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1. Introduction. The purpose of this note is to prove that if, for each
v=12,...,X,,,---, X,, arearandom sample from a distribution symmetric

v,my

around 0, then the signed-rank statistic

T0) = Bt poat (V20 ) sgn (X, — 4.,40)
where Ry . . ., is the rank of |X,;—g¢, ;0| among |X,, —gq,,0|, - -,
| X, 0, — qu’n;ﬁl, 'is under certain conditions on the common distribution of the
X, ;, on the constants p, ;, ¢, ; and on the function ¢, asymptotically approxi-
mately a linear function of ¢ in the sense that
(1.1)  lim, . P{sup <o |T(0) — T,(0) + 0K 2332, p, :q, 4l = ¢o(T.(0)} = 0,
for every C > 0 and every ¢ > 0, where K is a constant depending on the com-
mon distribution of the X, ; and on the function ¢.

This result is related to a result of JureCkova [3]; she proves (1.1) for the
special case where p, ; = 1 and X7+, ¢, ; = 0 under different conditions on the
sequence of vectors (g, ,, -+ *» G, ,,)-

An analogous result was proved by Jureckova [2] for the statistic

ny RXu,i—du,N
S,(0) = X Cu,i¢<W> ’
where R, ., ., is the rank of X, ; —d, ;0 among X,, —d,,0, -, X,, —
d,, 0 and where, for each v = 1,2, ..., the X, ; are independently and identi-
cally distributed.

For the proof of our result some lemmas are needed which are given in
Section 2; one of these lemmas is a generalization of Theorem 5 of Lehmann [9];
two of the lemmas are analogous to Corollaries 1 and 2 of Lehmann [9]. The
main result and their proofs are given in Section 3.

2. Some Lemmas. Let i, ---,i,and j, ---,j, each be a permutation of the
numbers 1, ...,n and let ¢, --+,¢,,0,, - -+, d, each be +1 or —1 such that
(Ee> &> Ji» Op)i—, satisfies

CoNDITION 4,,.1. 0,=1=¢ =1

CONDITION 4,,.2. i<k, o,=1,j,<j}=10<i

CONDITION 4,,.3. (I<k,e,=—=1j>j}=10>1.
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For fixed M(1 < M < n) define
(2.1) Uy > Qg >0 2> Oy gy

as the ordered values of those 7, among i, ..., {,_s. * * +, i, for which ¢, = +1
and

(2:2) biy > byy >0 > by,

as the ordered values of those j, among j,_, .1, Ju_s4as * - *» Jo fOr which 6, = +1.
Obviously, by Condition 4,.1, K,, = L,; further K,, < M. Further define

(2.3) Cya > Coyra > > Cop iy
as the ordered values of those i, among i,_, ., {y_sy4s + + +» I, for which ¢, = —1
and
(2'4) dM,l > dM,z > > dM,M—L;q
as the ordered values of those j, among j,_, 41, fu_ssa - - *» Jo fOr which o, = —1.
Lemma 2.1. If (i, &, Ji» 0,)i=1 satisfies Condition A, then
(2.5) by, < ay, I=1,..., Ly
cM,lédM,l I=1,...,. M — K, M=1,....n.

Proor. The proof will be given in four parts.

(i) The lemma is true for M = 1 and any » = 1. To prove this, notice that
by Condition 4,,.1 it is sufficient to prove that
(2.6) Ju =0, if 9,=1

Ju =0y if ¢,=—1.
This can be seen as follows.
(2.7) o=@ of i=j)=n—& of j.>j)
i,=(@ of i, <i)=n— (¢ of i>i,).

By Condition 4,.2

(2:8) % of isj)=@ of i, <4) if J,=1
and by Condition 4,,.3
(2.9) # of ji>j)=@ of i >i) if ¢, =—1.

(ii) If the lemma is true for some (n, M) then the lemma is true for (n + 1,
M). To see this consider, for some n = 1, (i, &, j,, 0,)321 satisfying Condition
A,.,. From (i, ¢, ji, 0,)321 derive (i, ¢, ji/, 0,)i23, satisfying Condition 4,, as
follows. Let
(2.10) r, = rank of i, among (i, i)

s, = rank of j, among (j, i) k=2,...,n+41

and let
(2.11) i =i —(r,—1)
J=J— (s —1) k=2 .--,n+1.
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Then i), .-, #,,,and j, - - -, j.,, are each permutations of the numbers 1, ...,
n and from
(2.12) i, < iy < 0

Jo <Ji=Jid <t b l=2, -, n+1
it then follows that {i,’, ¢, j,’, 0,}311 satisfies condition 4,,.

For fixed M < n let a), ,, b}, ,, ¢y, dy,; L, and K, be defined, as in (2.2) —
(2.4), for (i, 4 Ji's 04)ith oy and let ay ,, by ), €4y, dy,, Ky, and L, be so
defined for (i, ¢, ji, 0,)7tL, -y, then L, = L,’ and K,, = K,,’. Assuming the
lemma to be true for (r, M) we have

L

(2.13) by, < ay, ) I=1,...,L,
Chyn < diy I=1,...,.M—K,.

Now let /, be the number of b, , > j,, then by (2.11)
(2.14) by, = by, I=1,...,1

= by, I=1,+1,..--,L,.
Let k, be the number of a,, , > i,, then by (2.11)
(2.15) ay., = a;, I=1,...,k

=a,, l=ky+1,---,K,.

Further, by Condition 4,,,.2, /, < k,. From (2.13) — (2.15) it then follows
that

(2'16) bM,léaM,l = 15 "’,LM~
The proof that
(2.17) Cya S dy, I=1,....M - K,

is analogous, using Condition 4, ,,.3.

(iii) If the lemma is true for some n = 2 with M = n — 1, then the lemma
is true for the same n with M = n. This can be seen as follows. Assuming the
lemma to be true for M = n — 1 we have
(2.18) b, =< a, 4, I=1,...,L,,

cn—l,lédn—l,l lzl"”’n_l_Kn—l

and it will be proved that
(219'1)) bn,l é an,l l == 19 R Ln
(2.19.ii)) e =d,, I=1,...,n—K,.

The following three cases can be distinguished

(a) 51 =& = —1. Then Ln = Ln—p Kn = Kn—v bn,l = bn—l,l(l =1,... Ln)
and @,, =a,_,,(I=1,...,K,), so that (2.19.i)) is obvious. Further (a,,
I=1,..,K,,¢,,,/I=1,...,n—K)and (b,,,I=1,..--,L,,d,,,I=1, .-,
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n — L,) are each permutations of the numbers 1, - - -, n so that (2.19.ii)) follows
from (2.19.i)).

(b) 51 = —1, & = 1. Then Ln = Ln-v Kn = Kn_l —+ 1, bn,l = bn—l,l(l =1,
...,L)ande¢,, =c¢,,,(I=1,.--,n—K,). To prove (2.19.1)) let k, be the
number of a,_, (I =1, - -+, K,_,) larger than i, then

a,, =a,,, I=1,...,k,
(2:20) =i I=k + 1
=a,_1,11 l=ky+2,---,K,.

If L, <k,<K,_, then (2.19.i)) is immediate. If 0 < k,< L,=L,_,, then
(2.19.1)) is immediate for / = 1, - - -; k,. Further

(2.21) by g1 = b it = g g < I = @y 401
and forl =k, + 2, ---, L,
(2.22) by =by 11 Sy =1 S Gy

The proof of (2.19.ii)) is analogous.

() o,=e,=1. ThenL, =L, ,+ 1, K, =K, ,+ 1, cor=¢, (=1, -+,
n—K,) and d,,=d,_,,(I=1,---,n—L,) so that (2.19.ii)) is obvious.
Further (see (a)) (2.19.i)) follows from (2.19.ii)).

(iv) The lemma now follows by induction on M. According to part 1 of the
proof, the lemma is true for M = 1 and any n = 1. Let M, be an integer = 1
and assume the lemma is true for M = M, and any n = M,, then it will be
proved that the lemma is true for M = M, + 1 and any n > M, + 1. This can
be seen as follows. According to the induction hypothesis the lemma is true for
n= M, + 1 and M = M,; according to part 3 of the proof this implies the truth
forn = M, + 1 and M = M, + 1; according to part 2 of the proof this implies
the truth for M = M, + 1 and any n > M, + 1. []

In Lemma 2.1 it was shown that Condition 4, is sufficient for (2.5) to hold
for each M =1, ..., n. For (2.5) to hold for a particular value of M it is
obviously sufficient that (i, &, ji, ;)i satisfies
Foreach k=n— M +1
1. 51: = 1 = ek = 1
2. foreach I<k—1 Or=1Lj<j)=0u<i
3. foreach I<k—1 (==L ji>jh)=0>10.
Further, if (i, &, ji» 0,)i-, satisfies Condition 4, , for M = M, then (i, ¢, ji
d,)i_, satisfies Condition 4, , for all M < M,, which proves the following
lemma.

LEMMA 2.2. If (ii, &, Ji» 0)i, satisfies Condition A, y for M = M,, then

(2'23) Ay, é bM,l l= 19 ] LM
cwiSdy, I=1, M—K, 1SM<M,.

CONDITION 4, ,
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LEMMA 2.3. If his nondecreasing and nonnegative and if (iy, ¢, ji, 0,)4=, satisfies
Condition A, , for M = M,, then
(2.24) Dilmnti-mig>o M) Z Liensioaiay>o B
Z?=n+1-M;el<0 h(il) = Z?=n+l—M;Bl<0 h(jl) =M< M,.

Proor. Because # is nondecreasing, it follows from Lemma 2.2 that for
<M< M,

(2.25) 1. hby,) < h(ay.,) I=1,...,L,
2. k() < h(dy) I=1,---,M —K,.

From (2.25.1) and the fact that 4 is noﬁnegative it follows that, for 1 < M < M,,
(226)  Ziwiioma»o h()) = Tiihby,) < D2 hay,) < 22 Hay,)

= Z?=n+l—M;el>0 h(ll) *
From (2.25.2) and the fact that % is nonnegative it follows that for | < M < M|,
(227)  Diisowco (i) = TG hley) < TISA h(dy,) < SIS h(dy)

= Dlent1omia<0 h(jy) - g

REeMARK. In the two special cases, where d, = 1 for all k or ¢, = —1 for all
k, Lemma 2.1 reduces to Theorem 5 of Lehmann [9]. Further, in each of these
special cases, Lemma 2.3 is analogous to Corollary 1 of Lehmann [9].

LEMMA 2.4. Let ay, a,, - - -, a, be n numbers satisfying
(2.28) 0<a,g---Za,,
let h be nondecreasing and nonnegative and let (i, ¢, i, 0,)i=, Satisfy
(2.29) 1. 0, =1La >0 =¢=1
2. Oe=1L0a,>0,I<k, ji<j)y=10<i
3. (o= —1,a,>0,1< k,j, >j)=1>1i

then

(2.30) D @pech(iy) = T @, 0.h() -

Proor. The following proof is analogous to Lehmann’s proof of his Corollary
2 in [9].

(2.30) is obviously true if @, = O forall k =1, ..., n, so in the following it
will be supposed that a, > 0 for at least one k. Further, since & is nonnegative,
2 k(=0 and >rh()=0 if and only if A(l)=0

forall /=1,...,n,

in which case (2.30) is obvious. In the following it will be supposed that

Ziah(l) > 0.
Let 0 < B, < B, <---< B, be the different values of «ay, .-+, a, and let
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n(t =1, ..., T) be the number of a, equal 8,. Furtherlet N,= }'!_ n(t=1,
-+, T)and N, = 0. Consider the random variables X and Y each taking the

values ('—,BT, _IBT—I’ Y _‘81, ;Bv ] 587’—19 IBT) with

(2.31) 1. P(X < _IBs) _ Zf\/:TNs_1+1;el<o h(i)
B 2t h(l)
2. P(XS ‘B)Z 1 — Zf:TNs+1;el>0h(il) s=1.....T
B 2 h(l)
and
(232) 1. P(Y < —ﬂ.,) — Zf:TN,_l+l;5l<0 h(]l)
2t k()
2. PY<B)=1-— Dty oo B) s=1,...,T
- 2t k)
where, if 8, = 0, P(X < 0) and P(Y < 0) are defined by (2.31.2) and (2.32.2)
respectively.

If 8, > 0, condition (2.29) reduces to Condition 4, and from Lemma 2.3 it
then follows that

(2.33) PX<x)< P(Y<Z x) for all x.
If 8, = 0, condition (2.29) is Condition 4, , for M =N, — N, =n — n,, so

that in this case (2.24) holds for M < n — n,, which proves (2.33). From (2.33)
it follows that

(2.34) ZX=2 &Y,
which is equivalent to
(2.35) o1 B, Z;V:Ns_l+1 eh(i) = Xi-. B, Z;V:Ns_l+l 0,h(ji) »
which is equivalent to
(2.36) S aeh(l) = 20,03 . O
3. Main Results. Let, for eachv=1,2, ..., X,,, ---, X, , be independently

and identically distributed random variables with common distribution function
F(x) satisfying
3.1) 1. F(x) has an absolutely continuous density f{(x)

2. flelwdu< oo, where pyu) = —~% O=u<l)

and where f” is the derivative of f
3. f(x) = f(—x) for all x.
Let ¢(u)(0 < u < 1) be a function satisfying
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3.2) 1. ¢(u) can be written as the sum of two functions ¢,(1) and ¢,(u)
where ¢,(u) is nondecreasing and nonnegative and ¢,(x) is non-
increasing and nonpositive.

2. 0 2w) du < oo(i =1, 2) and $s PP u)ydu > 0.

Letp,, -+-,p,, and g, ,, ---,q,, be vectors of constants satisfying

(3.3) 1. wpii>0
2. lim_. MaXigign, P _ ¢ |
Pl
(3.4 1. <M for $some positive number M independent of v
2. lim, , max,._, ¢., =0

and, for eachv = 1,2, ..., either

(3’5) 1' Pu,iqv,igo for all i= 1, "',n,,
2. (|va| - |Pv,i’|)(|qv,i| - |qu,i’|) g 0 for all i’ = 1’ cee, R,
or,
(3.6) L. Pi9,: =0 forall i=1,..-,n,
2. (lp»,zl - |p»,i’l)(|qu,i| - |%,4|) g 0 for all i9 7= 19 ERRRR (A
Let Ry, ., ,0 be the rank of |X,; — ¢, ;0| among X, 1 — 4,1005 - +5 [ X0, —
..., 9, let
3.7 sgnu = 1 if >0
and let
(3.8) T,00) = X p ¢<IM> sgn (X,; — g,.0) -
v 1=1LFv,7 n» + 1 vyt v,t

THEOREM 3.1. If F(x) is continuous, if ¢ (u) is nondecreasing and nonnegative then,
for eachv=1,2, ..., T,(0) is with probability one a nonincreasing step function of
6 if (3.5) holds and a nondecreasing step function of 6 if (3.6) holds.

Proor. In the proof the index v will be omitted. The proof will be given for
the case that (3.5) holds. The result for the case that (3.6) holds is then obvious.

If F(x) continuous, 7(¢) is, with probability one, not well defined only for
those values of # satisfying 6 = —(X,/q;,) for some i with ¢; # 0 and for those
values of @ satisfying |X, — ¢,0| = |X,, — ¢,.6| for some pair (i, ") with ¢; + 0
or ¢, #+ 0. These values of & where T(f) is not well defined, define a finite
number of intervals for § within each of which 7(6) is independent of 6.

Now consider two values 6, and 8, of 8 for which T(6) is well defined and let
6, < 6,. Then it will be proved that T(f,) = T(,). Without loss of generality
the X, can be numbered in such a way that |p,| < --- < |p,|. Then, by (3.5.2),
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g < -+ < Igul- Write T(0) as
(3.9) 70) = Tina Ipi ¢ (P22 ) sgn (e — 0.0),

where, for p, = 0, sgn p,(X, — g,0) is defined as 1
Now apply Lemma 2.4 with, for k =1,

a, = |pil
(3.10) &, = sgn p(X, — 7.0, 0, = sgn p(X, — q,0s)
ik = ‘RIXk-ch91| jk = RIXk-qk82I .

Then T(8,) = T(0,) if (2.29) is satisfied. That (2.29) is satisfied can be seen from
the following steps (a), (b) and (c).
(@) (2.29.1) is identical with
{p(Xi — 4.05) > 0, p, # 0} = pu(X, — ¢, >0
which follows immediately from (3.5.1) and
P(Xe — 4.0) = pu(X — q.0) + Pqi(0: — 0)) -
(b) (2.29.2) is identical with
{Pe(X, — ¢.0) > 0,p, # 0,1 < k, | X, — ¢,0,] < | X, — .05}
=X, — q.0|| < |X, — .0, -

This can be seen as follows. We have

| |(Xk_qk2)<Xl_q10< (Xe — 9:02)
Pk

| Pl

so that, using (3.5),

—q0, < P (X, — q.0,) + (0, — 01)(% — ——‘Ik>
| Pl | Pl
= P (X, — ¢,0,) + (6, — 0)(q — |9:])
| Prl
<P (x, - q.0).
| Prl
Also
X, —q0,>— | |(X—qk 0,) + (6, — l)<ql+ﬁqk>
= | o L (X, — q,0,) + (0. — 0)(q, + |9.])
> —LE (X, —q, 6, ,

| 1Pl
so that |X; — ¢,0,] < |X,, — ¢,0,|-
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(c) (2.29.3) is identical with

{P(X, — q,0,) <0, p, # 0,1 < k, | X, — q.0,] > | X, — ¢,0,}
= |X; — q.0,] > | X, — q.0,] -
The proof of this is analogous to that for (2.29.2). []
A special case of Theorem 3.1 with ¢(u) =u and p,;, =¢,,(i=1,---,n)
was proved by Koul ([5], Lemma 2.2).

THEOREM 3.2. If (3.1)—(3.4) and (3.5) or (3.6) are satisfied then
(3.11) lim, ., P{supy<c |T,(6) — T.(0) + 6K 3532 p,i4.4 > ea(T(0))} = 0,
where K = §3 ()¢ 4(( + 1)[2) du.

Proor. The index v will be omitted in the proof. It is sufficient to prove the
theorem for the case where ¢,(u) = 0 for all u. Further the proof will be given

for the case where (3.5) holds; the result for the case where (3.6) holds is then
obvious.

The proof is analogous to the proof of Jureckova of her Theorem 3.1 in [2].
As in her case it can be supposed without loss of generality that > p?* =1
and it can be seen, using the result of Hajek and Sidak ([1], Theorem V. 1.7)
that it is sufficient to prove

lim, ., P{supis<¢ [T(0) — T(0) + 0K 31, pigil > ¢} = 0.
As in Juretkova’s proof and using the results of Hajek and Sidak ([1], section
VI. 2.5) it can be proved that for any fixed set of points 6,, - - -, @,

lim, ., P{|T@,) — TO) + 0,K 3;*_,p;q;|] < ¢ forall i=1,...,r}=1.
Further, for a fixed C > 0, choosing 6,, - - -, 4, with
—-C=0,0,<---<0,,<0,=C
and
|K| 04, — 0] = %‘5M—"' ,
where M is the constant in (3.4), it can be seen, as in Jure¢kova’s proof [2] and
using Theorem 3.1 above, that
{|T(01,) - T(O) =+ 0iKZ?=1quj| é %8 for all i= 1, ey r}
= SUPyy50 |T(0) — T(0) + 0K T3, piqsl < e [

The conditions on the p,; and ¢, in Theorem 3.2 can be weakened as
follows (see also Jureckova [2], Remark, page 1897). First, it can be assumed,
without loss of generality, that ¢, ; > 0 foralli=1, ..., n, or that ¢, ; < 0 for

alli=1,...,n,. This can be seen_as follows. Letp, ,and g, (i=1,---,n)
satisfy (3.3) and (3.4) and suppose ¢, ; < O for at least one i. Let 4, be the set

of values of i with ¢, ; < 0 and define, fori=1, ---,n,

(3.12) pri= p.. i¢ed, q.= gq,. i¢ed Y, = X, i¢Ad,
= —p”’i ieA” = _qvvi ieAv = —Xv,i ieAu



800 CONSTANCE VAN EEDEN
then
T,0) = T p*.gb(w)sgn(Y )
v i=1Lv,i nv + 1 v,i v, ’

where Y, ;, - -+, Y, , are independent random variables with common distribu-
tion function F(x) satisfying (3.1), where the p}¥; and g}, satisfy (3.3) and (3.4)
and where g}, = O foralli=1, ...,n,

Further, if ¢, ; has the same sign foralli =1, ..., n,, it is possible to find a
sequence of pairs of vectors (p{'}, - - -, p') ) (I = 1, 2) such that

(3'13) 1' Pu,i = Z%=1P£I,)§ i= ls . 'sn,,
2. phig.z0 . i=1,...,n,
P, <0 P=1,..m,

3. (Pl = P89, — 19..01) = 0
l = 1,2 and i,i’: 1, LRI (N

That this is possible can be seen as follows. Assume ¢,;, > 0 for all
i=1,...,n,. For every pair of vectors (p, 1, -+, P, n)s (415 *>» q.,,,) One
can ﬁnd (a,u,l’ R av,n,,) a'nd (IBU,I’ R} IBV,'/L,,) SUCh that pv,i = au,i + ﬁu,i and

(au,i - av,i’)(|qv,il - Iq»,i’l) g 0
(ﬂv,i - ﬁv,i’)(lqv-,il - qu,i’l) é 0 i9 i' - 1, crty n, .

Further one can find y, = 0 such that «,; + 7, =20 and 8,;, — 7, < 0 for all
i=1,...,n. By taking p =a,;,+ 7, p =p,, —r, one has found
(ph, - -+, p), I = 1,2 such that (3.13) is satisfied.

Further, if p, ,, - - -, p, ., satisfies 372, p} ; > 0 for each v (Condition 3.3.1)
then, for each v, there exists an /(/ = 1, 2) such that }}r, {p{u}* > 0. Also, if
p,.; is written as 313_, pi’;, T,() can be written as the sum of two statistics and

(3.11) remains true if it is true for each of these two statistics and
(3.14) b (D (PO = M X pl]

for some positive constant M, independent of v. Further (3.11) is true for each
of these two statistics if (3.1), (3.2) and (3.4) are satisfied and p{\(/ = 1, 2)
satisfy (3.13) and

(3.15) 1. for at least one /

m{pl) >0 for each v
2. for an [ for which 1. is not satisfied
X {ply =0 for each v
3. for each / for which 1. is satisfied
lim  PeXigizn, Py —o0.

y—00

(112
?:Vl {Pv’i
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This proves the following theorem.

Tueorem 3.3. If (3.1), (3.2) and (3.4) are satisfied, if there exist p'}, - - -, pib),
(! =1, 2) such that (3.13), (3.14) and (3.15) are satisfied, then (3.11) holds.

This theorem is related to a theorem of Jureckova [3]. She proves (3.11) for
the case where p,, =1(i=1,--.n) and Y7, ¢, , = 0 under the conditions
(3-1), (3.2) and (3.4). Jure¢kova’s result [3] is not a special case of Theorem
3.3, as can be seen from the following two examples. Let, forn, even, p, , =1,
i=1,.-.,n,q, ,=n"4i=1,...,4nandq,, = —n "t i=1in +1, ... n,.
Then the conditions of Jureckova [3] are satisfied. That the conditions of
Theorem 3.3 are also satisfied can be.seen as follows. By (3.12) T,(6) can be
written as

T.0) = T pie (I sgn (V.. g100).

where p;",,b =1,i=1,.. ~,%ny,p;",i =—1,i= %nv +1, .. ,n, q;"’z = n,‘*(i:
1, ..., n). Further p}; can be written as }}_, p{") satisfying (3.13) by choosing
pli=1i=1,---,nandp% =0,i=1, - -, 4n,p% = —2,i=4n, +1, ...,
n,. Then X7, {p) = n,, 37, {p%) = 2n, and 31+, p?, = n,, so that (3.14)
and (3.15) are satisfied. However, if one takese.g. p,, = 1,i=1, ..., n, and

g, = {3( + 1)(—1)"*"Ynt, i =1, ..., n, then the conditions of Juretkova [3]
are satisfied but those of Theorem 3.3 are not. This can be seen as follows.
By (3.12), p¥; = (—1)*, ¢, = (i + 1)/n}, i=1, ..., n and, for any p{) and
p2 satisfying (3.13), X7, {pi}}* and Y7, {p{?}}* are of the order n?, whereas
>, pi; = n,, so that (3.14) is not satisfied.

A special case of Theorem 3.3 with p, ; = ¢, ; = n,7* was used by Kraft and
van Eeden ([6] and [7]) to find the asymptotic properties of linearized estimates
based on signed ranks for the one-sample location problem.

An extension of Theorem 3.3 to the p-variate case, where R, _, ., is
replaced by Rix, -5 v 1040 with p, . = ¢, ; ; for some jand all i = 1 .., n,,
is given in [8]; it is used there to find the asymptotic properties of linearized
estimates based on signed ranks for the general linear hypothesis.

Koul [5] proves a theorem analogous to Theorem 3.2 for the p-variate case
with ¢(u) = u and conditions on F that are stronger than (3.1).

JureCkova also treated in [3] the p-variate case with p, , =1,i=1,...,n,
and 37, q,;,;,=0foralli=1,...,n andallj=1, ..., p.
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