AN ANALOGUE, FOR SIGNED RANK STATISTICS, OF JUREČKOVÁ'S ASYMPTOTIC LINEARITY THEOREM FOR RANK STATISTICS¹

BY CONSTANCE VAN EEDEN

Université de Montréal

1. Introduction. The purpose of this note is to prove that if, for each $\nu = 1, 2, \dots, X_{\nu,1}, \dots, X_{\nu,n_{\nu}}$ are a random sample from a distribution symmetric around 0, then the signed-rank statistic

$$T_{\nu}(\theta) = \sum_{i=1}^{n_{\nu}} p_{\nu,i} \phi\left(\frac{R_{|X_{\nu,i}-q_{\nu,i}\theta|}}{n_{\nu}+1}\right) \operatorname{sgn}\left(X_{\nu,i}-q_{\nu,i}\theta\right),$$

where $R_{|X_{\nu,i}-q_{\nu,i}\theta|}$ is the rank of $|X_{\nu,i}-q_{\nu,i}\theta|$ among $|X_{\nu,1}-q_{\nu,1}\theta|, \cdots, |X_{\nu,n_{\nu}}-q_{\nu,n_{\nu}}\theta|$, is under certain conditions on the common distribution of the $X_{\nu,i}$, on the constants $p_{\nu,i}$, $q_{\nu,i}$ and on the function ϕ , asymptotically approximately a linear function of θ in the sense that

(1.1) $\lim_{n_{\nu}\to\infty} P\{\sup_{|\theta|\leq c} |T_{\nu}(\theta)-T_{\nu}(0)+\theta K\sum_{i=1}^{n_{\nu}}p_{\nu,i}q_{\nu,i}|\geq \varepsilon\sigma(T_{\nu}(0))\}=0$, for every c>0 and every $\varepsilon>0$, where K is a constant depending on the common distribution of the $X_{\nu,i}$ and on the function ϕ .

This result is related to a result of Jurečková [3]; she proves (1.1) for the special case where $p_{\nu,i} \equiv 1$ and $\sum_{i=1}^{n_{\nu}} q_{\nu,i} \equiv 0$ under different conditions on the sequence of vectors $(q_{\nu,1}, \cdots, q_{\nu,n_{\nu}})$.

An analogous result was proved by Jurečková [2] for the statistic

$$S_{\nu}(\theta) = \sum_{i=1}^{n_{\nu}} C_{\nu,i} \varphi\left(\frac{R_{X_{\nu,i}-d_{\nu,i}\,\theta}}{n+1}\right),$$

where $R_{X_{\nu,i}-d_{\nu,i}\theta}$ is the rank of $X_{\nu,i}-d_{\nu,i}\theta$ among $X_{\nu,1}-d_{\nu,1}\theta$, \cdots , $X_{\nu,n_{\nu}}-d_{\nu,n_{\nu}}\theta$ and where, for each $\nu=1,2,\cdots$, the $X_{\nu,i}$ are independently and identically distributed.

For the proof of our result some lemmas are needed which are given in Section 2; one of these lemmas is a generalization of Theorem 5 of Lehmann [9]; two of the lemmas are analogous to Corollaries 1 and 2 of Lehmann [9]. The main result and their proofs are given in Section 3.

2. Some Lemmas. Let i_1, \dots, i_n and j_1, \dots, j_n each be a permutation of the numbers $1, \dots, n$ and let $\varepsilon_1, \dots, \varepsilon_n, \delta_1, \dots, \delta_n$ each be +1 or -1 such that $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies

Condition
$$A_n.1$$
. $\delta_k = 1 \Rightarrow \varepsilon_k = 1$

Condition
$$A_x$$
.2. $\{l < k, \delta_k = 1, j_l < j_k\} \Rightarrow i_l < i_k$

Condition
$$A_n$$
.3. $\{l < k, \varepsilon_k = -1, j_l > j_k\} \Rightarrow i_l > i_k$.

Received July 31, 1970; revised February 2, 1971.

¹ This paper was written while the author was visiting the University of Rennes. It was partially supported by the National Research Council of Canada under Grant #A 3 114.

For fixed $M(1 \le M \le n)$ define

$$(2.1) a_{M,1} > a_{M,2} > \cdots > a_{M,K_M}$$

as the ordered values of those i_k among $i_{n-M+1}, i_{n-M+2}, \cdots, i_n$ for which $\varepsilon_k = +1$ and

$$(2.2) b_{M,1} > b_{M,2} > \dots > b_{M,L_M}$$

as the ordered values of those j_k among $j_{n-M+1}, j_{n-M+2}, \dots, j_n$ for which $\delta_k = +1$. Obviously, by Condition $A_n.1$, $K_M \ge L_M$; further $K_M \le M$. Further define

$$(2.3) c_{M,1} > c_{M,2} > \dots > c_{M,M-K_M}$$

as the ordered values of those i_k among $i_{n-M+1}, i_{n-M+2}, \cdots, i_n$ for which $\epsilon_k = -1$ and

$$(2.4) d_{M,1} > d_{M,2} > \cdots > d_{M,M-L_M}$$

as the ordered values of those j_k among $j_{n-M+1}, j_{n-M+2}, \dots, j_n$ for which $\delta_k = -1$.

LEMMA 2.1. If $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition A_n , then

(2.5)
$$b_{M,l} \leq a_{M,l} \qquad l = 1, \dots, L_{M}$$

$$c_{M,l} \leq d_{M,l} \qquad l = 1, \dots, M - K_{M} \qquad M = 1, \dots, n .$$

Proof. The proof will be given in four parts.

(i) The lemma is true for M = 1 and any $n \ge 1$. To prove this, notice that by Condition A_n . 1 it is sufficient to prove that

(2.6)
$$j_n \leq i_n \quad \text{if} \quad \delta_n = 1$$
$$j_n \geq i_n \quad \text{if} \quad \varepsilon_n = -1.$$

This can be seen as follows.

(2.7)
$$j_n = (\sharp \text{ of } j_k \leq j_n) = n - (\sharp \text{ of } j_k > j_n)$$

 $i_n = (\sharp \text{ of } i_k \leq i_n) = n - (\sharp \text{ of } i_k > i_n)$.

By Condition A_n .2

(2.8)
$$(\# \text{ of } j_k \leq j_n) \leq (\# \text{ of } i_k \leq i_n) \text{ if } \delta_n = 1$$
 and by Condition A_n . 3

$$(2.9) (\sharp \text{ of } j_k > j_n) \leq (\sharp \text{ of } i_k > i_n) \text{ if } \varepsilon_n = -1.$$

(ii) If the lemma is true for some (n, M) then the lemma is true for (n + 1, M). To see this consider, for some $n \ge 1$, $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^{n+1}$ satisfying Condition A_{n+1} . From $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^{n+1}$ derive $(i_k', \varepsilon_k, j_k', \delta_k)_{k=2}^{n+1}$, satisfying Condition A_n , as follows. Let

$$(2.10) r_k = \text{ rank of } i_k \text{ among } (i_1, i_k)$$

$$s_k = \text{ rank of } j_k \text{ among } (j_1, j_k) k = 2, \dots, n+1$$

and let

(2.11)
$$i_k' = i_k - (r_k - 1) \\ j_k' = j_k - (s_k - 1) \qquad k = 2, \dots, n + 1.$$

Then i_2', \dots, i_{n+1}' and j_2', \dots, j_{n+1}' are each permutations of the numbers $1, \dots, n$ and from

(2.12)
$$i_k < i_l \Leftrightarrow i_k' < i_l'$$

$$j_k < j_l \Leftrightarrow j_k' < j_l' \qquad k, l = 2, \dots, n+1$$

it then follows that $\{i_k', \varepsilon_k, j_k', \delta_k\}_{k=2}^{n+1}$ satisfies condition A_n .

For fixed $M \leq n$ let $a'_{M,l}$, $b'_{M,l}$, $c'_{M,l}$, $d'_{M,l}$ L'_{M} and K'_{M} be defined, as in (2.2) — (2.4), for $(i_k', \varepsilon_k, j_k', \delta_k)_{k=n+2-M}^{n+1}$ and let $a_{M,l}$, $b_{M,l}$, $c_{M,l}$, $d_{M,l}$, K_{M} , and L_{M} be so defined for $(i_k, \varepsilon_k, j_k, \delta_k)_{k=n+2-M}^{n+1}$, then $L_{M} = L_{M}'$ and $K_{M} = K_{M}'$. Assuming the lemma to be true for (n, M) we have

(2.13)
$$b'_{M,l} \leq a'_{M,l} \qquad l = 1, \dots, L_{M} \\ c'_{M,l} \leq d'_{M,l} \qquad l = 1, \dots, M - K_{M}.$$

Now let l_0 be the number of $b_{M,l} > j_1$, then by (2.11)

(2.14)
$$b'_{M,l} = b_{M,l}^{-1} \qquad l = 1, \dots, l_0 = b_{M,l} \qquad l = l_0 + 1, \dots, L_M.$$

Let k_0 be the number of $a_{M,l} > i_1$, then by (2.11)

(2.15)
$$a'_{M,l} = a_{M,l}^{-1} \qquad l = 1, \dots, k_0 \\ = a_{M,l} \qquad l = k_0 + 1, \dots, K_M.$$

Further, by Condition $A_{n+1}.2$, $l_0 \le k_0$. From (2.13) — (2.15) it then follows that

$$(2.16) b_{M,l} \le a_{M,l} l = 1, \dots, L_{M}.$$

The proof that

$$(2.17) c_{M,l} \leq d_{M,l} l = 1, \cdots, M - K_M$$

is analogous, using Condition A_{n+1} .3.

(iii) If the lemma is true for some $n \ge 2$ with M = n - 1, then the lemma is true for the same n with M = n. This can be seen as follows. Assuming the lemma to be true for M = n - 1 we have

(2.18)
$$b_{n-1,l} \leq a_{n-1,l} \qquad l = 1, \dots, L_{n-1}$$

$$c_{n-1,l} \leq d_{n-1,l} \qquad l = 1, \dots, n-1 - K_{n-1}$$

and it will be proved that

(2.19.i))
$$b_{n,l} \leq a_{n,l} \qquad l = 1, \dots, L_n$$

$$(2.19.ii)) \qquad c_{n,l} \leq d_{n,l} \qquad l = 1, \dots, n - K_n.$$

The following three cases can be distinguished

(a) $\delta_1 = \varepsilon_1 = -1$. Then $L_n = L_{n-1}$, $K_n = K_{n-1}$, $b_{n,l} = b_{n-1,l}(l=1, \dots, L_n)$ and $a_{n,l} = a_{n-1,l}(l=1, \dots, K_n)$, so that (2.19.i)) is obvious. Further $(a_{n,l}, l=1, \dots, K_n, c_{n,l}, l=1, \dots, n-K_n)$ and $(b_{n,l}, l=1, \dots, L_n, d_{n,l}, l=1, \dots, n-K_n)$

 $n - L_n$) are each permutations of the numbers 1, ..., n so that (2.19.ii)) follows from (2.19.i)).

(b) $\delta_1 = -1$, $\varepsilon_1 = 1$. Then $L_n = L_{n-1}$, $K_n = K_{n-1} + 1$, $b_{n,l} = b_{n-1,l}(l = 1, \dots, L_n)$ and $c_{n,l} = c_{n-1,l}(l = 1, \dots, n - K_n)$. To prove (2.19.i)) let k_0 be the number of $a_{n-1,l}(l = 1, \dots, K_{n-1})$ larger than i_1 , then

(2.20)
$$a_{n,l} = a_{n-1,l} \qquad l = 1, \dots, k_0$$

$$= i_1 \qquad l = k_0 + 1$$

$$= a_{n-1,l-1} \qquad l = k_0 + 2, \dots, K_n .$$

If $L_n \leq k_0 \leq K_{n-1}$ then (2.19.i)) is immediate. If $0 \leq k_0 < L_n = L_{n-1}$, then (2.19.i)) is immediate for $l = 1, \dots, k_0$. Further

$$(2.21) b_{n,k_0+1} = b_{n-1,k_0+1} \le a_{n-1,k_0+1} < i_1 = a_{n,k_0+1}$$

and for $l = k_0 + 2, \dots, L_n$

$$(2.22) b_{n,l} = b_{n-1,l} \le a_{n-1,l} = a_{n,l+1} \le a_{n,l}.$$

The proof of (2.19.ii)) is analogous.

- (c) $\delta_1 = \varepsilon_1 = 1$. Then $L_n = L_{n-1} + 1$, $K_n = K_{n-1} + 1$, $c_{n,l} = c_{n-1,l}(l = 1, \dots, n K_n)$ and $d_{n,l} = d_{n-1,l}(l = 1, \dots, n L_n)$ so that (2.19.ii)) is obvious. Further (see (a)) (2.19.i)) follows from (2.19.ii)).
- (iv) The lemma now follows by induction on M. According to part 1 of the proof, the lemma is true for M=1 and any $n\geq 1$. Let M_0 be an integer ≥ 1 and assume the lemma is true for $M=M_0$ and any $n\geq M_0$, then it will be proved that the lemma is true for $M=M_0+1$ and any $n\geq M_0+1$. This can be seen as follows. According to the induction hypothesis the lemma is true for $n=M_0+1$ and $M=M_0$; according to part 3 of the proof this implies the truth for $n=M_0+1$ and $M=M_0+1$; according to part 2 of the proof this implies the truth for $M=M_0+1$ and any $M=M_0+1$. $M=M_0+1$ and $M=M_0+1$ and $M=M_0+1$.

In Lemma 2.1 it was shown that Condition A_n is sufficient for (2.5) to hold for each $M = 1, \dots, n$. For (2.5) to hold for a particular value of M it is obviously sufficient that $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies

$$\text{Condition } A_{n,M} \begin{cases} \text{For each} \quad k \geq n-M+1 \\ 1. \quad \delta_k = 1 \Rightarrow \varepsilon_k = 1 \\ 2. \quad \text{for each} \quad l \leq k-1 \qquad (\delta_k = 1, j_l < j_k) \Rightarrow i_l < i_k \\ 3. \quad \text{for each} \quad l \leq k-1 \qquad (\varepsilon_k = -1, j_l > j_k) \Rightarrow i_l > i_k \end{cases} .$$

Further, if $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for $M = M_0$ then $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for all $M \leq M_0$, which proves the following lemma.

Lemma 2.2. If $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for $M = M_0$, then

(2.23)
$$a_{M,l} \leq b_{M,l} \qquad l = 1, \dots, L_{M}$$

$$c_{M,l} \leq d_{M,l} \qquad l = 1, \dots, M - K_{M} \quad 1 \leq M \leq M_{0} .$$

LEMMA 2.3. If h is nondecreasing and nonnegative and if $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfies Condition $A_{n,M}$ for $M = M_0$, then

(2.24)
$$\sum_{l=n+1-M;\epsilon_{l}>0}^{n} h(i_{l}) \geq \sum_{l=n+1-M;\delta_{l}>0}^{n} h(j_{l})$$
$$\sum_{l=n+1-M;\epsilon_{l}<0}^{n} h(i_{l}) \leq \sum_{l=n+1-M;\delta_{l}<0}^{n} h(j_{l})$$
$$1 \leq M \leq M_{0}.$$

PROOF. Because h is nondecreasing, it follows from Lemma 2.2 that for $1 \le M \le M_0$

$$(2.25) 1. h(b_{M,l}) \leq h(a_{M,l}) l = 1, \dots, L_M$$

2.
$$h(c_{M,l}) \leq h(d_{M,l}) \qquad l = 1, \dots, M - K_M.$$

From (2.25.1) and the fact that h is nonnegative it follows that, for $1 \le M \le M_0$,

$$(2.26) \quad \sum_{l=n+1-M;\delta_l>0}^n h(j_l) = \sum_{l=1}^{L_M} h(b_{M,l}) \leq \sum_{l=1}^{L_M} h(a_{M,l}) \leq \sum_{l=1}^{K_M} h(a_{M,l}) = \sum_{l=n+1-M;\epsilon_l>0}^n h(i_l).$$

From (2.25.2) and the fact that h is nonnegative it follows that for $1 \le M \le M_0$,

(2.27)
$$\sum_{l=n+1-M;\epsilon<0}^{n} h(i_l) = \sum_{l=1}^{M-K_M} h(c_{M,l}) \leq \sum_{l=1}^{M-K_M} h(d_{M,l}) \leq \sum_{l=1}^{M-L_M} h(d_{M,l}) = \sum_{l=n+1-M;\delta<0}^{n} h(j_l) . \square$$

REMARK. In the two special cases, where $\delta_k = 1$ for all k or $\varepsilon_k = -1$ for all k, Lemma 2.1 reduces to Theorem 5 of Lehmann [9]. Further, in each of these special cases, Lemma 2.3 is analogous to Corollary 1 of Lehmann [9].

LEMMA 2.4. Let $\alpha_1, \alpha_2, \dots, \alpha_n$ be n numbers satisfying

$$(2.28) 0 \leq \alpha_1 \leq \cdots \leq \alpha_n,$$

let h be nondecreasing and nonnegative and let $(i_k, \varepsilon_k, j_k, \delta_k)_{k=1}^n$ satisfy

$$(2.29) 1. (\delta_k = 1, \alpha_k > 0) \Rightarrow \varepsilon_k = 1$$

2.
$$(\delta_k = 1, \alpha_k > 0, l < k, j_l < j_k) \Rightarrow i_l < i_k$$

3.
$$(\varepsilon_k = -1, \alpha_k > 0, l < k, j_l > j_k) \Rightarrow i_l > i_k$$

then

(2.30)
$$\sum_{k=1}^{n} \alpha_k \varepsilon_k h(i_k) \geq \sum_{k=1}^{n} \alpha_k \delta_k h(j_k).$$

PROOF. The following proof is analogous to Lehmann's proof of his Corollary 2 in [9].

(2.30) is obviously true if $\alpha_k = 0$ for all $k = 1, \dots, n$, so in the following it will be supposed that $\alpha_k > 0$ for at least one k. Further, since h is nonnegative,

$$\sum_{l=1}^{n} h(l) \ge 0$$
 and $\sum_{l=1}^{n} h(l) = 0$ if and only if $h(l) = 0$ for all $l = 1, \dots, n$,

in which case (2.30) is obvious. In the following it will be supposed that $\sum_{l=1}^{n} h(l) > 0$.

Let $0 \le \beta_1 < \beta_2 < \cdots < \beta_T$ be the different values of $\alpha_1, \cdots, \alpha_n$ and let

 $n_t(t=1,\dots,T)$ be the number of α_k equal β_t . Further let $N_t = \sum_{s=1}^t n_s(t=1,\dots,T)$ and $N_0 = 0$. Consider the random variables X and Y each taking the values $(-\beta_T, -\beta_{T-1}, \dots, -\beta_1, \beta_1, \dots, \beta_{T-1}, \beta_T)$ with

(2.31)
$$1. P(X \leq -\beta_s) = \frac{\sum_{l=N_{s-1}+1:\epsilon_l < 0}^{N_T} h(i_l)}{\sum_{l=1}^{n} h(l)}$$
$$2. P(X \leq \beta_s) = 1 - \frac{\sum_{l=N_s+1:\epsilon_l > 0}^{N_T} h(i_l)}{\sum_{l=1}^{n} h(l)} s = 1, \dots, T$$

and

(2.32)
$$1. P(Y \leq -\beta_s) = \frac{\sum_{l=N_{s-1}+1:\delta_l < 0}^{N_T} h(j_l)}{\sum_{l=1}^{n_t} h(l)}$$
$$2. P(Y \leq \beta_s) = 1 - \frac{\sum_{l=N_s+1:\delta_l > 0}^{N_T} h(j_l)}{\sum_{l=1}^{n_t} h(l)} s = 1, \dots, T,$$

where, if $\beta_1 = 0$, $P(X \le 0)$ and $P(Y \le 0)$ are defined by (2.31.2) and (2.32.2) respectively.

If $\beta_1 > 0$, condition (2.29) reduces to Condition A_n and from Lemma 2.3 it then follows that

$$(2.33) P(X \le x) \le P(Y \le x) \text{for all } x.$$

If $\beta_1 = 0$, condition (2.29) is Condition $A_{n,M}$ for $M = N_T - N_1 = n - n_1$, so that in this case (2.24) holds for $M \le n - n_1$, which proves (2.33). From (2.33) it follows that

$$(2.34) \mathcal{E} X \ge \mathcal{E} Y,$$

which is equivalent to

which is equivalent to

- 3. Main Results. Let, for each $\nu = 1, 2, \dots, X_{\nu,1}, \dots, X_{\nu,n_{\nu}}$ be independently and identically distributed random variables with common distribution function F(x) satisfying
- (3.1) 1. F(x) has an absolutely continuous density f(x)

2.
$$\int_0^1 \varphi_F^2(u) du < \infty$$
, where $\varphi_F(u) = -\frac{f'(F^{-1}(u))}{f(F^{-1}(u))}$ $(0 \le u \le 1)$

and where f' is the derivative of f

3.
$$f(x) = f(-x)$$
 for all x .

Let $\psi(u)(0 \le u \le 1)$ be a function satisfying

- (3.2) 1. $\psi(u)$ can be written as the sum of two functions $\psi_1(u)$ and $\psi_2(u)$ where $\psi_1(u)$ is nondecreasing and nonnegative and $\psi_2(u)$ is non-increasing and nonpositive.
 - 2. $\int_0^1 \psi_i^2(u) \, du < \infty (i = 1, 2)$ and $\int_0^1 \psi^2(u) \, du > 0$.

Let $p_{\nu,1}, \dots, p_{\nu,n_{\nu}}$ and $q_{\nu,1}, \dots, q_{\nu,n_{\nu}}$ be vectors of constants satisfying

$$(3.3) 1. \sum_{i=1}^{n_{\nu}} p_{\nu,i}^2 > 0$$

$$2. \qquad \lim_{\nu \to \infty} \frac{\max_{1 \le i \le n_{\nu}} p_{\nu,i}^2}{\sum_{i=1}^{n_{\nu}} p_{\nu,i}^2} = 0 ,$$

- (3.4) 1. $\sum_{i=1}^{n_{\nu}} q_{\nu,i}^2 \leq M$ for some positive number M independent of ν
 - $2. \qquad \lim_{\nu \to \infty} \max_{1 \le i \le n_{\nu}} q_{\nu,i}^2 = 0$

and, for each $\nu = 1, 2, \dots$, either

(3.5) 1.
$$p_{\nu,i}q_{\nu,i} \ge 0$$
 for all $i = 1, \dots, n_{\nu}$

2.
$$(|p_{v,i}| - |p_{v,i'}|)(|q_{v,i}| - |q_{v,i'}|) \ge 0$$
 for all $i, i' = 1, \dots, n_v$

or,

(3.6) 1.
$$p_{\nu,i}q_{\nu,i} \leq 0$$
 for all $i = 1, \dots, n_{\nu}$

2.
$$(|p_{\nu,i}| - |p_{\nu,i'}|)(|q_{\nu,i}| - |q_{\nu,i}|) \ge 0$$
 for all $i, i' = 1, \dots, n_{\nu}$.

Let $R_{|X_{\nu,i}-q_{\nu,i}\theta|}$ be the rank of $|X_{\nu,i}-q_{\nu,i}\theta|$ among $|X_{\nu,1}-q_{\nu,1}\theta|$, \cdots , $|X_{\nu,n_{\nu}}-q_{\nu,n_{\nu}}\theta|$, let

$$\begin{array}{lll}
\operatorname{sgn} u = 1 & \text{if } u > 0 \\
 = -1 & \text{if } u < 0
\end{array}$$

and let

(3.8)
$$T_{\nu}(\theta) = \sum_{i=1}^{n_{\nu}} p_{\nu,i} \phi\left(\frac{R_{|X_{\nu,i} - q_{\nu,i}\theta|}}{n+1}\right) \operatorname{sgn}(X_{\nu,i} - q_{\nu,i}\theta).$$

THEOREM 3.1. If F(x) is continuous, if $\psi(u)$ is nondecreasing and nonnegative then, for each $\nu = 1, 2, \dots, T_{\nu}(\theta)$ is with probability one a nonincreasing step function of θ if (3.5) holds and a nondecreasing step function of θ if (3.6) holds.

PROOF. In the proof the index ν will be omitted. The proof will be given for the case that (3.5) holds. The result for the case that (3.6) holds is then obvious.

If F(x) continuous, $T(\theta)$ is, with probability one, not well defined only for those values of θ satisfying $\theta = -(X_i/q_i)$ for some i with $q_i \neq 0$ and for those values of θ satisfying $|X_i - q_i\theta| = |X_{i'} - q_{i'}\theta|$ for some pair (i,i') with $q_i \neq 0$ or $q_{i'} \neq 0$. These values of θ where $T(\theta)$ is not well defined, define a finite number of intervals for θ within each of which $T(\theta)$ is independent of θ .

Now consider two values θ_1 and θ_2 of θ for which $T(\theta)$ is well defined and let $\theta_1 < \theta_2$. Then it will be proved that $T(\theta_1) \ge T(\theta_2)$. Without loss of generality the X_i can be numbered in such a way that $|p_1| \le \cdots \le |p_n|$. Then, by (3.5.2),

 $|q_1| \leq \cdots \leq |q_n|$. Write $T(\theta)$ as

$$(3.9) T(\theta) = \sum_{k=1}^{n} |p_k| \, \psi\left(\frac{R_{|X_k-q_k\theta|}}{n+1}\right) \operatorname{sgn} p_k(X_k-q_k\theta) ,$$

where, for $p_k = 0$, sgn $p_k(X_k - q_k \theta)$ is defined as 1. Now apply Lemma 2.4 with, for $k = 1, \dots, n$

(3.10)
$$\alpha_{k} = |p_{k}|$$

$$\varepsilon_{k} = \operatorname{sgn} p_{k}(X_{k} - q_{k}\theta_{1}) \qquad \delta_{k} = \operatorname{sgn} p_{k}(X_{k} - q_{k}\theta_{2})$$

$$i_{k} = R_{|X_{k} - q_{k}\theta_{1}|} \qquad j_{k} = R_{|X_{k} - q_{k}\theta_{2}|}.$$

Then $T(\theta_1) \ge T(\theta_2)$ if (2.29) is satisfied. That (2.29) is satisfied can be seen from the following steps (a), (b) and (c).

(a) (2.29.1) is identical with

$$\{p_k(X_k - q_k \theta_2) > 0, p_k \neq 0\} \Rightarrow p_k(X_k - q_k \theta_1) > 0$$

which follows immediately from (3.5.1) and

$$p_{k}(X_{k}-q_{k}\theta_{1})=p_{k}(X_{k}-q_{k}\theta_{2})+p_{k}q_{k}(\theta_{2}-\theta_{1}).$$

(b) (2.29.2) is identical with

$$\{p_k(X_k - q_k\theta_2) > 0, p_k \neq 0, l < k, |X_l - q_l\theta_2| < |X_k - q_k\theta_2|\}\$$

 $\Rightarrow |X_l - q_l\theta_1| < |X_k - q_k\theta_1|.$

This can be seen as follows. We have

$$-\frac{p_k}{|p_k|}(X_k - q_k\theta_2) < X_l - q_l\theta_2 < \frac{p_k}{|p_k|}(X_k - q_k\theta_2)$$

so that, using (3.5),

$$\begin{split} X_l &= q_l \theta_1 < \frac{p_k}{|p_k|} (X_k - q_k \theta_1) + (\theta_2 - \theta_1) \Big(q_l - \frac{p_k}{|p_k|} q_k \Big) \\ &= \frac{p_k}{|p_k|} (X_k - q_k \theta_1) + (\theta_2 - \theta_1) (q_l - |q_k|) \\ &\leq \frac{p_k}{|p_k|} (X_k - q_k \theta_1) \; . \end{split}$$

Also

$$egin{split} X_l - q_l heta_1 &> -rac{p_k}{|p_k|} (X_k - q_k heta_1) + (heta_2 - heta_1) \left(q_l + rac{p_k}{|p_k|} q_k
ight) \ &= -rac{p_k}{|p_k|} (X_k - q_k heta_1) + (heta_2 - heta_1) (q_l + |q_k|) \ &\geq -rac{p_k}{|p_k|} (X_k - q_k heta_1) \; , \end{split}$$

so that $|X_l - q_l \theta_1| \leq |X_k - q_k \theta_1|$.

(c) (2.29.3) is identical with

$$\{p_k(X_k - q_k\theta_2) < 0, p_k \neq 0, l < k, |X_l - q_l\theta_2| > |X_k - q_k\theta_2|\}$$

 $\Rightarrow |X_l - q_l\theta_1| > |X_k - q_k\theta_1|.$

The proof of this is analogous to that for (2.29.2). \square

A special case of Theorem 3.1 with $\psi(u) = u$ and $p_{\nu,i} = q_{\nu,i} (i = 1, \dots, n_{\nu})$ was proved by Koul ([5], Lemma 2.2).

THEOREM 3.2. If (3.1)–(3.4) and (3.5) or (3.6) are satisfied then (3.11) $\lim_{\nu\to\infty} P\{\sup_{|\theta|\leq C} |T_{\nu}(\theta)-T_{\nu}(0)+\theta K\sum_{i=1}^{n_{\nu}} p_{\nu,i}q_{\nu,i}| > \varepsilon\sigma(T_{\nu}(0))\}=0$, where $K=\int_{0}^{n} \psi(u)\varphi_{E}((u+1)/2) du$.

PROOF. The index ν will be omitted in the proof. It is sufficient to prove the theorem for the case where $\psi_2(u) = 0$ for all u. Further the proof will be given for the case where (3.5) holds; the result for the case where (3.6) holds is then obvious.

The proof is analogous to the proof of Jurečková of her Theorem 3.1 in [2]. As in her case it can be supposed without loss of generality that $\sum_{i=1}^{n} p_i^2 = 1$ and it can be seen, using the result of Hájek and Šidák ([1], Theorem V. 1.7) that it is sufficient to prove

$$\lim_{\nu\to\infty} P\{\sup_{|\theta|\leq C} |T(\theta)-T(0)+\theta K \sum_{i=1}^n p_i q_i| > \varepsilon\} = 0.$$

As in Jurečková's proof and using the results of Hájek and Šidák ([1], section VI. 2.5) it can be proved that for any fixed set of points $\theta_1, \dots, \theta_r$

$$\lim_{\nu\to\infty} P\{|T(\theta_i)-T(0)+\theta_iK\sum_{j=1}^n p_jq_j|\leq \varepsilon\quad \text{for all}\quad i=1,\,\cdots,\,r\}=1$$
 .

Further, for a fixed C > 0, choosing $\theta_1, \dots, \theta_r$ with

$$-C = \theta_1 < \theta_2 < \cdots < \theta_{r-1} < \theta_r = C$$

and

$$|K| \, |\theta_{i+1} - \theta_i| \leqq \tfrac{1}{2} \varepsilon M^{-\frac{1}{2}} \, ,$$

where M is the constant in (3.4), it can be seen, as in Jurečková's proof [2] and using Theorem 3.1 above, that

$$\begin{aligned} \{|T(\theta_i) - T(0) + \theta_i K \sum_{j=1}^n p_j q_j| & \leq \frac{1}{2}\varepsilon \quad \text{for all} \quad i = 1, \dots, r\} \\ & \Rightarrow \sup_{\|\theta\| \leq C} |T(\theta) - T(0) + \theta K \sum_{j=1}^n p_j q_j| \leq \varepsilon. \ \ \end{aligned}$$

The conditions on the $p_{\nu,i}$ and $q_{\nu,i}$ in Theorem 3.2 can be weakened as follows (see also Jurečková [2], Remark, page 1897). First, it can be assumed, without loss of generality, that $q_{\nu,i} \ge 0$ for all $i=1, \dots, n_{\nu}$ or that $q_{\nu,i} \le 0$ for all $i=1, \dots, n_{\nu}$. This can be seen as follows. Let $p_{\nu,i}$ and $q_{\nu,i} (i=1, \dots, n_{\nu})$ satisfy (3.3) and (3.4) and suppose $q_{\nu,i} < 0$ for at least one i. Let A_{ν} be the set of values of i with $q_{\nu,i} < 0$ and define, for $i=1, \dots, n_{\nu}$,

$$(3.12) \quad p_{\nu,i}^* = p_{\nu,i} \quad i \notin A_{\nu} \quad q_{\nu,i}^* = q_{\nu,i} \quad i \notin A_{\nu} \quad Y_{\nu,i} = X_{\nu,i} \quad i \notin A_{\nu} \\ = -p_{\nu,i} \quad i \in A_{\nu} \qquad = -q_{\nu,i} \quad i \in A_{\nu} \qquad = -X_{\nu,i} \quad i \in A_{\nu}$$

then

$$T_{\scriptscriptstyle
u}(\theta) = \sum_{i=1}^{n_{\scriptscriptstyle
u}} p_{\scriptscriptstyle
u,i}^* \phi\Bigl(rac{R_{\mid Y_{\scriptscriptstyle
u},i} - q_{\scriptscriptstyle
u,i}^* heta \mid}{n_{\scriptscriptstyle
u} + 1}\Bigr) {
m sgn}\left(Y_{\scriptscriptstyle
u,i} - q_{\scriptscriptstyle
u,i}^* heta
ight),$$

where $Y_{\nu,1}, \dots, Y_{\nu,n_{\nu}}$ are independent random variables with common distribution function F(x) satisfying (3.1), where the $p_{\nu,i}^*$ and $q_{\nu,i}^*$ satisfy (3.3) and (3.4) and where $q_{\nu,i}^* \ge 0$ for all $i = 1, \dots, n_{\nu}$.

Further, if $q_{\nu,i}$ has the same sign for all $i=1,\dots,n_{\nu}$, it is possible to find a sequence of pairs of vectors $(p_{\nu,1}^{(l)},\dots,p_{\nu,n_{\nu}}^{(l)})$ (l=1,2) such that

$$(3.13) 1. p_{\nu,i} = \sum_{l=1}^{2} p_{\nu,i}^{(l)} i = 1, \dots, n_{\nu}$$

2.
$$p_{\nu,i}^{(1)} q_{\nu,i} \ge 0$$
 $i = 1, \dots, n_{\nu}$ $p_{\nu,i}^{(2)} q_{\nu,i} \le 0$ $i = 1, \dots, n_{\nu}$

3.
$$(|p_{\nu,i}^{(l)}| - |p_{\nu,i'}^{(l)}|)(|q_{\nu,i}| - |q_{\nu,i'}|) \ge 0$$

$$l = 1, 2 \quad \text{and} \quad i, i' = 1, \dots, n_{\nu} .$$

That this is possible can be seen as follows. Assume $q_{\nu,i} \ge 0$ for all $i = 1, \dots, n_{\nu}$. For every pair of vectors $(p_{\nu,1}, \dots, p_{\nu,n_{\nu}})$, $(q_{\nu,1}, \dots, q_{\nu,n_{\nu}})$ one can find $(\alpha_{\nu,1}, \dots, \alpha_{\nu,n_{\nu}})$ and $(\beta_{\nu,1}, \dots, \beta_{\nu,n_{\nu}})$ such that $p_{\nu,i} = \alpha_{\nu,i} + \beta_{\nu,i}$ and

$$(\alpha_{\nu,i} - \alpha_{\nu,i'})(|q_{\nu,i}| - |q_{\nu,i'}|) \ge 0$$

 $(\beta_{\nu,i} - \beta_{\nu,i'})(|q_{\nu,i}| - |q_{\nu,i'}|) \le 0$ $i, i' = 1, \dots, n_{\nu}$.

Further one can find $\gamma_{\nu} \geq 0$ such that $\alpha_{\nu,i} + \gamma_{\nu} \geq 0$ and $\beta_{\nu,i} - \gamma_{\nu} \leq 0$ for all $i = 1, \dots, n_{\nu}$. By taking $p_{\nu,i}^{(1)} = \alpha_{\nu,i} + \gamma_{\nu}$, $p_{\nu,i}^{(2)} = \beta_{\nu,i} - \gamma_{\nu}$ one has found $(p_{\nu,1}^{(l)}, \dots, p_{\nu,n_{\nu}}^{(l)})$, l = 1, 2 such that (3.13) is satisfied.

Further, if $p_{\nu,1}, \dots, p_{\nu,n_{\nu}}$ satisfies $\sum_{i=1}^{n_{\nu}} p_{\nu,i}^2 > 0$ for each ν (Condition 3.3.1) then, for each ν , there exists an l(l=1,2) such that $\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(l)}\}^2 > 0$. Also, if $p_{\nu,i}$ is written as $\sum_{l=1}^{2} p_{\nu,i}^{(l)}, T_{\nu}(\theta)$ can be written as the sum of two statistics and (3.11) remains true if it is true for each of these two statistics and

for some positive constant M_1 independent of ν . Further (3.11) is true for each of these two statistics if (3.1), (3.2) and (3.4) are satisfied and $p_{\nu,i}^{(l)}(l=1,2)$ satisfy (3.13) and

(3.15) 1. for at least one l

$$\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(l)}\}^2 > 0$$
 for each ν

2. for an l for which 1. is not satisfied

$$\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(l)}\}^2 = 0 \qquad \text{for each } \nu$$

3. for each *l* for which 1. is satisfied

$$\lim\nolimits_{\nu \to \infty} \frac{\max_{1 \le i \le n_{\nu}} \{p_{\nu,i}^{(l)}\}^{2}}{\sum_{i \ne 1}^{n_{\nu}} \{p_{\nu,i}^{(l)}\}^{2}} = 0 \; .$$

This proves the following theorem.

THEOREM 3.3. If (3.1), (3.2) and (3.4) are satisfied, if there exist $p_{\nu,1}^{(l)}, \dots, p_{\nu,m_{\nu}}^{(l)}$ (l=1,2) such that (3.13), (3.14) and (3.15) are satisfied, then (3.11) holds.

This theorem is related to a theorem of Jurečková [3]. She proves (3.11) for the case where $p_{\nu,i}=1 (i=1,\cdots n_{\nu})$ and $\sum_{i=1}^{n_{\nu}}q_{\nu,i}=0$ under the conditions (3.1), (3.2) and (3.4). Jurečková's result [3] is not a special case of Theorem 3.3, as can be seen from the following two examples. Let, for n_{ν} even, $p_{\nu,i}=1$, $i=1,\cdots,n_{\nu},\,q_{\nu,i}=n_{\nu}^{-\frac{1}{2}},\,i=1,\cdots,\frac{1}{2}n_{\nu}$ and $q_{\nu,i}=-n_{\nu}^{-\frac{1}{2}},\,i=\frac{1}{2}n_{\nu}+1,\cdots,n_{\nu}$. Then the conditions of Jurečková [3] are satisfied. That the conditions of Theorem 3.3 are also satisfied can be seen as follows. By (3.12) $T_{\nu}(\theta)$ can be written as

$$T_{\nu}(\theta) = \sum_{i=1}^{n_{\nu}} p_{\nu,i}^* \phi\left(\frac{R_{|Y_{\nu,i}-q_{\nu,i}^*\theta|}}{n_{\nu}+1}\right) \operatorname{sgn}\left(Y_{\nu,i}-q_{\nu,i}^*\theta\right),$$

where $p_{\nu,i}^* = 1$, $i = 1, \dots, \frac{1}{2}n_{\nu}$, $p_{\nu,i}^* = -1$, $i = \frac{1}{2}n_{\nu} + 1$, \dots , n_{ν} , $q_{\nu,i}^* = n_{\nu}^{-\frac{1}{2}}(i = 1, \dots, n_{\nu})$. Further $p_{\nu,i}^*$ can be written as $\sum_{l=1}^2 p_{\nu,i}^{(l)}$ satisfying (3.13) by choosing $p_{\nu,i}^{(1)} = 1$, $i = 1, \dots, n_{\nu}$ and $p_{\nu,i}^{(2)} = 0$, $i = 1, \dots, \frac{1}{2}n_{\nu}$, $p_{\nu,i}^{(2)} = -2$, $i = \frac{1}{2}n_{\nu} + 1$, \dots , n_{ν} . Then $\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(1)}\}^2 = n_{\nu}$, $\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(2)}\}^2 = 2n_{\nu}$ and $\sum_{i=1}^{n_{\nu}} p_{\nu,i}^2 = n_{\nu}$, so that (3.14) and (3.15) are satisfied. However, if one takes e.g. $p_{\nu,i} = 1$, $i = 1, \dots, n_{\nu}$ and $q_{\nu,i} = \{\frac{1}{2}(i+1)(-1)^{i+1}\}/n_{\nu}^{\frac{3}{2}}$, $i = 1, \dots, n_{\nu}$ then the conditions of Jurečková [3] are satisfied but those of Theorem 3.3 are not. This can be seen as follows. By (3.12), $p_{\nu,i}^* = (-1)^{i+1}$, $q_{\nu,i}^* = \frac{1}{2}(i+1)/n_{\nu}^{\frac{3}{2}}$, $i = 1, \dots, n_{\nu}$ and, for any $p_{\nu,i}^{(1)}$ and $p_{\nu,i}^{(2)}$ satisfying (3.13), $\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(1)}\}^2$ and $\sum_{i=1}^{n_{\nu}} \{p_{\nu,i}^{(2)}\}^2$ are of the order n_{ν}^3 , whereas $\sum_{i=1}^{n_{\nu}} p_{\nu,i}^2 = n_{\nu}$, so that (3.14) is not satisfied.

A special case of Theorem 3.3 with $p_{\nu,i}=q_{\nu,i}=n_{\nu}^{-1}$ was used by Kraft and van Eeden ([6] and [7]) to find the asymptotic properties of linearized estimates based on signed ranks for the one-sample location problem.

An extension of Theorem 3.3 to the *p*-variate case, where $R_{|X_{\nu,i}-q_{\nu,i}\theta|}$ is replaced by $R_{|X_{\nu,i}-\Sigma_{j=1}^p q_{\nu,i,j}\theta_j|}$ with $p_{\nu,i}=q_{\nu,i,j}$ for some j and all $i=1,\dots,n_{\nu}$, is given in [8]; it is used there to find the asymptotic properties of linearized estimates based on signed ranks for the general linear hypothesis.

Koul [5] proves a theorem analogous to Theorem 3.2 for the *p*-variate case with $\psi(u) = u$ and conditions on *F* that are stronger than (3.1).

Jurečková also treated in [3] the *p*-variate case with $p_{\nu,i}=1, i=1, \dots, n_{\nu}$ and $\sum_{i=1}^{n_{\nu}} q_{\nu,i,j}=0$ for all $i=1, \dots, n_{\nu}$ and all $j=1, \dots, p$.

REFERENCES

- [1] HÁJEK, J. and SĬKÁK, Z. (1967). Theory of Rank Tests. Academic Press, New York.
- [2] JUKEČKOVÁ, J. (1969). Asymptotic linearity of a rank statistic in regression parameter. Ann. Math. Statist. 40 1889-1900.
- [3] JUREČKOVÁ, J. (1971a). Asymptotic independence of rank test statistic for testing symmetry on regression. Sankhyā Ser. A. 33 1-18.
- [4] JUREČKOVÁ, J. (1971b). Non parametric estimate of regression coefficients Ann. Math. Statist. 42 1328-1338.

- [5] KOUL, H. L. (1969). Asymptotic behavior of Wilcoxon type confidence regions in multiple linear regression. Ann. Math. Statist. 40 1950-1979.
- [6] Kraft, C. H. and van Eeden, C. (1969). Efficient linearized estimates based on ranks. Proceedings of the First International Symposium on Nonparametric Techniques in Statistical Inference, Bloomington, Indiana.
- [7] Kraft, C. H. and van Eeden, C. (1972a) Asymptotic relative efficiencies of quick methods of computing efficient estimates from ranks. J. Amer. Statist. Assoc. (to appear).
- [8] Kraft, C. H. and van Eeden, C. (1972b). Linearized rank estimates and signed-rank estimates for the general linear hypothesis. *Ann. Math. Statist.* 43 42-57.
- [9] LEHMANN, E. L. (1966). Some concepts of dependence. Ann. Math. Statist. 37 1137-1153.

٤