;’ — tx;}, 1 < i < n etc.

Our problem here is to show that T, (f) = S, (tN,ts5!,), when suitably nor-
malized, is asymptotically uniformly linear (hence continuous) (AUL) in ¢ in a
bounded set in probability.

The solution consists of first proving that the statistics S, (ta,}0;%,) are AUL
and then using this and (1.11) one gets the desired result. Note that the rv’s
that define T}, (¢) are {X;’ — tx;, }, where
(4.2) Xin = (%i[Ma,,) s
and therefore are not independent whereas the rv’s that define S (ta,"ts;) are
independent and this is the reason to proceed to solve the problem in the above
mentioned fashion.

In what follows sup, , |g(¢, x)| or ||g||, will stand for sup being taken over all
tf] £aand —oo < x < 4 oo of a function g(-, +), for a 0 < a < oo fixed.
Furthermore let

W'r‘n(t’ y) = Wn(ta'r_bo‘;rlz’ J’)
L, (t y) = L,(ta,"a;’,, y) etc.
Note that W,,(0, y) = W,(0, y) = W,(y)asdefined by (2.1) when F; = F. Similar

statements may be applied to L, (0, y), Z,,(0, y) etc.
We have the

LemMA 4.1. If F is absolutely continuous with a bounded and uniformly continuous
pdf fand if {d;} and {x.} satisfy a condition like (1.8) then Ve >0 andany 0 < a < oo
fixed,

4.3) lim,_ P[sup, , |W,.(t, X) — W,(0, x)| > ¢s,,] =0.
Consequently
4.4) LA0zdl|Woalle) = LUWL) -

Proor. If g%, and ¢2, were bounded in addition to the above assumptions
then the proof is given in the Appendix of [6]. In order to carry that proof
through under the current assumptions one needs to make the following modi-

fications in Lemmas Al through A6 of [6]:

(i) Premultiply everything by ¢,} and replace {c,} by {d;}.
(i) Replace 0,,(¢) by tx;,.
(iii) Replace 4,,(¢') by ¢'|x,,|.
Recall the definition of {x;,} from (4.2) above. After these modifications all the
details of Appendix [6]will go throughin view of the fact that (n~* 3 |d; x,,|)0,4 < 1
and that the processes {g,; W,.(t, X); —co < x < + oo} weakly converge to a
continuous Gaussian process for each fixed ¢+ which follows from Lemma 2.1
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above and which is basic to the method of proof in [6]. We leave out the
details. []

Note. In [6] Lemma Al pdf “ f” is supposed to be uniformly continuous but
not absolutely continuous as appears there.

LemMMA 4.2. In addition to the conditions of Lemma 4.1, let {d;} satisfy (1.11).
Then under (1.6) and (1.7) Ve > 0 and any 0 < a < oo fixed,

(4.5)  lim P[sup, sup, [o5}s W,y (8, X) — 0. 0a W, (1, X)| > 2¢] = 0.
Consequently in view of (4.3) and (4.4) Ye > 0 and any 0 < a < oo fixed,

(4.6) lim P[sup, sup, | W, (t: ¥) — Wy (0, %)| > ey ,] = 0
and )
4.7) 07l W oella) = LWL -

Furthermore in view of (4.6) and (2.6) when adapted to the i.i.d. case, we have
Ve >0
(4.8) lim,_, lim, ., P[sup, SUp,_,i<; | W,y (8 X) — W,y (8, Y)| > eoy ] = 0.
Proor. Let e, = 2¢ea,ts,,, 0,, = 0, 4. From (2.1) we have
(4.9) W (t:%) — Weo (1, X)] < (N, — a,9)a, 20,V (5, %)
A+ Vo (8, %) = Vi (8, D)a,

Let us drop first suffix r in the sequel to facilitate writing. Thus e.g. V, =

V.x, etc. Now

@.10)  P[|[Vy, — VoIl > 25] < P[max ||V, — V, ||, > 2¢,] + P(4,)
where “max” is over a, < j < b,.

By simply imitating the proof of Lemma 3.21 of [1] one can conclude that
@.11)  Pmax||[V; = V,|l. > 2¢,] < P[[|Vs, — Vo lle > &)1 = 2.))7"

where 7,” = max P[||V, — V|l. > ¢,].

In carrying out the details to prove (4.11) one needs to remember that the
v’s ||V; — V, ||, and ||V, — V|||, are independent for each a, <j<b,. We
will leave out the detail. Now

o d(Vs, (6 %) = Vo, (b, X)) = 4,40740,,0)95. Wi, — 0:iW.,
=k, 0, W, (t, X) — oW, (t, )

a

r

where 2, = (a,/b,)™", k, = 2,}(0;}0,,,)- Therefore
a, o3|V, (6, %) — Y, (1, %)
(4.12) < ko3| We (6, X) — W, (0, )| + o W (2, x) — W, (0, x)|
+ 07dl W0, x) — W, (0, %) + [, — o3| W, (0, x)| -
Using (1.11) it is easy to show that if T,(x) = o;}(W, (0, x) — W, (0, x)), then
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Var (T,(x)) — 0 for each fixed x. Moreover using (2.2) when adapted to the
i.i.d. case one concludes that

Sup,_yi<s | T(x) — T, (y)| = 0 in probability

when r — oo and then ¢ — 0.

Consequently sup, o;3|W, (0, x) — W, (0, x)| — 0 in probability. Furthermore
observe that the sequence sup, o-;| W, (0, x)| of rv’s is bounded in probability.
Combining these facts with (4.3) and that k, — 1, |2,} — 1| — 0, one concludes,
in view of (4.12), that

(4.13) oiia, ||V, — V., |l.—0  in probability.

Similarly one can show that 7,/ — 0. Consequently in view of (4.11), (4.10)
and (1.7) :

(4.14) a. o j|Vy, — Vo lle—0 in probability.
(4.14) and (4.4) = that
(4.15) “Aa, o[V, lla) = LWL

and hence the rv’s a,7%j||Vy ||, are bounded in probability in the limit. Using
this and (1.7) with (4.9) we conclude that

(4.16) o:dl|W,y — W, |l.—0  in probability

which in turn implies that the rv’s oj||W,, ||, are bounded in probability in
the limit because of (4.4).

Again using this, (4.16) and (1.11) it is easy to conclude that
lloxta Wy, — 6:d Woo llo— 0 in probability. 0

ra,

If we put d; = ¢; in W, , we have W, (t, x) = L, (t, x) Vt, x wp 1 and if we put
d;=1in W, , we have W, (t,x) = Z, (¢, x) Vt and x wp 1. Using these rela-
tions with Lemma 4.2 we have

COROLLARY 4.1. Ve > 0 andany 0 < a < oo fixed
(4.17) lim;_o lim,_, P[sup, sup,,_, s [L.y(t, X) — L.y (t, )| > e0y,.]=0,
(4.18) lim,_, lim, _,, P[sup, sup,_,<; |Z,v,(t, X) — Z,y (t, y)] > ] =0,

(4.19) lim P[sup, , |L,y, (t, X) — L,y (0, %)| > oy, ] =0,
(4.20) lim P[sup, , |Z,y (t, X) — Z,y (0, X)) >¢] =0.
Moreover 3b < o0 3

(4.21) Pl||Z,y,|l. > 6] — 0.

AlsoYe >0

(4.22) lim P[sup,; <, SUPo<usi | Ly, (2 I?;;r(t, u))
— L,y (t, Hy (t, u))| > ey, ]=0.
We now state our
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THEOREM 4.1. Let {X'} be i.i.d. rv’s with an absolutely continuous cdf F and
uniformly continuous and bounded pdf f. Let {c;} and {x;} satisfy (1.11) and (1.8).
Let {N,}, {a,} and {b,} satisfy (1.6) and (1.7). Furthermore assume f is such that

(4.23) I(f) =2 (fIf)dF < oo .
Moreover assume that ¢ € &, where
(4.24) Zo={prpe &¢I <oorfle”|| = K} -

Then Ve > 0and any 0 < a < oo
(4.25) lim P[sup,, <, N,}|Sy, (ta, ta;),
- SN,,.(O) - tN'r_éBNr((P’ f)] > GO’NT‘,O‘(P] =0

where

9, = Sle—9¢, o¢=1¢,
b(¢, f) = n7t T, (% — X )e: — Ca)ogs, $o o, fo(u) du

With %, = n7 D1, %5, &, = 07 T, ¢ and p(u, f) = —f(F-{@)|fIF-(w)).

Proor. In view of Corollary 4.1 the proof of this theorem is analogous to
that of Theorem 2.1, Lemma 2.3 and Theorem 2.2 of [7], where a result like
(4.25) was proved for nonrandom sample size case, to which, results like Corol-
lary 4.1, for a nonrandom sample size case, were basic. However there is a
slight difference in our present assumptions and those of the above mentioned
results. In Theorem 2.1 of [7] we assume F to be strictly increasing and o2,
and ¢2, to be bounded. Boundedness of ¢2, and o2, were used in obtaining an
analogue of Corollary 4.1 for nonrandom sample size case but we have seen it
here that Corollary 4.1 is true without these assumptions. Next, strict mono-
tonicity of Fwasused in showing that sup, |R,,(f)] — 0 in probability, where R,,(¢)
is either R,, of Theorem 3.1 above when adapted to present situation or R,(f)
of Theorem 2.1 of [7]. We will show here that under ¢ € &,

O5L, SUP|y <o [Ruy (f)] — O in probability.

Let g,(4, z) = {p(u + a,7%z) — p(u) — za,"}¢’(u)}. Now in view of (4.21) and
that fact that (N,a,”') — 1 in probability, we have that Ve < 03b = b(¢) and
ro=r(e)ar=r—
P[Hy(t, y) = Hy,(t,y) + 20,7 V]I < @
—0Z<y< +oo and |z bl =1 —c¢.

Hence with probability at least 1 — ¢ for r > r, we have
Rer(t) = Nr_l Zi\;'"l C; s Nrigr(ﬁN'r(t’ }’)’ Z) dF(}’ + t‘xir)

=N, > ¥c,Z, (say)
< Oy (N7 B Z3, ) (by Cauchy Schwarz).
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But again by Cauchy-Schwarz inequality
Nr_l Z?’:Tl Zzz'r —g ]V'r_1 Zag,\;rl S {Nr’!g'r(ﬁN,,.(t’ y)7 Z)}2 dF(y + txi'r)
= {{N,}g,(Hy (1, y), 2} dH, (1, y)
= (i {N,}g,(u, z)} du
so that with probability at least 1 — ¢ we have, for r > r,,
TxrelRoy (1) < [§5{N,}9,(u, 2)}* du]?
< b\ ¢, (u) du]}(N,}a,™?)

where

ol + 2a,74) — () _ 0

= Su
¢.(4) = SuUp, < o

-0 for almost all u.
Furthermore since § |¢’|* < oo and since § |¢*| < oo, we have
§5 0, (w)du— 0 also.
Hence we have
sup, oy.,|Roy (£)] — O in probability.

The rest of the proof is precisely similar to that of the nonrandom sample size
case, as given in [7]. []

Now an obvious implication of Theorem 4.1 above and conditions (1.6), (1.7)
and (1.11) is

THEOREM 4.2. Under the conditions of Theorem 4.1 we have Ye¢ > 0 and any
0 < a < oo fixed,

(4.26)  lim P[supy,iz, N,A{Ty (1) — Ty (0) — N, by (¢, /)] > e0y,,0,] = O
where

(4.27) bu(p, f) = 04,.05:b.(0, )

and T,(t) = S,(tn"4a7)).

Because of relationships between L}, , Z} etc. with W, asindicated in Remark
3 at the end of Section 3, in proving Theorem 4.2 we also have essentially proved

THEOREM 4.3. Inaddition to the assumption of Theorem 4.1 assume F to be symmetric
about zero. Then Ve > 0and 0 < a < o,

(4.28)  lim Pfsup,, g, N} T3 (1) — T3,(0) — N,7#b% (¢, f)| > eoy,.0,] =0,

where T,*(t) is the rank sign statistic based on the ranks of {|X;! — tx,,|; 1 < i < n}
and signs of {X,! — tx;,; 1 < i < n} or equivalently

(4.29) T,*(t) = S,*(tn"t03))
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where S,*(t) is S,* as defined by (3.18) and (3.19) for rv’s {X;! — tx;;1 < i < n}
and where
(4.30) byt (s ) = —2n7loy; Tt 6% §7 fx)e'(G(x)) dF(x)
and G(x) = 2F(x) — 1, x = 0.
5. An application. Suppose {X;’} are independent rv’s >
(5.1) P[X; <yl = F(y + tx;) i=>1

where ¢ is the regression parameter of interest. Given a number d > 0 and 0 <

a < 1, we give here a class of confidence interval of prescribed length 2d which
achieves prescribed coverage probablllty 1 — 2a as d— 0, using rank sign
statistics.

Assume ¢ ¢ &, and ¢ { so that S, *(¢) is { in 7 also see e.g. [6].

Let z, = k,t be 5P(z,) = 1 — a, ® the N(0, 1) cdf. Define

G, = 0,0,
(5.2) L, =inf{t; 0,7'mtS,*(t) < z,}

U, = sup {t; o,7'ntS,*(t) = —z,} -
Also define for d > 0
(5.3) N, =min {n = 2;0,,(U, — L,) < 2d}.

From the methods in [10] and nonrandom sample size version of Theorem 4.3
above, when ¢; = x;, one can conclude that

(5.4) nte, (U, — L,) — {2z,/0,7'b% (¢, )} in probability

where

(55) b* (¢, f) = 2 §¢ f(X)¢'(G(x)) dF(x) .

Consequently

(5.6) 6,,(U, — L,)—0 in probability.

Using (5.6) it is easy to show that

(5.7 Nyng— 1 in probability as d—0
where

(5-8) nt = {22,/0,70%(p, f)}d7 .

Thus conditions (1.6) and (1.7) are satisfiedwith r = 1/d, a, = a;, = n, — 1 and
b,=b,=n,+ 1,say,and N, = N,.

THEOREM 5.1. If F is symmetric about zero and is absolutely continuous with a
bounded and uniformly continuous density f, {x;} satisfy (1.11) and (1.8) and ¢ € &,
and is 4, then

(5.9) 1ty Z(0gu NH(Uy, — 1)) = N(—2, B, B)
(5.10) lim,_o 0y, N(Ly, — 1)) = N(z,B™, B~
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and
(5.11) limy_, Z(0y . N} (Uy, — 1); 0y, N} (Ly, — 1)) = Bivariate

degenerate normal distribution with means —z,B™, z, B™' and variances B~* where
B = B(p, f) = 0,7'b*(¢, f) and where £ (X) is law of an tv X when t is the true
parameter. Consequently, if P, is probability when t is the true parameter, then

(5.12) P[L, <t<U,]—1—2a.

Proor. Without any further mention, results of Section 4 will be applied
with ¢; = x,.
In view of (5.7) and results of [9] we conclude that

(5.13) Lo5,N2SH (0)) = N(O, 1) .
Now from (4.30) and (5.5) we have b, (¢, f) = —0,.b*(¢, f) so that
(5.14) TuusO3a(p: f) = —b* (e, f) wpl.

Since conditions (1.6) and (1.7) are satisfied by N, = N, (r =1/d) wecanconclude
from Theorem 4.3, in view of our assumptions, that

(5.15) lim,_, Z(a5, NATH (1)) = lim,_, £(a5, N,2S5 (0) — tB(o, f)) -
Since ¢ is }, both U, and L, are well defined and we have in view of (5.2) and
(4.29) that
lim,_, Ploy,. Nd%(UNd — 1) =]

(5.16) = lim,_ g Py[o,,NtUy, < y]

= lim,_, P[0y, N*SF (yori. Not) = — 2]

= limd—»o PO[O.ITI;Nd%TItd(y) é —Za]
whichinview of (5.15)and (5.13) implies (5.9). (5.10) and (5.11) follow similarly.
We have used translation invariance of {U,,} in arriving at (5.16). []

ReEMARK. We could have concluded (5.14) from Theorem 3.1 above after
putting F; = F and assuming that lim sup,_,, max,;, x;*/no};, < k < co. But
since the result is available without this boundedness condition in [9], we prefer
not to use that. It is easy to see that this boundedness condition implies (1.11)

and (1.8).
Acknowledgment. I would like to thank the referee for his helpful suggestions.
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