The Annals of Mathematical Statistics
1972, Vol. 43, No. 3, 803-813

SEQUENTIAL ESTIMATION OF A POISSON INTEGER MEAN!

By GEORGE P. McCABE, JRr.
Purdue University

Let Xi, X, - -+ be a sequence of i.i.d. Poisson random variables with
mean 2. It is assumed that true value of the parameter 2 lies in the set
{0,1,2, ---}. From observations on the sequence it is desired to estimate
the true value of the parameter with a uniformly (for all ) small probability
of error. There is no fixed sample size rule which can accomplish this. A
sequential procedure based on a 1ike_]ihood ratio criterion is investigated.
The procedure, which depends on a parameter a > 1, is such that (i)
Py(error) < 2/(a — 1) for all 2, and (ii) E(sample size) ~k; log a, as a — co,
where k; = (1 — 2log (1 4 1/2))-1. The procedure is asymptotically optimal

as a — oo.

1. Introduction and summary. One observes a sequence of random variables
X, X;, - - - which are identically and independently distributed Poisson variables
with mean 2, i.e.

PX, =%, X, =%, -+, X, = x,) = [, e *2%/x,! for x,=0,1,--.

It is assumed that 2 is an unknown nonnegative integer which one would like
to estimate with an arbitrarily small uniform (for all 2) bound on the probability
of error.

The problem of estimating restricted parameters was first considered by
Hammersley (1950) from a fixed sample size point of view. The present work
is based on a paper by Robbins (1970) in which he proposes a general approach
to this type of problem and gives procedures for estimating a normal integer
mean. In contrast to the normal case, there is no fixed sample size procedure
which will insure an arbitrarily small uniform bound on the error probabilities
for the Poisson case.

In this work, a class of procedures is proposed, the associated error proba-
bilities and expected sample sizes are investigated and a weak form of optimality
is demonstrated.

2. Fixed sample size approach. Note that EX; = 1 and Var(X;) = 1. Also,
for a sample of size n, X, = (X, + X, + --- + X,)/n is unbiased and sufficient
for 2, and for the unrestricted parameter space [0, co), it is a maximum likeli-
hood estimator. In addition, for large n, the quantity (X, — 2)/(4/n)* is approxi-
mately normal with mean zero and variance one.

A class of reasonable procedures can be characterized as follows: Fori= 0,
l..., choose i_ such thati — 1 <i_ < iandseti, = (i+ 1)_. Then, given a
sample of size n, estimate that 2 =i if i_ < X, <i,. A typical rule in this class

Received February 8, 1971; revised August 1971.
! Supported in part by NIH Fellowship 1-FO1-GM-42814-01 at Columbia University.

803

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IIK@IS

[ [
o 2

®
www.jstor.org



804 GEORGE P. MCCABE, JR.

is that with i, = i 4 4. The maximum likelihood estimates for this problem
are discussed by Hammersley (1950). In this case, i, = 1/log ((i 4+ 1)/i) for i >0
and i, = 0fori=0. Also,i, —i—{asi— oo.

Let P;* denote the probability of error when i is the true value of the pa-
rameter . Now,

Pi*ZPi(Ynéi—)+Pi(Xn>i+)'

Using the results of Blackwell and Hodges (1959) for large deviation probabilities
and assuming that i, = i 4 } for all 4, it follows that

log Pi* ~ —n((i 4 $)log (1 + H)/) —4)  as n—oo.
Using .
log ((i + $)/i) = 1/2i — 1/88 + o(i™?) as i— oo,
gives
2.1) log P* ~ —n/8i as n— oo andthen i— oo;

or to be more precise,
lim, ., (8ilim,_, n'log P;*) = —1.

Clearly, for a preassigned value of , it is not possible to insure a small uni-
form bound on the error probabilities. This is seen to be true for any fixed
sample size rule by considering the standard test of the hypothesis 2 = i versus
A =i+ 1 for sufficiently large i.

Hence, with the aim of devising a decision procedure that will insure a small
uniform bound on the error probabilities, one is led to consider sequential
procedures.

3. Sequential approach. For 2 > 0, let S, = X, + --- + X,, and define
it = fulX, -, X)) = e ™S (X) - X))
For 2 = 0, let fi* = lim,_, ;. Thus, f;* equals 1 or 0 according as S, is zero
or positive. Now for i and j positive,
firlfm = em=a(ifjysn,

and f;"/f;* equals f;* or co according as S, is zero or positive. This is con-
sistent with the above if the convention is adopted that (i/j)*» = 1 when j =0
and S, = 0.

LemMa 3.1. For 2> 0, f*_,/f;* is @ monotone increasing function of 2.
Now, let

Ly = min (f/ft foIf10)  for i>0,
= o”/ﬁ” for i=0.

Consider the following rule:
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Fix a > 1. Let N be the smallest # > 1 such that L,* > a for some i. Stop
at stage N = n and estimate that 2 is the i for which L,* > a. First, note that
there is no ambiguity in the estimate since L,* > a for some i implies that
L < 1forallj=i.

The form of the rule can be considerably simplified as follows:

Suppose i > 0. Then L,” > a implies that

[olftn = el + Dy» = a

or

X, <i, —i(oga)n,
where X, = S,/n and i, = 1/log((i + 1)/i).
Similarly, for i > 1, L,* = a implies

X, zi_ +i_(loga)n,
where i_ = (i — 1), = 1/log (i/(i — 1)).
For completeness let i_ = 0 for i = 1. Also, fi'fo" = e™ or oo according as
S, is zero or positive. Thus, L;" > a implies n > log a and S, = 0; and L" > «
implies f;"/f;* = a or simply S, > 0. Thus, the rule can be rewritten as follows:

3.1) Stop at N = n as soon as one of the following is true:
(@) S§,> 0 and for some i >0, i+ i (loga)n < X, < i, — i (loga)/n;

guess that 2 = j;
(b) S, =0andn = loga; guess 2 = 0.

Note that as n — oo, i_(log a)/n — 0, i,(log a)/n — 0 and X, converges almost
surely to 4, an integer. Thus if i < i < i,, the procedure will terminate with
probability one. This is seen to be true from the inequality
n+ Dt <log((n+ 1)/n) < nt.
It is interesting to note that as i — co, i, — i— }.
4. Sample size. Recall that a guess of 2 = 0 implies that n = log «. Also,
note that for large a and small =,
i +i(loga)n>i, —i(loga)n.
But, i_ 4 i_(log a)/n decreases to i_ and i, — i (log a)/n increases to i, as n—» co.
Thus, for each i, there is a minimum sample size, call it m;, which is the smallest
sample size which will admit a guess of 2 =i. For conciseness, m; will be iden-
tified with any number less than m, and greater than m; — 1. To find m;, set
i_+i_(loga)/n=i, —i(loga)n.
Solving for n gives
4.1) m;, = log a for i=0,1;
= (log a)(log (i + 1)/(i — D))/log (/(i* — 1))~ for i>1.
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Note that n = m; does not imply

i_+i(loga)n<i<i, —i(loga)n.
It will be necessary to use the minimum value of n, which will be denoted by n;,
such that this expression is valid. Clearly n,=loga. Fori>1,i_+i_(loga)/n=i
implies

n = (log a)/(ilog (i/(i — 1)) — 1),

and for i = 1, the inequality i_ + i_(log a)/n < iis valid for all n > 1. Simi-
larly, for i > 1,

i=i, ~i(loga)n

implies
n = (loga)/(1 — ilog ((i + 1)/i)) .
Hence,
n; = (log @)/min (ilog (i/(i — 1)) — 1, 1 —ilog ((i + 1)/i)) for i>1,
= (log a)/(1 — log2) : for i=1,

where nonintegral values are interpreted in the obvious manner.

Integrating the Taylor expansion for x~' about the point (x 4 1)/2 gives
logx = 2(z + 2/3 + - --) where z = (x — 1)/(x 4+ 1), x > 0. It follows that
for x > 1, log x > 2 (x — 1)/(x 4 1). (This inequality could have been obtained
in a more statistical manner by an application of Jensen’s inequality.) Setting
x = (i + 1)/(i — 1) yields log (({ + 1)/(i — 1)) > 2/i, which upon rearrangement
gives

1 — ilog ((i + 1)/i) < ilog (i/(i — 1)) — 1.

Hence,

4.2) n, = (log )/(1 — ilog ((i 4 1)/i)) for i>1,
= log a for i=0.

Note that as i — oo,

(4.3) n, ~2iloga.

5. Error probabilities. Let P; denote the probability of error when 2=i. Then,
P; = Zj*i ZnZMj ZA,,_jfi” ’

where 4, ; is the set where X;, - - -, X, are such that N = n and the estimated
value of 2is j. Note P, = 0. Now, for i > 0, let

a; = Dl anmj ZA”,,'.fin ’
and

bi = Zj>i anma' Z:An,j.fin ‘
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Thus, P, = a; + b, . Now,

a; = 3l anma‘ Z“‘n'ffj” <%> o <%> .

Since

(fe[fe-n) = (fa"lf mer) for m<k
by Lemma 3.1 and f,"/f%,, = a on 4, ;, it follows that

max ((fialfi")s -+ (ff1) = (fralfi™) S a™

on 4, ;.
Therefore,
@; £ DNlj<i Dinzm; 2aa,  Jita” 0
= Zj<i (a_(i_j) anmi ZAn,jfjn) .
Since

anmj ZAn,j_fjn =1- Pj g 1 s
it follows that
a, < yizharto

ora;, < (1 —a?)/(@ —1).
In an entirely analogous fashion, it can be shown that b, < 1/(« — 1). Com-
bining gives
(5.1 P, < (2 —a)f(a—1)

<2/(a—1) for all i.
Hence, by appropriate choice of @, one can obtain an arbitrarily small uniform
bound on the error probabilities.

6. Expected sample size. As in Section 4, when considering sample sizes, no
distinction will be made between n, an integer, and any real number less than
n but greater than n — 1. Recall that S, = 0 for every n when 2 = 0; so N =
log @ and EN = log a.

Now, for i > 1, let

ki = 1/(1 — ilog ((i + 1)/i)),

and let k, = 1. Then n; = k; log a.
Recall that n; is the smallest sample size such that

i_+i(logayn<si<gi, —i(loga)n.
Let i = 1 and k > k; be fixed. Let n = kloga. Thus, n > n, and
PN > n) < P(i_ + i_(log a)jn > X,)
+ Pyi, — i, (log a)jn < X,)
=Pa>z)+ P(b<z),
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wherea =i — i+ i k,b=1i —i— ik and z, = X, — i.
Since k > k; it follows that @ < 0 and b > 0. Also, b < —a by the same argu-
ment used to find n; in Section 4. Therefore,

PN > n) < Py(jz,| > b).

The latter probability can be bounded using the Markov inequality with r = 4
(see, for example, Loéve (1963)). This gives

Pi(|znl > b) é. b_4Ezn4 N
Now, Ez,! = n*E(X — ni)*,
where X is a Poisson random variable with mean ni. Hence

Ez,! = n~4(ni + 3n%?).
Therefore,
6.1) PN > n) < Kn~* = K(k log a)™*,
where K = b~*(i/m; + 3i?).
By letting @ — oo in the above expression, it is seen that PN > n) — 0 as
« — oo. Since k was arbitrary, subject only to the condition k > k;, it follows
that N is asymptotically less than or equal to r; as a—oo; or to be more precise,
letting k = k(1 + ¢),
(6.2) lim, ., P;(N < n(1 +¢)) =1 for any ¢ > 0 and all 7.

The study of the behavior of E;N as a gets large will be aided by the following:

LEmMMA 6.1. Let i > 1and k' = k > k. Then there exists a positive number K
which may depend on i and k but not on k' or a such that
(6.3) PN > k' log a) < K(k' log a)™*.

Proor. Letn = kloga and n' = k’loga. By (6.1), P(N > n') < K'(n')7?,
where

K = (i, — i — i, [K)(i/m; 4 3i*)".
But,
K' < K = (i, — i — i [k)™(i/m; 4 3i*)!
since k < k’. Therefore,
PN >n') < K(n')™*. u

THEOREM 6.1. Fori =0,

(6.4) lim sup,_., (,'E;N) < 1.

Proor. The case where i = 0 has already been considered. Let i = 1 and
k > k, be fixed. Set n = kloga. For convenience, it will be assumed that
klog a is an integer.

Now,
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EiN= nglei(N:j)
sn+ 2pu PN =)
=1+ (1 DPN > 1) + Tjn PN > ) -
By the previous lemma,
(n+ 1)P(N > n) < K(kloga + 1)(kloga)=2.

Clearly, as @ — oo, this term goes to zero. Applying the previous lemma to
each term of the last summation above gives

Tion PAN > ) < K B sriopal -
This series is clearly convergent. Thus, as @ — oo, this term also approaches
zero. Hence, )

n'EEN <1+ o((loga)™).
Since k was arbitrary subject only to k > k;, (6.3) follows. []
Note that (2i/)~'k; — 1 as i — co. Therefore,
6.5) lim sup, .. ((2{)~* lim sup, ., (log a)7'E;N) < 1.

7. Optimality. The following two lemmas will be useful in proving the main
result of this section. Let F, be the g-algebra generated by (X;, - - -, X,).

LEMMA 7.1. Let N be any stopping rule with P(N < oo) = 1 and let A be any
set such that A N {N=n} is in F, for all n. If P(A) > 0 and P, ,(A) > O, then
(7.1) Ey(log (f"[f¥1) | 4) Z log (Pi(4)/P;i(4)) -

ProoF. E(log (fi"[f¥) | 4) = —Ei(log (f2/f:") | 4)

z —log B((fYu/fi") | 4)
by Jensen’s inequality. Let 4, = {N = n} N A. Then,

E((fYalfiM) ] 4) = (PAA)™ Lo Za, (Flalff
= (P(4))™ Zu Zu, [in
= i+1(A)/Pi(A) .
Substituting this expression into the above inequality gives the desired result. [J
LEMMA 7.2. For any a > 1, let N be any stopping rule such that P,(N < o) = 1

for all i and let there be an associated terminal decision rule with the property that
P,(error) < 2/(a — 1) for all i. Then, for every i,

(7.2) lim inf,_, (log )7 E;(log (fi"/f%2) 2 1.

Proor. Let C; = {estimate that 2 is i}. Then, P;(error) = P,(C;). Without
loss of generality, assume that P;(C;) > 0 for all i and j. Any decision rule can
be modified on a set of arbitrarily small probability to meet this condition. Now,
let i be fixed. Clearly,
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E; log (f"[f¥) = P(C)E(log (f"[f¥)] C)
+ Py(Cy)E;(log (f¥[f) | €5) -
Applying the previous lemma, first with 4 = C; and then with 4 = C; yields
(7.3) E;log (fi¥[f1) = PiC;) log (Pi(C)/Pi4i(C1))
+ Py(Cy) log (Pi(Cy)/P;1(CY)) -
Now, P,(C?) < 2/(a — 1), so, P(C;) = (« — 3)/(a — 1) and
P 1(C) < Piyy(Cipy) £ 2/(a — 1)
Thus, .
P(C;) log (P(C))[P;11(C))) Z (& — 3)/(« — 1)) log ((« — 3)/2) ,

which is asymptotic to log a as & — co.
Also,

P,(Cy) log (Py(Ci)/P;11(C)) > Pi(Cy7) log Pi(Cy)
which approaches zero as a — oo since Py(Cy) < 2/(« — 1). Combining the
above with (7.3) gives the desired result. '[]

THEOREM 7.1. For any a > 1, let (N*, d*) be the stopping rule and terminal
decision function described in Section 3, and let (N, d) be any stopping rule and as-
sociated terminal decision function such that EIN < co and P(error) < 2/(a — 1)
for all i. Then, for every i,

(7.4) lim sup,_... (EZN*/E;N) < 1.

Proor. Since the Poisson variables X, X,, - .- are identically and inde-
pendently distributed, and E;N < oo for all i, the following well-known equality
is valid for all i:

E;(log (f¥[f Y1) = (EN)E(log (fi(¥)[fi:(%))) -
Recall that

[i(X)/fis1(x) = e(i/(i + 1))* foralli> 1,
)

E(log (fi(X)/[fi+:(X))) = E(1 4 Xlog (i/(i + 1))
=1 —ilog((i+ 1)/i)
= ki_l .
This is also valid for i = 0. Hence,
E;N = k,E,(log (f"/fi1) for all i.
Now, by Lemma 7.2,
lim inf, .. (log &) Ey(log (£ /f %) = 1
S0,
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liminf,_, ((k;loga)EN) = 1.
But by Theorem (6.1),
lim sup, ... (7, 'E;N*) < 1
for all i. Therefore,
lim sup,_., (E;N*/EN) < 1. 0

8. Comparison of fixed and sequential procedures. The sequential procedure is
obviously far superior to any fixed sample size procedure since it is only with
a sequential approach that one can obtain an arbitrarily small uniform bound
on the error probabilities for the whole parameter space.

Let i be fixed and suppose that one could somehow (perhaps by a two-stage
sampling procedure) pick a sample size which would give a reasonable bound
on the error probability for the true parameter, i.e. using (2.1), pick n such
that log P,* = —n/8i. Suppose further that i and n are large enough for this
expression to validly approximate the fixed sample size error probability and
for the expression E;N < 2iloga to be roughly true by virtue of (6.5). Of
course, a knowledge of i is being assumed and a great deal of approximation
is involved, but these facts will be temporarily neglected. Now let

log 2/(a — 1)) = —n/8i.
Then,
log (@ — 1) = (n/8i) + log2.

Multiplying by 2i, one sees that as a — oo, roughly speaking, E,N will be
asymptotically less than or equal to n/4. Thus, even if it were possible to pre-
select the appropriate sample size for a fixed procedure, the sequential approach
requires only about 1 as many observations to attain the same error probability
for a and i large.

9. Monte Carlo results. To investigate the procedure described in Section 3
for various values of a and 2, a Fortran program for an IBM-360-90 was written.
Sequences of Poisson variables with a given mean were generated, the stopping
rules and terminal decision rules were applied, and the results were tabulated.
For each value of a and 2, 1000 sequences were generated.

For convenience, an arbitrary upper bound of 1000 was set on the length of
the sequences. At the point of truncation, the decision function was taken to
be the maximum likelihood estimate of 2. For the date presented in Table 1,
this truncation point was reached for only one sequence.

For each value of the pair (a, 2), (a = 3,5, 21,41, 81; 2=1,3,5,10, 20)
the following quantities are tabulated:

(a) mean = i = the true value of 4;

(b) P(err) = average number of incorrect decisions;
(c) TP(err) = theoretical bound on the error probability = 2/(a — 1);
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TABLE 1
Results of Monte Carlo Experiment
Mean P(err) TP(err) Av-N Tav-N Fix-N

1 0.214 1.0 4.11 3.58 1
3 0.305 1.0 11.28 8.02 1
5 0.293 1.0 17.87 12.43 1
10 0.318 1.0 34.34 23.42 1
20 0.343 1.0 63.82 45.38 1
1 0.192 0.5 5.83 5.24 3
3 0.192 0.5 16.92 11.75 6
5 0.173 0.5 . 26.63 18.21 10
10 0.219 0.5 i 51.36 34.31 19
20 0.215 0.5 99.08 . 66.47 37
1 0.035 0.1 11.04 9.92 11
0.042 0.1 31.62 22.23 33

5 0.049 0.1 51.05 34.44 55
10 0.055 0.1 100.66 64.91 109
20 0.051 0.1 191.76 125.75 217
1 0.029 0.05 13.44 12.10 16
0.023 0.05 . 37.15 27.12 47

5 0.024 0.05 61.64 42.01 77
10 0.025 0.05 121.83 79.17 154
20 0.018 0.05 235.85 153.38 308
1 0.007 0.025 16.05 14.32 21
3 0.006 0.025 42.68 32.09 61
5 0.013 0.025 71.25 49.71 101
10 0.013 0.025 140.10 93.69 202
20* 0.010 0.025 270.85 181.50 403

* One sequence in this group was truncated at 1000.

(d) Av-N = the average sample size;

(e) Tav-N = k;log a = theoretical asymptotic bound for the expected sample
size; and

(f) Fix-N = the sample size which would be required to distinguish the
hypothesis 2 = i from 2 = i + 1 or i — 1 with an error probability less than or
equal to (2 — a~%)/(« — 1). (When 1 = i, the sequential procedure has error
probability less than or equal to this quantity by (5.1)). The normal approxima-
tion was used to calculate Fix-N.

These results point out that in many cases, the true error probability may be
somewhat less than the theoretical bound. This is due mostly to the inequalities
introduced in the derivation of (5.1). It is not surprising that the calculated
average sample size is greater than Tav-Nsince the latter quantity isan asymptotic
bound. The average sample sizes obtained do, however, compare favorably with
the corresponding fixed sample size values for the moderate values of «a used.
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