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SUFFICIENT STATISTICS AND DISCRETE
EXPONENTIAL FAMILIES

By J. L. DENNY
The University of Arizona

{Py} is a set of probabilities on a countable set y such that Py(x) > 0
for each x and 9. We prove that if {Py} is not an exponential family, then
each sufficient statistic for » independent observations must be one-to-one,
modulo permutations, on an infinite product set (which does not depend
on the sufficient statistic).

The purpose of this note is to prove an elementary proposition which says,
roughly, that if one has a class of discrete probability distributions and a suf-
ficient statistic for n independent observations, then either one has an exponential
family or else the statistic is equivalent to the order statistics, with positive
probability.

x denotes a countable set, © is the arbitrary parameter set, and {P,: 6 € ©} is
a set of probabilities satisfying P,(x) > 0 for xey, 0 €©. If for fixed 6, ©
there are m < oo real functions g; on y and m 4 1 real functions ¢; on © so that
dPyJdP,(x) = c(0) exp { X1 ci(0)g;(x)} for all § €© and xey, then {P,} is said
to be an exponential family.

THEOREM. Suppose {P,} is not an exponential family. Then there is an infinite
subset A C y with the following property. If T, is a sufficient statistic for n inde-
pendent observations from {P;}, then

(xix’ . xin) e A", ()’il’ .. "yin) c A" and Tn(xil’ cee, xin) = Tn(yil, cee, yin)

implies (x;, -+, X; ) = (Vi > ** s Vi) JOr at least one permutation o, i.e., T, is
equivalent to the sample, modulo a permutation, on A".

Following the proof of the theorem we give an application which generalizes,
in the discrete case, a previous result of the author [2]. E. B. Dynkin proved
an analogous theorem for absolutely continuous distributions defined on an in-
terval I R where the analogue of our set 4 is an open interval U c 1 [4]. A
corrected version of Dynkin’s theorem appears on page 1461 of a paper of L.
Brown [1]. However, Dynkin assumes, among other things, that the densities
be continuously differentiable and it turns out that this assumption is crucial.
For if the densities are only assumed to be Lipschitz, Dynkin’s theorem breaks
down [3]. In other words, families of distributions which are either discrete or
else possess continuously differentiable densities are either exponential or else
do not permit a true reduction of the data with no loss of information; this sort
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of informal remark cannot be made for families possessing densities assumed
only to be continuous.

Finally, the converse to our theorem is false. For there is a one-parameter
exponential family such that each sufficient statistic for » independent observa-
tions is equivalent to the sample, modulo a permutation. To verify this, choose
f: x— H, where H is a bounded countable set, linearly independent over the
rationals, and f is one-to-one. Let P, be arbitrary and define dP)/dP, (x) =
c(f) exp {0-f(x)}, 6 € R. The assertion follows since >3 f(x; ) is a minimal suf-
ficient statistic.

The theorem’s proof rests on the following elementary

LEMMA. Let Z* denote the positive integers and let L(Z*) be a real linear space
of real functions defined on Z*+ (L(Z*) is a set of sequences). The following two
properties are equivalent: (a) L(Z*) has infinite linear dimension; (b) there is a
countably infinite set A C Z* such that if L(A) denotes the real linear space of func-
tions which are the restrictions to A of functions in L(Z*), then the weak closure of
L(A) is the space of all real functions on A.

Proor. Clearly (b) implies (a) and we prove the converse. Now L(Z*) has
infinite dimension if and only if k(n), the linear dimension of the space L(n) of
functions in L(Z") restricted to {1, 2, ---, n), tends to infinity as » tends to
infinity. Fix » and let g, - - -, g, € L(Z*) be such that their restriction to
{1, ..., n} is a basis for L(n), k(n) < n. Then, there exists i, < -+ < iy, = n
such that g,, - - -, g,,, is a basis for the linear space of functions in L(n) restricted
to B, = {iy, - -+, i}n}. Choose the smallest n, > n so that the linear dimension
of L(n,) is at least k(n) + 1. We assert there is g € L(n,) such that g, - -+, G4n)» ¢
are linearly independent on B,,, = B, U {n}. For suppose g € L(n,) implies
g= 2¥vb,g,onB,,,. Sincealsog = >¥™a;g,on{l, ..., n — 1}, we obtain
by the uniqueness of the basis coefficients that g = Y™ b;g; on {1, ..., n},
the desired contradiction. Define thus an increasing sequence {B,}, set 4 = U B,,
and let {x; } be an arbitrary real sequence defined on 4. As(x;, ---, x; ) belongs
to the linear space of real functions on {i,, - - -, i,} C 4 for each n, we conclude
{x;;} belongs to the weak closure of L(4).

Proor oF THE THEOREM. Without loss of generality let y = Z*. Let {g,: s € S}
be a basis for the smallest real linear space L(Z*) containing the functions
log dPo/dPﬂo, 0 € ©. Then for n independent observations, the function (i, - - -,
i,) > {21%.,9,(;): se S}, i; e Z*, is a function of each sufficient statistic (at the
suggestion of a referee we include a proof of this fact). Let then 7, : (Z*)" — 7,
7 a set, be a sufficient statistic: dP, ,[dP, (i, - -+, i,) = W(T,(iy, - - -, i), 0),
for some function 4 (the functions in the factorization theorem not depending
on ¢ cancel out). If g,e{g,: se S} then g, = 31, a,logdP, [dP, and hence
Z?=1 gt(ij) = ZI?:I aj, logh(Tn(il’ Tt in)’ ﬁk) = ht(Tn(il’ Tt in))’ as claimed.
Next, note that {P,} is an exponential family if and only if S is a finite set.
Assume that S is not a finite set and let 4 ¢ Z* be obtained by the lemma.
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Each fe L(4) is of the form f = ¥ a,g, where each g; is the restriction to
A of an element of {g,: s S}. Foreachpe dletl,: A— {0, 1} be the indicator
function of {p}. By the lemma I, belongs to the weak closure of L(4): I, (i) =
lim,, 3™ a,, .95, (i) for each ie 4. Thus for (i, ---,i,) e 4", X7, I(i;) =
lim,, (355 @, 1 (3321 Iy, (45))) = lim,, (259 @y b s (T a (s - - -5 1)), Where
T, , is the restriction of T, to A4". Thus for each ped, 7., I(i;) =
Ty allys + -5 1)) for (iy, -+ -, i,) € A* (the usual measure-theoretic qualifica-
tions have been omitted in this discrete set-up). But (i, ---,i,) € A" can be
obtained from a permutation of (ki, ---, k,) € A" if and only if }7_, I (i;) =

»_, I(k;) for each p e A. Thus T, is one-to-one, modulo a permutation, on 4*
and the theorem is proved.

The proof of the following application is omitted.

CoROLLARY. Let f;, i =1, ---, k be real functions on y such that (a) for each
integer n, (X;, -+, %; ) — (Zlfl(xij), <oy Irfiu(xi;)) is a sufficient statistic for n
independent observations from {Pj}; (b) there is an integer p such that for each i =

, k, at most p of the numbers {f(x;): j =1, 2, - -} are linearly independent
over the rationals. Then {P,} is an exponential family and dP,/dP,(x) =
co(0) exp { 2% ¢:(0)f:(x)} for each x € y, 0 € O.
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