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LIMIT THEOREMS FOR SUMS OF RANDOM VARIABLES DEFINED
ON FINITE INHOMOGENEOUS MARKOYV CHAINS

By HArRrY CoHN

Technion, Israel Institute of Technology

Let (Q, &, P) be a probability space, {X,:n = 1} an inhomogeneous
Markov chain assuming a finite number of states defined on this space,
E = {a, -+, a,} the set of its states, p;® = P{X, = aj}, p{™ = P{X, =
aj| Xy = ai} for n=2,3,---,n >k, ai,a;€E, {fo:n =1} a sequence of
real valued functions defined on E and S» = fi(X1) + -+ + fu(Xn).

To study the Markov chains which are not subjected to ‘‘asymptotic
independent’’ restrictions, the author proposes the coefficients

Ak,n = max£e¢1,...,,; Z;’:l (pit™ — pz({;'m))+ ‘(Il =2,3,---,n>k)

where the dash indicates that the max is taken over those i such that
Pi(k’ > 0.

Some limit properties of the sums {S, : n = 1} suitably normed, as the
behavior of the series of random variables and the strong law of large num-
bers are investigated. In the end some examples are given and it is proved
that the arbitrary homogeneous Markov chains satisfy most of the condi-
tions imposed in the paper.

0. Introduction and summary. Let (Q, 5, P) be a probability space, {X,:
n = 1} an inhomogeneous Markov chain assuming a finite number of states
defined on this space, E = {a,, -- -, a,} the set of states, & ," the s-algebra
generated by the random variables X,,, X,,,, ---, X, (m,n=1,2, ...). Note
p;™ = P{X, = a;} and pt» = P(X, = a;|X, =a} for n=2,3,...,n>k
and a;, a; € E. Let further {f,: n > 1} be a sequence of real valued functions
defined on E, &, = f,(X,), m, = E(§,)and S, = 37, & (n=1,2,...). By
I =Nz, F .~ we shall denote the tail g-alebra of the considered Markov
chain.

The behavior of the sums {S, : » = 1} suitably normed has been investigated
by many authors in the case of an ergodic or weakly dependent Markov chain.
It has been shown that results similar to those existing for independent random
variables remain true for such sequences. The methods employed in the proofs
appeal chiefly to the “asymptotic independence” properties of the chains. One
of the most important procedures used when studying such properties is based
upon the so called “ergodic coefficients,” defined as follows:

(1) apa=1—maxg ;e . Dia(pl” —pii)t (=2,3,.--,n>k)

where x* stands for max (x, 0).
These coefficients are characteristic for “asymptotic independent chains,” the
condition imposed on them being usually formulated by requirements that {«, ,}
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to be larger than 0 according to a certain rule (see [3], [4] and [6]).
In many cases (when .7 is not trivial) all these coefficients are null for » and
k sufficiently large and the analogy with “independent sequences’’ ceases in many
respects. A series of basic properties as 0-1 law, the Borel-Cantelli lemma, the
central limit theorem, etc. fail to take place. ‘
The aim of this paper is to provide a method of handling such cases. For
this purpose, we introduce the following coefficients:

(2) @ =maxi., .o 25 (P —pE™) (n=2,3,.--,n>k)
where the dash indicates that the maximum is taken over those values i such
that p;,® > 0.

These coefficients will prove useful especially when the chain is “dependent,”
but as we shall see in the sequel they may also be employed coupled with the
ergodic coefficients when .7 is trivial.

In the first section some properties of the above given coefficients which are
to be used in the sequel are given. The second section deals with some analogies
of classical results valid for independent random variables. One gives a Borel-
Cantelli type theorem as well as a result concerning the behavior of the series
of random variables. The third section is devoted to the strong law of large
numbers (both in general and when .7 is trivial). In the fourth section some
examples of chains satisfying the restrictions imposed in the paper are given.

1. The coefficients {a, ,}.

Lemma 1. If {X,: n = 1} is a finite inhomogeneous Markov chain and {a, ,} a
sequence of numbers defined by (2), then

3) 0=a,,<1—minp"*.

The proof is straightforward and will be omitted. This lemma assures us that
{a, .} are always smaller than 1, whatever may be the corresponding ergodic
coefficients. Such a property makes these coefficients useful, although some
complicated situations might occur if they are approaching 1.

LemMMA 2. If {X,: n = 1} is a finite inhomogeneous Markov chain and {a, ,} a
sequence of numbers defined by (2), then

(4) maxjc ..., Max,. .

Ziea (P — P = i
P being the family of all the subsets of E.

Proor. We have
maerg IZjeA (Pj(n) - Pi’;'m)l
= max (X5 (p," — pi™)" Zia (P ™ — ™)) -

Now, if we notice that

252 (p™ — i)t = D (™ — pism)”
we complete the proof.
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LemMA 3. Let {X,: n = 1} be a finite inhomogeneous Markov chain and {a, ,} a
sequence of numbers defined by (2). Then

%) SUp,. .- = €8S, sup |[P{4} — P{A|.7*}| = a,, .
Proor. Firstly, let us notice that by (4)
(6) SUp,. - = €ss, sup |P{4} — P{4| F )| = a,,, -

Consider now an arbitrary N-dimensional Borelian set B and write 4 =
{o: (X (@), -+, X, y1(0)) € B}.

We shall prove that for any a; € E, we have
%) P{4) — P(AX, = a} < ay,

Indeed, using the time reversibility property of the Markov chain, we get
)] P{A|X, = a;} ‘
P{Xn =b,---, Xn+N—iDi)bN}P{Xk = aian = bl} .

= Z(bl,mbN)eB

By (8) we obtain easily:
P{AX, = a;}
= Dopspen PXun = by -+, Xy = by|X, = b}P{X, = b|X, = a}.
Therefore
PlA} — PlAIX, = a} = Flopppen P{Xuw = by o5 Xoiyoy = byl X, = by}
X (PIX, = by} — (P{X, = b|X, = a}})

wherefrom we get (7).
Now, taking into account the Markov property and employing a standard
approximation reasoning, we obtain

SUP ¢ o €SS, SUp (P{4} — P{A|l# ') £ a,, -
Observing now that
SUp ¢ - €SS, SUp (P{4} — P{A|.F*})
= sup,.. - ess, sup (P{A.77%} — P{4})
and taking into account (6), we complete the proof.

LemMA 4. If {X,: n = 1} is a finite inhomogeneous Markov chain and {a, ,} a
sequence of numbers defined by (2), then

® Ao = Apr
forany k < k' andn=n'.

The proof follows directly from Lemma 3.
We give now a property which expresses the connection between the ergodic
coefficients (1) and the above defined coefficients (2).
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LemMA 5. If {X,: n = 1} is a finite inhomogeneous Markov chain, {«, )} and
{a,..} two sequences of numbers defined by (1) and (2) respectively, then
(10) l —a,, < 2a,,
(11) Gl —a,

Proor. (10) follows from

I —a,, < maxig, 215, (p;"™ — pis™)*
+ maxigg, X5 (P — piM) = 24,

To prove (11) we consider the inequality
(12) Lia (™ —pi) =1 —ay,
where i, j = 1, - .-, s. Multiplying the both sides of (12) by p;*’ and summing
over i we get (11).

2. Some limit properties. Consider now the expression
(13) a* = 1 — min (y, inf A)

with y = lim inf* g, ,, where the star indicates that lim inf is taken over all
subsequences {a, ,} such that

. . k
inf,_;,.. minjg; ., p;* >0

if such subsequences exist. When such a case does not occur we take y = 1.
To define A, we consider a sequence of positive integers {k,} such that

. . in’ ky —
lim inf, ., minj_;_ p;* = 0.

Successively eliminating from the expression of {a, ,}, with n, arbitrary
chosen, the indexes corresponding to the events where the above minimum is
achieved, until this limit becomes positive and denoting the new expressions by
{a},.n,}» we get in the long run

lim infa, ,, =1.

U, t—ro0

Denote by A the set of all the above constructed limits. Because 0 < 2 < 1
as could be easily seen a* > 0. A scrutiny of the proof given in [2] reveals to
us that for any Te .7 we have

(14) P(T) = a*.
It is not difficult to notice that .7 is trivial if and only if a* = 1.

Now, we give a property corresponding to the Borel-Cantelli lemma (to that
part of the lemma which supposes the independence of the random variables).

THEOREM 1. Let {X,: n = 1} be a finite inhomogeneous Markov chain with the
property that there exists a positive interger r such that lim,_ sup a, .., < 1, and
{A,: n = 1} a sequence of events with A, ¢ ", n=1,2, .. ..

If 317, P{A4,} = co then P{limsup A4,} = a* with a* defined by (13).
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The proof is based on the Lemma 3, on the evaluation given in (14) and may
be carried out as in [1] (Lemma 1.1).

THEOREM 2. Let {X,: n = 1} be a finite inhomogeneous Markov chain and {k;}
a sequence of increasing positive integers such that lim,_, supa,_ , < 1. If {n;}
is a sequence of increasing positive intergers such that for any i (i=1, 2, - . .) there
exists a number j such that n; < k; and n;,, = k;.,, then the series 3};_, (§,, — m,,
converges almost surely if and only if it converges in probability.

The proof may be carried out taking into consideration Lemmas 3 and 4 the
Theorem 1.1.12 of [6].

As a particular case of this theorem we give now a result analogous to a
well-known property of independent random variables.

THEOREM 2. Let {X,: n = 1} be a finite inhomogeneous Markov chain with the
property that lim,__ supa, ,,, < 1. Then the series } 7 _,(§, — m,) converges
almost surely if and only if it converges in probability.

3. The strong law of large numbers. We shall give now an inequality of the
Hajek-Rényi [7] type for finite Markov chains without assuming any restriction
on the chain’s structure. This inequality will be used in the sequel in proving
some laws of large numbers.

THEOREM 3. Let {X,: n > 1} be a finite inhomogeneous Markov chain, {n;} a
sequence of increasing positive integers, m and n two positive numbers. If we denote
&' =&, =m,,S*=3_,¢E —m/)forl<is<nandm<j<n,v,,=
1 — maX, ;< 19,n,,,» then for any sequence of positive and nonincreasing numbers
{Cus Cms1> * + +» C,} and for any ¢ > 0, we have

16
?Dz(cmsm* + Z?=m+1 cigi’)

(15) P{max,, .., c; |S;*| > ¢} =
vm,'n - ?maxm+l§j_s.n D2(Z?=j c'ig'i,)

provided that the above denominator of the right hand side is positive.
Proor. Consider the following random variables
S, = ¢, Sn*
S = cpSp* + Dlcmn e/ —m’)  (j=m+1,---,n).
Let further
4 = {o: max, <, S| > ¢
A, ={w:]|S,] > ¢}
A; ={o: |8/ S & [Shul S & -, |Sil S 6 |8/ > ¢}
G=m+1,m)
B, ={w:|S, —8/| <}¢}- G=m, ---,n—1).

7
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Then, obviously
2rnA;=A4 and A, nA, =g if j+k.
On the other hand, if we consider the set
C=f{o:18/]2 1
we have
(16) . A4;B;, C C.
Taking into account Lemma 3, we get
a7y P(Zi-n 4;B;)
= Diem P(4;B;) = 25 [P(4)P(By) — (1 — 00 ) P(4))] -
Using now the Chebyshev inequality, we obtain
4D (2t €:€)

82

P(B) = P(|Tisnclsl —m) S 5) 2 1 =
(j=m,---,n—1).
Therefore
(18) min,, ., P{B;} = 1 — 3—2 Max,, ;<0 DA 2; €:€7) -
(17) and (18) together imply
P(Xin 4:B) = |:/vm,n - % max,, . c;<n D5 Ci{:i/)] P(4) .
Making use of (16) and employing the Chebyshev inequality again, we get

4
?D2(cmsm* + Z?=m+1 cisi,)

(19) P(4) <
vm'n - ? maxm+1§j§n D2(Z{=m+l ciEi/)

Consider now the inequality
max, ., (b; i a) < 2max, ., (Do biay),

true for any sequence of numbers {a;} and for any positive and non-increasing
sequence {b,}. (This inequality is to be found in [8]).

Putting in the right hand side of (19) @; =¢/ — 7/ and b;=¢; (i=m, -- -, 1)
and using the above inequality, we conclude the proof of the theorem.

We derive initially a straightforward consequence of Theorem 3.

THEOREM 4. Let {X,: n > 1} be a finite inhomogeneous Markov chain and {n;} a
sequence of increasing positive integers. If we denote £/ = ¢&,., m =m,, S;* =
i —m)) for l<i<nand mZj<n, v,,=1—MaX g 18,0,
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m,n=1,2, ... and if {c;} is a sequence of non-increasing positive numbers such that
lim, , . M —0

m,n

then c,S,* converges almost surely to 0.

In particular when the sequence {n;} from the above theorem is the sequence
of all natural numbers, we get that

lim,, , ... DYt ci€s) -0
vm,n

implies lim, ., ¢, 217, (§; — m;) = 0 almost surely.

If besides this assumption, we suppose that lim sup,, .., @,, ..., < 0 with ¢ < 1
and if in addition

DDt cil§s — m)) < C T, D(cids)

C being a positive constant m, n = 1,2, - - -, conditions satisfied among others
by the ergodic chains (Section 1.2 of [6]), then 37, ¢,’D*§;) < oo implies
lim,_. ¢, 2%, (§; — m;) = 0 almost surely. This condition is the same as that
of Kolmogorov for the strong law of large numbers in the case of independent
random variables.

Let us pass now to the case when .7 is trivial.

In the following we shall use

LeMMA 6. Let {X,: = 1} be a finite inhomogeneous Markov chain having a
trivial tail g-algebra 7. Then for any é with 0 < 6 < 1 and any positive integer k
there exists a positive integer g(k) such that a, ., > 0.

ProoF. According to Theorem 17.1.1 of [5] a necessary and sufficient
condition that .7 to be trivial is

lim supg. o .y [P(AB) — P(A)P(B)| = 0
for any 4e . Putting Ae & ," and Be #,* and taking into account that
the chain is finite, we get
lim,_,, max; .., max,.,, [ 2ien (PIF™ — pj(”))l =0.
Using Lemma 2, we obtain
1imm,”_,°° ayon = 0.

Considering now Lemma 5, we conclude the proof.

Let us define the expression
(20) a, = MaX, yer, (g™ (k) — g™V (k))
where T, = {(m, k)| g™V(k) < n} and by g we have denoted the mth iterate
of the function g defined in the above Lemma and ¢g”(k) = k.

THEOREM 5. Let {X,: n = 1} be a finite inhomogeneous Markov chain having a
trivial tail o-algebra 7 and E(¢,) = 0 forn = 1,2, -... If g is a real function
defined so that a,, ., > 6 with 3 > 0, for all k; a > % and {a,} defined by (20) then
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D 1 (@273 7Y) < oo implies that S, [n* converges almost surely to 0.

Proor. We shall split the initial sequence &, &,, -- -, §, into the following
subsequences

El, €1+"n’ A

52, Ez+an, et

€ oy oo
We set

SZ'j:Zg=1€k+ian k:l,z,...,an,jzl,...,n

r being the last integer with k + ra, < n.
According to Theorem 3, we have

1
% pinesy,)
¢
P{maxls'm§n n—a lSm*l > 6} é Zzil 16
Vmyn — oy max,g;,_, D[n~*(S%,, — S¢,;)]

From Lemma 1 we deduce v,, , = 1 — 6. Taking into account the Dobrushin

m,n —

inequality concerning the dispersion of sums ([6], Theorem 1.2.14) and putting
n=2,v=1,2, ... we get that under the above hypotheses

oy Plmax,;,.(2Y) 7% |S;] > e} < 0.

According to the Borel-Cantelli lemma max,;,.(2*)"*S; converges almost
surely to 0, wherefrom we deduce the convergence to 0 of the initial sequence
{n==|S,|: = 1}. Indeed, if we take an arbitrary » then there exists an integer
v such that 2*~* < n < 2* and ($)n==|S,| < (2*)7*|S,| £ max,,;,.(2*)7%S;| and
the proof is completed.

4. Examples. First we shall show that the finite homogeneous Markov chains
satisfy most of the conditions considered in this paper. More precisely we have

THEOREM 6. Let {X,: n = 1} be a finite homogeneous Markov chain and {a, ,} a
sequence of numbers defined by (2). Then there exists a positive integer r such that

lim,_ . supa, .. <1.

Proor. Let us first suppose that the Markov chain considered is irreducible
and aperiodic. In this case it is easy to see that

lim, ., inf min; ., ..., p;™ > 0.
Therefore, from Lemma 1
lim,_supa, .., <1.

Let us now consider the geneneral case.
We shall split the set of states into the classes 4,, - -, 4, where 4, (for
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=1, ...,]) comprises the states forming an ergodic class as well as the
transient states conducting to them. If the chain is such that there exist states
conducting to several ergodic classes, we shall count such states in a class 4,
only. '

Let 4,=B,UC,(p=1,---,1), where B, is an ergodic class and C, com-
prises some transient states conducting to B,. Then

Bp = U;inp=l Bpm

where d, is the period of the class B, and B, is defined so that for any a, ¢ B,",
pi? =0 for j¢g B". We can easily see that P{X, € B,"} = d,™ or 0 according
as n is equal or different from pd, + ¢, t being the first integer such that
P{X,e B,"} > 0, and 6," some positive constants.

On the other hand, for n sufficiently large we have p{7%» > 0 for any i, je B,".
Therefore we can find a number v such that

maxésB maxAsg" Z:ieA (Pj(n) - pi;')) < 1
where B = |J!_, B, and.Z”’ denotes the family of all subsets of B.
As to the states belonging to C, (p = 1,2, ---, ), we notice that for any
a; € C, we can find an integer u such that p{* > 0 for je B,.
Now, we are in a position to deduce that we can find a suitable r satisfying
the conclusion of the theorem.

REMARK. In particular, when {X, : n > 1} is a stationary finite Markov chain
the constant r from above theorem is 1. Indeed we have

. . L
limsup, . @, ,,, <1 —min, ;.. ,p" <1.

The following property will show that the Markov chains assuming only two
states satisfy the condition lim,_ a, ., < 1 if the tail s-algebra .7 is not
trivial.

THEOREM 7. Let {X,: n > 1} be a finite inhomogeneous Markov chain assuming
a set of states consisting of two elements {a,, a,}. If

lim, , ..supa,, =1
then {X, : n = 1} has a trivial tail o-algebra 7.

Proor. To prove this theorem we consider the remark given in [2] page 2176,
wherefrom we deduce that if liminf, ,, min, ,, p; = 0 then .7 is trivial.
Taking into account Lemma 1 we conclude the proof.

We notice easily that the converse part of this theorem does not hold true.
Indeed, if the chain considered is ergodic, limsupa,, = 0 whereas the tail
o-algebra .7 is trivial.

REMARKS.
A. In the particular case when {X,: n > 1} is a sequence of independent
random variables, Theorems 1 and 2 give well-known properties, whereas
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Theorem 3 gives a worse bound than the Hajek-Rényi [7] theorem. Neverthe-
less, the asymptotical consequences to the law of large numbers are the same.

B. In the particular case when {X,:r = 1} is a stationary ergodic and
homogeneous Markov chain, ¢, = 1/n, and m, = E{X,},n=1, 2, . . ., Theorem
3 may provide a rate of convergence for Birkhoff ergodic theorem.

C. It would be interesting to know whether some limit properties which
assume restrictions on the ergodic coefficients [6] hold true on less restrictive
conditions expressed by coefficients {a, ,}, eventually coupled with conditions
imposed on the dispersions of sums of random variables.
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