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EXISTENCE OF LIMITS IN REGENERATIVE PROCESSES'

By DouGrLas R. MILLER
University of Missouri

Feller (1966) claims that a regenerative stochastic process with a non-
lattice interarrival-time distribution has a limiting distribution. This is true
if (i) the class of interarrival-time distributions is restricted, or (ii) regularity
conditions are imposed on the sample paths of the process.

0. Introduction. Feller ((1966) page 365) defines a regenerative process { V(¢),
t = 0} as a stochastic process such that “with probability one there exists an
epoch 8, such that the continuation of the process beyond S, is a probabilistic
replica of the whole process commencing at epoch 0,” independent of {V(?),
0 <t < S} If S is a non-lattice random variable with finite¢ mean and if V(¢)
has a countable state space, Feller asserts that V(f) - V,ast— 0. V, is a
proper random variable and — _ denotes convergence in distribution. In his
proof Feller assumes that a measurable function which is bounded by an in-
tegrable monotone function is directly Riemann integrable. In general this is
not true and additional assumptions must be made for the theorem to hold.
Witness the counterexample:

S, = 1/n, with probability 2= for n=1,2,
Vi(t) = 1(2), where @ is the set of rationals.

There are two forms which the forementioned additional assumptions may take:
first, restrictions on the distribution of S;; second, restrictions on the sample
paths of V(7).

Let .&” be the family of distributions F such that for some n > 1, F** has a
component which is absolutely continuous with respect to Lebesgue measure.
This class was introduced by W. L. Smith (1958), and it follows from a theorem
of Smith (1958), page 259, that if V, is regenerative with interarrival distribution
F e & then V() necessarily converges in distribution as ¢t — co. Thus Feller’s
conclusion holds for F e .~”but not necessarily for F non-lattice. .5 turns out
to be the largest class for which Feller’s conclusion holds in the sense that given
F non-lattice, F ¢ .%, one can construct a regenerative process ¥, with interar-
rival distribution F such that V(z) does not converge in distribution as ¢ — co.
Thus in the absence of any condition on sample path regularity one cannot
conclude convergence in distribution of V(¢) for Fg .&.

Let &2 be the set of real-valued functions on [0, co) which are right continuous
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and for which left-hand limits exist. We demonstrate that if {V(f), t = 0} is a
regenerative process having a measurable modification with sample paths in .7,
and if F is non-lattice, then V(¢) converges in distribution as ¢t — co. Thus
Feller’s conclusion holds under this restriction on sample path behavior.
Actually the finite-dimensional joint distributions of V(¢) converge to those
of a stationary regenerative process {V,(f), —co < t < oo} when either of the
above restrictions is imposed. Restriction to a countable state space is not
necessary. Analogous results hold when S, is a lattice random variable.

1. Definitions and basic results. W. L. Smith introduced regenerative processes
(1955). We use the concept of a “tour” introduced by him (1958) to define a
real-valued regenerative process.

A random tour is a pair (x(+, ®), X(w)) defined on some probability space
(Q, &+, Py). X is a nonnegative random variable and for each w € Q, x(., w) is
a real-valued function defined on [0, X(w)). We shall require that for 0 < ¢, <
t, < -+ <t,and a,, ---, a, e R the set

{weQ: x(t;, w) < a;, i=1,---,n; X(w) > t,}

be measurable and shall assume these sets generate . We shall assume that
x(t, ») is jointly Borel measurable relative to B[0, co) ® o+ (restricted, of course,
to the subset of [0, co) X Q on which x(¢, w) is defined).

Now to define the regenerative process V(#), we shall take an infinite sequence
of independent, identically distributed tours:

(%(+)s Xo)s (4(+)s X1)s (%), Xo)y -+ -
Define: :
Sn =0, n=20
= 2NiL X, nx=1
Ny(t)y =max (n: S, < 1)
Zt) =1t — SNO(t)
Vy(t) = xNom(Zo(t)) .
Let (Q, G, P) = ([[; 2, ®¢ 4 [15 Po) be the probability space on which the
infinite sequence is defined. §,, Ny(f), and Z(¢) are all measurable processes and,
because we required the tours to be jointly measurable, V(¢) is a measurable
process. The points S, are called “regeneration points” and {S,, n = 0} is the
embedded renewal process.

Now we define a stationary regenerative process, {V,(f), —oo < t < oo}. It
will be related to {Vy(¢), ¢t = 0} by virtue of arising from the same random tour
(x(+), X). Let Fy(x) = Py[X < x]and # = EX. Throughout this paper we shall
assume g < oco. Define the random variables Z,(0) and X|:

P(Z,(0) < a) = L {3 (1 — Fy(s)) ds
7
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P[X, = x|Z,(0)=a] =1 x<a
:L._i)((ﬁ xX=a.
1 — Fy(a) B

Note that the above definition implies P[X, > Z,(0)] = 1. This jointdistribution
can be extended to ((x,(+), X,), Z,(0)). If 4 is any set of the form {(x(-), X):
x(t)<a, X >t)where0 <, <t,<--- <t,and a,a, ---, a,arereal then

P[(x,(+)s Xo) € 4, Z,(0) = a]

_ 1 ca . _ dFy(s) _
—’;So §5 Pal (%( )’X)eAlX_S]I—FX(b)(l Fy(b)) db

1
o §6 Pol(x(+), X) € A| X > b](1 — Fy(b))db .

Let (x;(+), X;), i = +1, +£2, --- be independent identically distributed tours
sampled from (Q, 7, Py). Define for —co <t < oo

S*,n = _Z*(O) + Z«?——Tol Xi s n>0
= —Z,(0), n=0
= —Z*(O) — XX n<0

N.()=max(n: S, , = 1)
Z,(t) =1t — Sy v
Vi(#) = Xy, (Z4(1)) -
As before these are all measurable processes.
THEOREM 1.1. {V,(f), —oo < t < oo} is strictly stationary.
Proor. See [4].

Z,(t) and Z (¢) are called the “backward recurrence times” for their respective
processes. Smith (1958) proved a theorem which is quite useful when applied
to backwards recurrence times:

THEOREM 1.2. (Smith). If F, is non-lattice and p < co then Zyt) — . Z,(0)

as t — oco; furthermore, if Fye .S then P[Z(t)e A] — P[Z,(0) € 4] as t — oo,
where A is any Borel subset of [0, co).

Doob (1948) also proved the second half of this theorem.

2. Restrictions on the interarrival distributions.

TuEOREM 2.1. If Fye & and p < oo, then P[Vy(t + t)e Azi=1,.--,n]—
PV (t)eA;i=1,.---,n]ast— co, where A;, i = 1, .- ., n are Borel subsets
of R'.

PrOOF. Assume #, = 0,i=1,2,---,n. Let g(z) = P[V(t+ t;)e A i=
1, .-+, n|Z(t) = z] and g,(2) = PV (t)ed;i=1,.--, n|Z,(0) = z]. For
tyy -ty Ay -+, A,, and z there corresponds a subset, A, of the space of infinite
sequences of random tours such that
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9:2) = P[((*x(6(*)s Xyw))s (Fxeoy41(+)s Xyey41)s -+ ) € 4, | Z(t) = 2]
9.(2) = P[((%(+)s Xo), (xi(+), Xy, -+ -) € A, Z,(0) = 2] .

But

Fy(b) — Fy(2)

PXyu = b|2,(t) = 2] = 1 — Fy(2)

a.s. [onm] ;

from before we know that

Fy(b) — Fy(2) _ _
) = s bz =4,

so the conditional distributions of the “present” tours are the same. We know
from the construction of ¥, and ¥V, that the “future” tours are independent of
Z(t) and Z(0), respectively, and identically distributed. Thus g,(z) = g,(z) a.s.
[Pz,]- Now consider:

PV (t+t)edsi=1,...,n]=E[P[V(t+ t;)eAsi=1,---,n|Z()]]
= Egt(Zo(t))
PlVit)eAsi=1,..-,n] = E[P[V(t)ed;i=1,---,n[Z,(0)]

= Eg*(Z*(O)) .

Since g,(z) = g.(2) a.s. [P,,], we have

PVt + t)edAsi=1,..--,n] = Eg.(Z\2)) .
But the fact that 0 < g, < 1 and the second half of Theorem 1.2 imply
Eg.(Z(1)) — Eg.(Z,(0)) as t— oo.

The restriction ¢, = 0 is trivial to remove. []

In a weak sense F, €./ is also a necessary condition for convergence: if
F, ¢ & there exists a regenerative process, {¥(?), t = 0}, whose embedded re-
newal process has distribution F, but V(¢) does not converge in distribution as
t — oco. We shall construct such a process:

Pick any unbounded infinite sequence of points: 0 < ¢, < ¢, < ---. Because
Fo.¢ & Z(t), i=1,2, ..., are all singular with respect to Lebesgue measure.
Thus there exist sets 4;, i = 1,2, ... such that P[Z(t,) e 4;] = 1 and |4, = 0.
Let 4 = |Jg, 4;, thus |4] = 0. Define V(t) = 1,(Z,(?)) for t = 0. It follows
that V(¢,) = 1, i = 1, 2, - ... This implies that any limiting distribution of V(f)
as ¢t — oo must give all its mass to 1. However, it is known from renewal theory
that, with probability one, there are only a finite number of renewal epochs in
any finite interval. Therefore the Z-process assumes any real value at most a
countable number of times, with probability one. Consequently

(0 1,(Z(t, w))dt < |A| + |4+ --- =0
for almost all . Therefore
o P[Vy(t) = 1]dt = {7 §o 1 (Zy(2, ®)) dP(w) dt
= (o 0 1,4(Z(t, w))dt dP(w) = §,0-dP(w) = 0.
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Thus. P[V(f) = 1] = 0 for almost all (Lebesgue) ¢. Therefore it is impossible
for lim,_,, P[V,(f) = 1] to exist.
A slightly less pathological example is Vi(f) = Z(2)-1,(Z(?)), t = 0.

3. Regularity conditions on sample paths.

THEOREM 3.1. If F, non-lattice and pr < oo and {V(t), t = O} has a measurable
modification with paths in <7 then V(t) — . V,(0) as t — oco.
Before proving this theorem we present a definition and two preliminary lemmas.

DEFINITION. A J-regular step function is a real-valued right continuous step
function with only a finite number of steps occurring in each finite interval and
the magnitude of each step being greater than or equal to .

LemMmaA 3.1. f: [0, o0) — R, f e <7 then there exists a d-regular step function,
g, such that |f(x) — g(x)| < d for all x = 0.

Proor. Let g(0) = f(0). The set {x: f(x) = g(0) + 0} is closed on the left
because of the right continuity of f. Let @ = min {x: f(x) = ¢(0) + d}; then
a > 0, again by right continuity of f. Similarly let b = min {x: f(x) < ¢g(0) — 4}
and let x, = min (@, b). Define g(x) = g(0) for 0 < x < x; and g(x,) = f(x).
Continue to define g inductively in the same way, getting a sequence x;, X,,
Xy - +-. If {x;} is a bounded sequence, then it has a limit; but by definition
|f(x;) — f(x:41)] = 0, contradicting the existence of the left-hand limits of f.
Therefore there are only finitely many x,’s in each finite interval and g is a o-
regular step function.

LEmMMA 3.2. (x(+), X) is a random tour such that x(«, @) is a 6-regular step function
forall we Q, forall alet f (z) = P[x(z) < a|X > z]if P[X > z] > 0; 0 otherwise,
then f,(z) € &.

Proor. Fix z. Since x(., ) is a 6-regular step function, P[step in [z, z4¢]]—0
as ¢ —» 0+. Because x(., w) is right continuous, we shall adopt the convention
of saying “no jump occurs in [z, z + ¢]” if no jump occurs in (z, z 4 ¢].

P[x(z) £ a and X > ]

fue) = TS 1] if PX >z >0
=0 otherwise .
Pl{x(z) < a} A{x(z + ¢) £ a}] < P[stepin [z,z 4+ ¢]]— 0, as e—0.
Pliz+e=X>z}]—>0, as ¢—0.

x)Z2a; X >zhA{x(z+ ) a; X >z + ¢}
Clx) S a) A3+ S @] ULX > AX >z +¢)].

(A A B denotes the symmetric difference of the sets 4 and B.)
Thus

Plxo) £ a; X >z}p{x(z+e) S a; X >z +¢)]—0, as ¢—0.
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This implies that f, is right continuous at z. Againfixz. P[stepin [z —¢,2)]—0,
as ¢ > 0. Let {z;}] be a monotone sequence converging to z from the left.
Consequently,

P[{x(z,) < a} A {x(z,) £ a}]] >0 as m,n— co
PHX >z} A{X>2]}]—0 as m,n— oo .
As before, this implies
Pl{x(z,) £ a; X > z,} A{x(z,) £ &; X > 2,}]] > 0 as m,n— co.
Thus
|P[x(z,) < a; X > z,] — P[x(z,) < a; X > z,]| —0 as m,n— oo .

Consequently lim, ,, P[x(z,) < a; X > z,] exists and f,(z) has a left-hand limit
at z. .

ProOF oF THEOREM 3.1. Suppose {¥(f), t = 0} is the measurable modification
with paths in &. The tours of this modification all have paths in 2 and are
jointly measurable. By Lemma 3.1, given > 0, the path x(., ) in each reali-
zation of the random tour can be approximated (within d) by a d-regular step
function %(+, w). If we use the same construction as in the proof of Lemma 3.1,
the joint-measurability of x(., .) will imply joint measurability of (-, ).
Denote the process generated by these tours as {¥,(#), ¢ = 0}. For all v € Q and
t =0, |V, ) — Vo, t) < 9. {V(), 0 < t}is obviously a regenerative process
with the same regeneration epochs as {¥(t), t = 0}. P[V(1) < a] = E[P[V(t) <
a|Z(#)]]- Let f(z) = P[V\(t) < a| Z|(t) = z] for z such that P[X > z] > 0, and
0 otherwise. Then, by an argument similar to that in the proof of Theorem 2.1,
f42) = P[V,(0) < 0| Z,(0) = 2] = P[3(2) < a| X > 2] = £,(2) as. [Py]- By
Lemma 3.2, this version of f, € &. But any f e & is continuous a.e. with re-
spect to Lebesgue measure; and the distribution function of Z,(0) is absolutely
continuous with respect to Lebesgue measure. Therefore, by the Mann-Wald
theorem, Theorem 1.2, and the boundedness of f,

Ef (Z\(1)) — Ef(Z,(0)) as t— oo,

i.e.
P[Vo(t) <a]l— P[V,(0) < 4] as t— oo.

But
P[Vo(t) <a—0] S P[V(t)<a]l= P[Vo(t) <a+ 4], t=0 and

P[V,(0) < a— 8] < P[V,(0) < a] < P[V,,(0) S a + 0].
Since 4 is arbitrary, if @ is a point of continuity of V,(0), P[Vy(f) < a] —
P[V,.(0) < a]ast— oo.
COROLLARY 3.1. F, non-lattice, 4 < oo and {V(t); t = 0} has a measurable
modification with paths in 2, then P[Vy(t + t) S agi=1, .-, n]— P[V,(t) =
a;i=1,...,nlast— oo fora,i=1, -, n points of continuity of V,(0).
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Proor. Combines ideas of the proofs of Theorems 2.1 and 3.1.

REeMARK 1. Theorem 3.1 can also be proved using the key renewal theorem
directly. This is Feller’s approach. In this case the restriction on the sample
paths (Vy(w, <) € &) will imply direct Riemann integrability of the necessary
function, which allows application of the key renewal theorem.

REMARK 2. The restriction V(w, «) € &7 is actually stronger than necessary.
Theorem 3.1 can be proved using only the existence of right- and left-hand
limits, not necessarily right continuity. However, restricting to &7 is a standard
procedure and further generality is of doubtful gain. The class &7 is extensively
studied in the literature (see Billingsley (1968)).

REMARK 3. The existence of a limit for a regenerative process in many cases
follows directly from a result of Smith ((1958) page 259, Condition B): whenever
1= EX < co and ¢ ,(f) = P[x(t) € A and X > ¢] is of bounded variation in every
finite t-interval, lim,_, P[V(f) € A] exists and equals 1/y & ¢, (f) dt. Smith
((1955) page 17) gave a sufficient condition for ¢, to be of bounded variation.
Takacs ((1963) page 94) observed that Smith’s condition is usually automatically
satisfied in queueing applications. In particular, if we restrict our attention to
regenerative processes with finite state space (Feller’s case), a limiting distribu-
tion will exist whenever the number of state changes in a finite interval has
finite expected value.

4. The lattice case. If F, is a lattice distribution then in general V(f) will
not have a limiting distribution, but statements can still be made about asymp-
totic behavior. The results are analogous to those derived for non-lattice in-
terarrival times.

Define Z,(0) by P(Z,(0) = bA) = A/p(1 — Fy(b2)) for b =0, 1,2, --- where
A = span of F,. Define the process {V,(f), —co < t < oo} as follows: The
“zeroth” tour’s lifetime has conditional distribution P[X, ,=ji|Z,(0) = k2] =
P[X, ,=JjA| X, > ki) = P[X = jA]/P[X > k4] for j > k, 0 otherwise. The
remainder of the construction of {V,(f), —oo < t < oo} is the same as the non-
lattice case in Section 1.

THEOREM 4.1. Fy lattice with span A, then
PlV,t)Zasi=1,---,n]=P[V,(h+t)Zasi=1,..-,n]
for h = multiple of 2.
Proor. Similar to Theorem 1.1.

THEOREM 4.2. F lattice withspan A, p < oo, and 0 < s < A, then Zy(nA + s)—
Z.(s) as n — co.

Proor. Follows from discrete key renewal theorem. See Feller ((1966) page
348).
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THEOREM 4.3. F, lattice with span A, pp < oo, then
P[V(nd +t)<asi=1,---,m]l-> PV (;)Zasi=1,..-,m]
as n— co.
Proor. Same idea as proof of Theorem 2.1.
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