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ON EMBEDDING RIGHT CONTINUOUS MARTINGALES
IN BROWNIAN MOTION

By ITREL MONROE

Dartmouth College

A stopping time T for the Wiener process W(¢) is called minimal if
there is no stopping time S < T such that W(S) and W(T) have the same
distribution. In the first section, it is shown that if E{W(T)} = 0, then T
is minimal if and only if the process W(z A T) is uniformly integrable.
Also, if T is minimal and E{W(T)} = 0 then E{T} = E{W(T)?}.

In the second section, these ideas are used to show that for any right
continuous martingale M(¢), there is a right continuous family of minimal
stopping times T(#) such that W(T(z)) has the same finite joint distributions
as M(¢).

In the last section it is shown that if T is defined in the manner pro-
posed by Skorokhod (and therefore minimal) such that W(T) has a stable
distribution of index @ > 1 then T'is in the domain of attraction of a stable
distribution of index a/2.

0. The Skorokhod embedding theorem has proved to be a very powerful tool
for extending results from Brownian motion to random walks. However, for the
most part, the embedding theorem has only been discussed for random variables
with finite variances. This is clearly unnecessary as the stopping times that
Skorokhod defines require only that the random variables have finite means
which are then assumed to be zero. However, if the random variable that is
being embedded in Brownian motion does not have a finite variance, it is no
longer clear how one selects “good” stopping times; that is, one can not simply
ask that the expectation of the stopping time be finite and therefore equal to the
variance of the random variable.

In this paper, a class of “good” stopping times will be explored. These
“minimal” stopping times were first singled out by Doob. In the first section, a
characterization of these stopping times will be given and a bound on the stop-
ping time in terms of the distribution of the random variable being embedded
will be obtained. In the second section it will be shown that every right con-
tinuous martingale can be embedded in Brownian motion by means of a family
of minimal stopping times {7} which as functions on ¢ are right continuous and
non-decreasing. The stopping times in general require larger o-fields than those
generated by the Brownian motion. In the third section, the particular case
where the martingale is a process with independent increments is discussed.

The notation used will be that of Blumenthal and Getoor [1]. However,
Brownian motion on the real line or the Wiener process will be denoted by W,
or more precisely (Q, &+, 7 ,, W,, 0,, P*). 1t will usually be assumed that the
process starts at zero and P° will often be written simply P. Also .ZA(X) =
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A(Y) will mean that the random variables X and Y defined on Q have the same
distribution with respect to P.
1.

DEFINITION 1. A stopping time T will be said to be minimal if for any stop-
ping time S < T, L(W(T)) = L(W(S)) implies S = T a.s.

All hitting times are minimal. All stopping times with finite expectation are
minimal. Indeed, if E{T} < oo, then E{W,} = Oand E{W,*} = E{T}. If S < T
and A(Wy) = &£(W,) then

E{S} = E(W) = E(W,’) = E{T)
so S = Ta.s.

PROPOSITION 2. For any stopping time S there is a minimal stopping time T < S
such that A (W,) = A (W).

Proor. The set of all stopping times T' < S such that A(W,) = (W) is
partially ordered by <. Choose a maximal chain {7,} and let 3, = Efe~"}.
Extract a sequence {7} such that

lim Ef{e~"»} = sup §, .
The sequence T, is decreasing so it converges to some stopping time 7" and there-
fore W, — W,. This means that Z(W(T)) = L(W(T,)) = L(W(S)). Clearly
T is minimal.

THEOREM 3. Let S be a stopping time such that E{W(S)} = 0. Then S is minimal
if and only if the process W(t A S) is uniformly integrable.

Proor. First suppose that W(t A S) is uniformly integrable. Let T be a stop-

ping time such that T < S and A W(T)) = ZL(W(S)). Then for all a > 0
E(Ws:Ws=a} = E(W,: W, >a} = E{Ws: W, = a} .
Likewise if @ < 0 E{W: Wy < a} = E{W: W, < a}. These imply that W =
W,a.s. If R is any stopping time such that T < R < S then
W,=EW| T} = E{W,| T} = Wy = Wsas.

But the paths of W, are continuous so W, is constant on the interval T <t < S
which is impossible unless T = S a.s.

Before we prove the converse, we will prove a number of lemmas in which
some results of Root [7] will be used. These are now summarized.
A barrier is a subset B of [0, +o0] x [— o0, + oo] satisfying
(i) Bis closed
(ii) (400, x) € B for all xe [0, + oo0]
(iii) (¢, £ o0) e Bfor all te[0, + o]
(iv) if (¢, x) € B then (s, x) € B whenever s > .

The set <& of all barriers admits a metric which makes B into a compact
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separable metric space. (If B, is a sequence in <z which converges to B then
B = n, (U B,).) For each barrier Be <& one defines the stopping time 7,

by
7y = inf{t: (¢, W(t)) € B} .

Root has shown that if B, is a sequence of barriers and E{r, } < M for all n
then there is a subsequence B, of B, and a barrier B, such that B, — B, in <%
and r, — 7, a.s.

LemMmA 4. If S is any stopping time such that E{W(S)} = O then there is a barrier
B e % such that S N t, is minimal and L (W(S)) = A(W(S A tp)).

PRrOOF. Suppose first that there is a finite set 4 = {a,, a,, - - -, a,} such that
P{W(S) e A}=1. For convenience, we suppose that ¢, = min 4 and ¢, = max 4.
Let <Z be the set of all barriers B which

(a) are subsets of the set
{(t, x);t =0, x€ 4}

(b) contain {(¢, x); t = 0, x = a,} and {(¢, x); t = 0, x = a,} and
(c) foralli+1,i+#n

P{W(ty A S)=a} < P{W(S) =a;}.
¢ is not empty since it contains the barrier
[(,0): 120, x¢(a,a,)].

The elements of <2 are partially ordered by inclusion. Select a maximal chain
& and denote the closure of the union of " by B,. Clearly B,c &&. Moreover
one can select an increasing sequence {B,} of barriers in <% such that B, =
uU{B,}. It follows that

Tp, — Tp, &.S.
sothatfori+1,i+n
P{W(tp A S) = a} =1lim P{W(ry, AS)=a} =< P(Ws=a;}
so B, € .
Suppose that for some a;, i = 1, i +# n,
P{W(tgy N S) = a} < P{Ws=a;}.
Let t, = inf{¢: (¢, a;) € B,}. Since
PEtt,—1n<t < 8, W) =a;} >0
there is an » such that
P{at, W(t) = a;, t, — 1/n St < 4} + P{W(ty, A S) = a;} < P{W(S) = a;}
so that B, is not maximal. Thus for alli = 1, i + n,

P{ W(TBO AN S) = ai} = P{ W(S) = ai} .
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But E{W(zy, A S)} = 0= E{W(S)} and P{W(S)e 4} =1 = P{W(ry A S)e 4}
so it must follow that Z(W(S)) = &£ (W(rs A S)). Finally, note that 7, <
Tia,a,) SO E{rz A S} < oo so that t, A S is minimal. This proves the lemma
when W(S) takes on only a finite number of values.

Now suppose that there is a compact interval [a, b] such that P{W(S) € [a, b]} =
1. Let

A, ={kn;k =0, +1, £2, ---,a < kjn < b}
and S, = inf{t: t = S, W,e 4,}.

S, is a stopping time and W(S,) takes on only a finite number of values so
there is a barrier B, such that W(z, A S,) has the same distribution as W(S,)
andr, < T, This meansthat E{c; } < E{T|,,} < oo. Thus by Root’s result,
there is a subsequence B, and a barrier B, such that

Tp,, — Tp, .5
It follows that S, A 75, — S A 75 a.s. and
AAW(S A tp)) = lim L(W(S,, A t5,,))
= lim A(W(S,)) = A(W(S)) .

Since 7, < T\, for all n, E{r; A S} < o0 50 7, AS is minimal. Also note
that 7, < T, a.s.
Now we turn to the general case. For each n, select a, < 0, b, > 0 such that
max {|a,|, b,} = n and
E{W(S,)} =0
where now
S, =inf{t> S; W,ela, b,]}.
Since P{W(S,) € [—n, n]} = 1, there is a barrier B, (which we can assume con-
tains {(¢, x); x < a, or x = b,}) such that W(z, A S,) has the same distribution
as W(S,).

We now show that if n < m then we can assume that B,, C B,. The techniques
used are due to Root.

Let &, ={Be Z;{(t,x):x<a,orx=b,}CB, L (W(tyAS,))=L(W(S,))}
We show that if n < m, B, € &, and B,, € <%, then B, U B, ¢ &,. Certainly
{(t,x);x <a,orx=b,} C B,UB,. Let 4, = {x;inf{t: (¢, x) € B,} < inf{£:(¢,x) €
B,}} and 4, = R\4, = (a,, b,)\4,. If 4 C 4, N[a,,b,] then, since 7, A S, =
75, NSy Ts,u8, NS =755, NS, and W(SAzy)ed if W(S A g u5,)€4,
(4 c 4,), we have

P{W(S,) e A} = P{W(S, At )€ A} = P{W(S A 75 ) € 4}
= P{W(S A 73 35,) € A} = P{W(S, A 75 5,) € 4} .
Likewise if A c A4,,, then
P{W(S,) e A} = P{W(S,) e A} = P{W(S, N 15 )€ A} = P(W(S A 75,) € 4}
= P{W(S A 73 u5,) € A} = P{W(S, A 75 35,) € 4} .
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Thus for every set 4 C [a,, b,],
P{W(S,) e A} = P{W(S, A TBnUBm) € A}.

But P{W(S, A 7, 5 ) €[4, b,]} = | so equality holds and B, U B, € .
Now fix a sequence B, chosen from the sets <Z,. For each nand k > nlet

B} = -, B, .

We know that B,* € B, for each k. Moreover E{t, i} < E{,, ,,} where T, , ,is
the hitting time of the set {a,, b,} so there is a subsequence B,*" and a barrier
B,’ such that B,*" converges to B,’, 7, ¥ — 750 a.s. and B,° is the closure of
N, Uz B, = U, Bi. Since 7, v — 750, B, € &,. It follows that form > n
B,’ c B,’. We will simply assume that if m > n, B, C B,.

Define B, = NB,. Then z, 17,. Also S, =S on {S, <7,}s0o7, AS, 1
5, A S. It follows that

L W(tg, A S)) = lim AW(rp, A S,)) = lim LA(W(S,)) = L(W(S)) .
We will show that the process W(t A 7, A S) is uniformly integrable and con-

clude that r, A S is minimal.
Since P{|W(t A t5 A S,)| > n} = 0, this process is uniformly integrable. Thus

E(|W(t A7y, A S} < E(|W (5, A SW)} < E[[W(S)]} < o
so P{|W(t Aty A S,)| = a} < E{|W(S)|}/a for all a. Choose ¢ and § small enough
that if P{A} < 9, A C Q, then
E{|W(S)[; 8} < e.
This implies in particular that if P{A} < 6 then
E{|W(z, NS, A)<e

because of the relationship between the A(W(r, A S,)) = <(W(S,)) and
Z(S). Choose a large enough that E{| W(S)|}/a < . Then letting A = {|W(t A
tp, N S,)| > a}, we have

B{W(t A ey, A SN A) < E[[W(s,, A S A} < ¢
Now asn— o0, t ATz NS, —>t ATy ASSsO
E(W({ASAT )i |W(EASAT,)| >a)<e

by the continuity of paths and Fatou’s lemma. Thus the process W(t A 75 A S)
is uniformly integrable so the proof of the lemma is complete.

Note that the a chosen above does not depend on S but rather on an ¢ and
A(W(S)).

Returning to the proof of Theorem 3, suppose that S is minimal. By the proof
to the lemma, there is a barrier B such that the process W(t A 7, A S) is uni-
formly integrable and < (W(z,; A S) = £7(S)). It follows that 7, A S = S so
the process W(t A S) is uniformly integrable.
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THEOREM 5. If T is minimal and E{W(T)} = 0, then E{T} = E{W(T)%.

Proor. If E{T} < oo, the result is well known. Suppose E{ W(T)*} < co. As
in Lemma 4, for each nchoose a,, b, such that max{|a,|, b,} = nand E{W(T,)} =0
where

T,=inf{t:t=>T, W,ela, b,]}.
Then E{W(T,)’} < E{W(T)’}. In Lemma 4, it was shown that a sequence of
barriers B, could be chosen such that
Tp, N To— T
and
Efzy, AT} = E{W(zp, A T,)} = E{W(T,)"} < E{W(T)?} .

It follows by Fatou’s lemma that E{T} < E{W(T)*} < <o so the proof is complete.

In the proof of the lemma, we also proved the following.

PROPOSITION 6. If S is minimal, E{W(S)} = 0 and P{W(S) € [a, b]} = 1 then
S < Tiuy s,
Indeed we showed that there was a barrier B containing {(¢, X): t = 0, x = aor
x =b}suchthat t;, A § = S.

ProrosITION 7. If T is minimal, E{W ,} = 0 and E{|W |} = M then forall 2 > 0

PT 2 2} < (M* + 1)j2t

and P{T= 2} < M1 + 27Y).

Proof. Let T, = inf{¢t: |W,| = KM}. Then as

KMP{T > Tyu} < E{|Winryyl} = E(Wil} = M

we have
P{T > Tyn} < l/K'

On the other hand E{Ty,} = K*M* so

P{Ty, > A} < K*M?/2.
Therefore

K*M?
PIT > 2} < P(T > Ty} + PTw > A < UK + =5

Letting K = 2}, we obtain the first inequality. Letting K = M~% we obtain the
second inequality.

2. In this section we prove that every right continuous martingale can be
embedded in Brownian motion with minimal stopping times. There are several
related results already known. Dubins and Schwartz [5] have shown that every
continuous martingale is a time change of Brownian motion. See also [3]. Clark
[2] has shown that every stochastic process which is a martingale with respect to
the g-field &, generated by a Brownian motion process W, s < t is a stochastic
integral of this Brownian motion. Such processes are continuous. Finally Dubins
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[4] has shown that every discrete time martingale can be embedded in Brownian
motion and the stopping times that he uses are minimal as we now show.

LeMMA 8. For every martingale M, there are minimal stopping times T, such that
W(T,) has the same finite joint distributions as M.

Proor. It is only necessary to show that the stopping times 7, are minimal.
T, is the usual Dubins stopping time which embeds M, in W, so it is minimal.
Suppose that T,_, is minimal. To see that 7, is minimal, let us examine the
manner in which T, is defined.

For simplicity, it is assumed that the martingale M, is defined on Q also. Let
&, be the o-field generated by M,, M,, ..., M,_, and Y, = M,_,. Inductively
define ] to be the o-field generated by <;_, and theset {M, > Y,_,} and define
Y; to be E{M,| =;}. Then Y, — M, almost surely. The Dubins stopping time
T, is the supremum of an increasing sequence of stopping times S; where ; is
chosen such that the process W(T,), - - -, W(T,_,), W(S;) has the same joint distri-
butions as M,, M,, ---, M,_,, Y,.

It will be shown that the stopping times S; are minimal and it will then follow
from arguments like those in Lemma 4 that T, is minimal.

The stopping times S; are defined as follows. Let Fi(w, x) be the conditional
distribution of Y; given <;_,. Then F;(w, x) is measurable in w, non-decreasing
in x and in fact has at most two points of increase as a function of x almost
surely. Since § xF,(o, dx) = Y;_,a.s., one of the points of increase is larger
than Y;_, and the other is smaller. The larger point of increase is

So;,-_l(m xFy(w, dx)
[ — F(, Y,_()

which is clearly measurable with respect to &;_,. Denote this function by f,.
Similarly define f; to be the smaller point of increase. Now by assumption, the
stopping times T, T, - -+, T,_,, S, S,, -+, S;_, are already defined so we can
assume that there is a o-field <., generated by W(T,), W(T,), - - -, W(T,),
W(S), - - -, W(S;_,) which corresponds to <_, and ', measurable functions
fi» fy/ which correspond to f; and f,. The stopping time S is
S; = inf{t > S;_,: W(t) =f, or. W(t) =f,}.

Now E{|W(S,)|} = E{|Y:|} < E{|M,|} < oo and E{W(S;)} = F{Y;} = 0. Thus it
is enough to prove the following lemma.

LEMMA 9. Suppose that S is a minimal stopping time, E{W(S)} =0 and
E{|W(S)|} < oo. Suppose moreover that there are functions g, and g, which are
measurable with respect to < such that g,(0) < W(S(v)) < gy(w). If

T=inf{t > S: Wt) =g, or W(t) = g,}
and E{W(T)} = 0, then T is minimal.

Proor. To prove the lemma, it is enough to show that the process W(t A T)
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is uniformly integrable. Since the process W(t A S) is uniformly integrable, for
any ¢ > 0 there is an a > 0 such that

E((W(t A S)|; |W(t A S)| > d} < /2.
Since
E{|W(t A T)[; |W(t A T)| > a)
= E{jW(t A S)I; [W(2 A S)| > a}
+ E{|W((tV S) AT)|; |W({(tV S)AT)| > a}
it is enough to show that for a large enough
EQW((t v S) A T); W(tV S) A T)| > a) < 2.
The argument is the usual one. We first show that for any A € &,y 7>
E{|W((tV S) A T)|: A} < E{|[W(T)|; A} .
Then if ¢ is chosen small enough that P{A} < ¢ implies that E{W(T)|; A} < ¢/2
and a is chosen such that
(E{IM(T)}a) <o (so that (E{|W((t v S) A T)l}/a) < 9)
then P{|W((t v S) A T)| > a} < 6 and
E[W((t v S) AT [W((t v S) A T)| > a} < ¢f2.

To show that
E{|W((t v S) A T)|; A} < E{|W(1)]; A}

for A e F ,ys)ar> Write Q@ = UA, where

A, ={sups [WO)| =15 |fil=n; |fil =n}.
Then A, € & 5 and W(f), t < T, is bounded on A,. But this implies that if 7, is
the indicator function of A, then the process

ILW({(tv S)AT)

is a uniformly integrable martingale. Thus

E{|W((tVv S) A T); A, NA} < E{|W(T)|: A, NA}.
It follows that

E{(|W((t v S) v T)|; A} < E{|[W(T)]; A}

so the proof is complete.
The proof given above can be modified to prove the following corollary which

will be used in Section 3.

CoroLLARY 10. Let S and T be minimal stopping times. Suppose that T(w,) =
T(w,) if W(w,, t) = W(w,, t) + a for all t and some constant a. Then the stopping
time S + T o 04 is minimal.

THEOREM 11. Let M,, s = 0 be a right continuous martingale, Then there is a
Wiener process (R, &,, W,) and a family T(s) of <, stopping times such that the
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process Y(s) = W(T(s)) has the same finite joint distributions as M(s). The family
T(s) is right continuous, increasing, and for each s, T(s) minimal. 1(s) is right con-
tinuous, increasing, and for each s, T(s) minimal. Moreover, if M(s) has stationary
independent increments, so does T(s).

The o-field & is in general larger than &, the smallest g-field making W,
s < t measurable.

Proor. Let(Q', &', &/, X,, P) bea Wiener process, and let {7,,"} be a family
of minimal &, stopping times such that the process X(7,") has the same finite
joint distributions as M, k = 1,2, ..., n.

Let C be the set of all continuous maps from [0, co) into R. The set C admits
a metric which makes Cinto a complete separable metric space. See Whitt [9].
Let T be the set of all non-decreasing, right continuous integrable functions
from [0, 1] into [0, co]. The &) metric makes T also into a complete separable
metric space. Note that any set of functions in 7" bounded by some constant
is compact.

Let Q = C x T. Then with the product topology,  is a complete separable
metric space. Define f, : Q' — Q by

fu(@) = (X(s), 1(5))
where
x(s) = X(o)
and
ts) = T, (o), where k = [ns].

The functions f, are measurable. Let y, be the measure induced on Q by the
random variable f,. It will be shown that the measures y, are tight and if y is
an accumulation point of p, then Q, W (x, t) = x(s), T,(x, ) = #(s) and p satisfy
the theorem.

To show that the g, are tight, it is enough to show that the projections onto
C and T are tight. That the projections on C are tight is obvious since all of
the measures coincide there. On the other hand 7, is minimal so

PIT,* = 4} < 2-H{E(M} + 1) .
Let 4, be the set of functions in 7 which are bounded by 2. Then if x is the
projection of C x T onto T then
(7 (4y)) = P{T," < 4 = 1 — 27H{E[|M)|] + 1}
Since 4, is compact for all 2, the projections of y, on T are tight. Thus the

sequence {/¢,} has an accumulation point # and we assume that x, converges to .
Since for any open sets U, U, C R

.u{ W(sl) eU, W(S?.) € Uz} = F‘{x(sl) el, x(sz) € Uz}
= P{X(s)) e Uy, X(s,) € Up}

it is clear that (Q, W,, ¢) is a Wiener process.
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We now show that the process W(T(s)) has the same finite joint distributions
as M,. It is enough to show that for any continuous function with compact
support f: R* > R, i=1,2, ...,k

§ S(x(8(s,))> X(#(s2))s - - - X(1(5,))) dpr = E{f(M(s,), M(sy), - - -, M(s))}
for s, < s, < -+ <5, < 1.
Define g,,: Q — R* for m™ < 1 — 5, by
In(X ) = (M P x0t(s, + 2)dz, -+, m P x 0 K(s, + z)dz) .
Then g¢,, is continuous.
Now clearly

limm_,w Sfo Om d‘u = Sf(x o t(Sl), X o t(Sz), ceey, Xo I(Sk)) dy

lim"_,w Sfo [ d[ln = Sfo On d/j .
Thus we must show that

lim,, o, im, ., § f o g, dpt,, = E{f(M(s,), M(s,), - - -, M(s,))} -

and

Now

§fo O A, = E{f(Qy, Qs -+, Q1))

where

ns,; 1 _
Q,=m {("[*L]ni" - Si) Miusam + 0 M g1 + Mignagiinm + -0

_ n(s; + m™!
+ M([n(si+m_1)]—l)/'ﬂ] + <Si + m™ — Lj;r—‘)l) M(["(si+m—1)l)/n} .

Since the paths of M are almost surely right continuous and bounded on [0, 1],
lim,_, Q; = m " M(s; + z)dz.
Of course lim,,_, m {7~ M(s; + z) dz = M(s;) so
lim,, o, lim, ., E{f(Q:, Qs + - +» Qu)} = E{f(M(s)), M(sy), - - -, M(sy))} -

We have not yet discussed o-fields. The o-field we have implicitly been using
on Q is the one of Borel sets generated by the product topology on Q. Denote
this field by 7. If 7, is the field generated by the functions W,, v < ¢, then
clearly %, C ¥ since the projections are measurable functions. Moreover
W, is Markovian with respect to .#,. But T(s) (for fixed s) is not in general a
stopping time with respect to .5 ,. Let &, be the o-field generated by .5, and
the sets of the form {T(s) < v; v < t,se R*}. We will show that W, is still
Markovian with respect to ;.

It must be shown that the g-field generated by the functions W, — W, t, >
is independent of the sets {T(s) < v}, v < £, It is enough, however, to show
that, for each fixed v, there is a sequence v; | v, such that the o-field generated
by the functions W, — W,, £, > t; > max(v;, t,) is independent of the set
{T(s) < v;}. Inturn, it isenough to show that for each fixed s, there is a sequence
s; | ssuch that the o-field generated by the function W, — W, , 1, > t, > max (V35 1)
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is independent of the set {T(s;) < v;}. The point of all this is that it is possible
to choose the s; and v; such that the set {T(s;) < v} is a continuity set of .
Indeed the boundary of the set {T(s) < v} is the set
{T(s—) < v; T(s) = v}
and since (for fixed v) these sets are all disjoint, only a countable number can
have positive measure. The assertion follows.
The proof now goes quickly. Let A be a set in the s-field generated by the
functions W, — W, , t, — t, > max(v;, t). Then p(A) = p,(A) for all n so
1{T(s;) < v A} = lim, ., 1, {T(s;) < 03 A}
= limn—wo P{Tkn < vi;fn_l(A)} k = [nsj]
= lim,_, P{T," < v;}P{f,(N)} k = [ns;]
= limn—voo /’ln{T(Sj) < vi}/’ln{A}
= p{T(s;) < vi}p{A}
since {T,* < v;}e F,, and f,7(A) is in the o-field generated by X, — X, , 1, >
t, > max(v;, t,), and the process has independent increments.
Finally, we must show that the stopping times {7(s)} are minimal. It is enough
to show that the process W(t A T(s,)), s, < 1, is uniformly integrable.
For ¢ > 0, choose 6 > 0 such that if P{A} < 6 then E{|M(1)|; A} < e. Also
let 2 = E{|M(1)|}/o. If s < 1 and h, is the function defined by
h, = || if |x] =2
=0 if |x <2,
then since 7,” is minimal
§ Ay o x(1(s) N 1) dp, = E{h; o X(T\" N 1)} k = [ns,]
= E{X(T,")]; [X(T" A )] > 4}
But E{|X(t," A 1,)|} = E{|X(T,")]} so
PUX(T, A )] > 2} < 6.
Thus § Ay o x(t(sy) A ty)dp, < e.
This bound is independent of s, and #,. Therefore if 0 < f < k; is a continuous
function, then
E{f o W(T(s)) N t,)} < lim,_, (1/a)E §§ f o W(T(s, + 2) A t,) dz
< lim,_, (1/a) §§&f o x(t(s, + 2) A t,) dzdp
< 1im,_q (1) {lim, ., §§5 f o %(t(s, + 2) A ) dzdpr}
< lim, o (1/a){lim,_,, (Fedz} = ¢.
This clearly implies that
E{|W(T(s)) A )5 |[W(T(s0) A 1 > 2} < e

for all ¢, so the proof is completed.



1304 ITREL MONROE

3. The theorem of the preceding section shows that any process with inde-
pendent identically distributed increments with mean zero can be embedded in
Brownian motion with minimal stopping times. The stopping times used to
embed the discrete time process need not be the ones defined by Dubins. In
fact any method for defining minimal stopping times will serve. (See Corollary
10.) This brings up the following question. What is the relation between the
stopping times {7,} and the process X, being embedded? This question will not
be answered here but we will show that if the Skorokhod stopping times are
used to embed a stable process of index a < 2 in Brownian motion, then the
stopping times {7} form a stable process of index a/2. This is very reminiscent
of subordination but note that {T}} is, at least in most cases, not independent of
W,. The theorem we prove is somewhat more general than suggested above.
It shows in particular that the invariance principle can be proved using an
embedding approach even when the random variables are only assumed to be
in the domain of attraction of a normal distribution and might not have finite
variances.

The definition of Skorokhod’s stopping times can be found in [8].

THEOREM 12. Let W(t) be the Wiener process, let X be a random variable with
mean zero in the domain of attraction of a stable distribution of index a > 1, and let
T be a stopping time defined in the manner proposed by Skorokhod such that W(T)
has the same distribution as X. Then if 1 < a < 2, T is in the domain of attraction
of the one-sided stable distribution of index a/2. If a = 2, then there is a sequence
{a,} such that a,~* 7., T; converges to 1 in probability. Here the T, are independ-
ent copies of T.

Proor. For simplicity, it will be assumed that the distribution function F
of X is continuous and strictly increasing but this is not necessary. Skorokhod
defines the function G(x) by

§é@ tF(dt) = 0 x<0

2. tFdt) =0 x>0.
Under the above assumptions, G(G(x)) = x. Also xF(dx) = G(x)F(dG(x)). An
examination of the manner in which Skorokhod defines T'shows that the Laplace
transform of T is
o(2) = §=.. sinh x(22)! — sinh G(x)(24)}

sinb (x — GE)RY) L

We first consider the case 1 < a < 2. For such a, there is a sequence a, such

that a,/a,,, — 1,
nx*F,(dx) — M(dx)

where F, is the distribution function of X/a, and
M{[0, x]} = Cpx*= x>0, p=0
M{[x, 0]} = Cgx*~= x<0, ¢g=0
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and p + g = 1. (See for instance [6] page 303.) Moreover

1 — F(x) F(—x) -
1 — F(x) + F(—x) 1 — F(x) + F(—x)

_)p’ q,

and

| — F(x) + F—x) ~ 27 % x-aL(x) X — oo
a
where L(x) is a slowly varying function.
Lemva. lim, . [G(x)/x| = (p/g)'*= and  lim,._, |G(x)/x| = (g/p)"*= .
Proor oF LEMma. For x > 0,
(o tF(dt) = x[1 — F(x)] + {71 — F(¢) dt

2 — @ eap sy dr

~p 2?% XeL(x) + §2p

~p 2Tl 4 p 22 L ey
o a | Q—t

by 9.6 of Chapter VIII of [6]. Thus
V= tF(dt) ~ p 2= s-ap(x)
a(l — a)
Likewise

§02 F(dty ~ g 2= (1G(0)|y-=L(G()) -
a(l — a)

As >, tF(dt) = 0 we must have for x > 0
(o tF(dt) = — \¢ tF(dt) .

pxeL(x) ~ q(|G)])'~"L(|G(x)])

Lx)/L(IG)]) - (|G~ ~ q]p -
Now L(x) = a(x) exp §¢ (¢(y)/y) dy where a(x) — ¢ < 0 and ¢(x) — 0 as x — oo
(see 9.9 Chapter VIII of [6]). This shows that
Q(x)(X/|G)) = ~ qlp

(*/|G(x))77® < O(x) < (x/|G(x)])**
and d(x) — 0 as x — oo. We then obtain
x/|Gx)| ~ (g/p)*~ -
(The case p = 0 or ¢ = 0 requires special attention but it is straightforward.)
To show that T is in the domain of attraction of the one-sided stable distri-

bution of index a/2, it will be shown that lim, _,, ¢(2/a,?)" = exp[—K2*’]. As
usual, this is equivalent to

Thus

or

where

lim, . nln p(3/a,?) = — Ko

n—+00
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or
lim,__ [l — o(2/a,?)] = Ki='*.

Now
sinh XA _ §inp EXQH!
n[l — ¢(/a,’)] = n {*, — a, a,
sinh (x — G(x)) - @
a

n

Consider the case pg = 0. We show first that the integral over the set {|x| < a,¢}
can be made arbitrarily small by making ¢ small.

Since G is a monotone function and G(x)/x has a finite limit as x — oo or
—Xx — oo, we can conclude that if n is large enough and |x| < a,¢ then |G(x)| <
ka, e where k is some constant. One can show that

p _siohx4sinhy xp o, L0, x>0, y>o0.

sinh x + y 2
Thus we have
sinh M — sinh w
a a
n s|z|<ean 1 — Z 37 : dF
sinh (x — G(x)) 2
a’n
3 3
<2 {—% §is1<ea, M2 G2 dF}
a"b a’lb

if ¢ is small enough and n is large enough. But

. .
1 ey O AF(R) = (—=18,) Syt G() - G(x) FG()
é (n/a'nz) Sly|<ekany2dF(y)
= 1§ 1<a YV AF,(y) — c(ek)*™
which can be made small by making ¢ small.

The integral over the set {|x| > Ma,}, M large, can be dealt with even more
easily. One verifies that

__sinh x 4 sinh y <1

0, 0
sichx + y - x> v >

and obtains

XD o G2
a a

n n

sinh (x — G(x)) (2%)*

n

sinh

n SIxI)Ma,,L 1 —

< 1§ 1a5e, AF = 1§y, dF, — KM-L(M)

which also can be made small. Thus we need only consider ¢a, < |x| < Ma,.
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Since |G(a,x)/a,x| — (p/q)"*~* uniformly on ¢ < x < M and |G(a,x)/a,x| —
(¢/p)"*=* uniformly on —M < x < —e we have

XN G2
a a,

n

sinh (x — G(x)) 22
a

n

sinh

n Sean<|xl<Ma,n 1 -

sinh x(22) — sinh G(a, x). 2}

% dF,
sinh (x _ ﬂ&)) (22}
a

=n §s<IxI<M 1 —

which converges to

sinh x(24)} + sinh(q/p)"*~*x(22)}
sinh(x + (q/p)"'"~“x)(22)}

sinh ?c(22)5 + sinh (p/q)"1~*x(22)* -1-a g
sinh (x + (p/q)"~*x)(24)}

= k() I 1 — sir%h z + sinh 71z S1-a gy

sinh z(1 + 7%

+ pk(22)** §I 1 —

= Kjal?

gk §¥1 — - x~mdx

+ pk {1 —

sinh z + sinh yz
sinh z(1 4 7)

z7lmedz

where k and K are unspecified constants.
Now consider the case pg = 0 and assume that p = 0. Then we have for any
e>0
sinh ﬁ(y)_% — sinh _GM
nis 1 — % & dF < n{=dF, >0.
g op (O — G))(2A)!
a

n

We now use the fact that for x, y > 0

1_sinhx+sinhy~x<coshy—1> x50
sinhx + y sinh y

and the convergence is independent of y, y > 0. Thus we can write

sinh *G4* _ gipp G
n gl — a, a,
sinh & — G()(22)*
an
[ cosh Gx)(2a)* 1
~ —n {5 x(jZ)i G‘(Z:C)(zz 5 F(x)
" sinh G(x)(24)*

a

n
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which is (since x dF(x) = G(x) dF(G(x)))

cosh M — 1
— GO e () o dF(G(x))
a, ' <inp O
cosh M —1

22)%

= ( a) " Sogamgean}’ anzz T dE(y)
n sinh }L)_
an

_ s cosh y(22)t — 1
- (2'2) n SogG(any)Ssany sinh y(22)§ an()’) *

Since the sets {0 < G(a, y) < ea,} 1 [— oo, 0], this converges to

cosh y(22)t — 1

KEDIST Y =Gah

T « (cosh z) — —“d> 22)%2
J 4 ( )7 sinh z $endz) (24

= Kaoh

where, again, k is some constant. Above we used the fact that for y<o0

limn_,oo M =0 or ]imn—-oo G(an}’) =0
a, any
which follows from the fact that p = 0.

We use this again along with the fact that for y small, xy > 0

{ _ sinhx +sinhy (coshx— 1)
sinh x + y sinh x
to write, for instance
X2 Gop )24

sinh
_ a a
n S—;‘;&L 1 _ n n
" sinh (¥ — G(x)(22)t
an
cosh x(22)} — 1
~ —n §ogy SO A
G sinh ﬂ
< g, SO g
—ni G(’“’n)(zz)é dF, 0.
Also
sinh M — sinh _G_(M
n§en ] — n Sy dF < n\z"dF,

o O+ GO
a,

n
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which can be made small by making M large. Finally
x(24)F sinh G(x)(24)}

sinh
a, a.
"8 = =GN
sinh = AT/
a'ﬂ
~—ni, X ap

2a,?
~ —an i, (G(x))/a,’ dF(G(x))
= 2n\{y*dF, — lce**

which can be made small by making ¢ small. This concludes the proof of the
theorem when 1 < a < 2.
Now suppose that « = 2. In this case

nx*F,(dx) — ke,
where ¢, is unit mass at the origin. Since
3 3
sinh @_ + sinh M
1 — & S <1
sinh (¥ + G(x)(22)*
an
we have
sinh M — sinh G(x)(22)*
lim, . #[1 — ¢(4/a,?)] = lim,_ 7§22 1— a, a, F(dx)
sinh & — G(x)(22)}

a

for all ¢ > 0.
We will again use the fact that

j_simhx+4sinhy xy oy 50, x>0, y>0

sinh x + y 2
and ' ‘
1__51nhx—|—51nhy 2 , 0.
sinh x + y < %y >
Let 4, = [—a,¢, a,¢] and B, = {x: G(x) € 4,}. Then
sinh M — sinh M
lim, . 7§ 1 — i 9n ___ F(dx)
A <inh F — GO
a

< lim, .., (2n(22)}/a,) § 4\, |X|F(dX)

= lim, .. 2n(22)}/a,) § .5, |G(x)| dF(G(x))

< lim, ., 2(22)4(n/a,) §y5e, |VIF(dy) =0
as will be verified later.
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Also we have
sinh M -+ sinh _(_;M_

I & Fdx)
o O+ G2
a,

n

lim, ., »n Sunz, 1 —

22

~lim, ., n§, o5, 3

o xG(x)F(dx)

n

~ 2lim,_,, -
an

§ 4,08, G(x)* dF(G(x))

n
a,’

~ Alim,_,,

SA,,an Y'F(dy)
since G(G(x)) = x. Now

lim, .., a {4, y*F(dy) = lim, .. szeyzF;(dy) =k.
Also  lim, . a’; V40, V' F(dy) = lim, ., a’; § 4,08, YG(¥) dF(G())
< lim, ., i §ama, |G| dF(Gy))
< limn_m? §.40l2l F(dz) = 0.
Thus lim, ., a”2 §4. 05, YF(dy) = k2

and concludes the proof except for the assertion that

lim, .. 25 §,.15ea |X[F(dx) = 0.
a n

n

We know that -;—2 §ea, <121 520, X F(dX) — 0 for any e < 2

n

so we take ¢ = 2. We write

n n (=]
PR § 12152, [¥[F(dX) = s 22521 $sia, <izls0it1a, | x| F(dx)

n n
n
a

IA

?=1 sam(i,n)§|f€|§3“m(i,n) leF(dx)

n

where m(i, n) has been selected so that a,, < 2%a, < 8,400 SinCE a, — oo,

(t,m) =

and a,/a,,, — 1, 3a,,;.,, > 2'*a, if n is large enough. Thus

n n oo
_— Slx|>2an lxlF(dx) = — Zi=1 sam(i,n)<lxl§3am(i,n) |x[F(dx)
a a,

n

n iy ML, 1)
< o mtim T T . .| x| F(dx
= a, i=1 (l, n) Qi sam(z,n)élxls‘!am(@,n)l I ( )
< " vy Omim

a, =" m(i, n)
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if n is large since (k/a,) (a4, <|s1<s0, |¥|F(dX) — 0. Now a,,/a, — 3% < 250 wecan
assume a,,/a, < 2 for all k > n. It follows that

aain é zian
so that m(i, n) = 3'n. Alsoa,,; ,,/a, — 2*sowecanassumethata,; . /a, < (2.5)".

Then we have
a

m(i,n)

B aisaa, M FxX) < e Ty — "
a m(i, n) a,

< e X2, 3725y
< ke

n

for some k. As ¢ was arbitrary we have

lim, . ™, 550 [X|F(dx) = 0.
a n

n
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