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APPROXIMATION TO BAYES RISK IN COMPOUND
DECISION PROBLEMS!

By ALLAN OATEN
University of California, Santa Barbara

We consider, simultaneously, N statistical decision problems with iden-
tical generic structure: state space (2, action space 4, sample space .2~ and
nonnegative loss function L defined on Q X 4 x 2". With x = (x1, - -+, xn)
distributed according to J]i_, Py; =Ps, a compound procedure is a vector,
@ = (#1, -+, #n), such that ¢;(x) € 4 for each 7 and x. The risk of the pro-
cedure ¢ is R(G, ¢) = N! hIA S L(0r, $-(x), xr)Ps (dx) and the modified
regret is D(, ¢) = R(8, ¢) — R(G) where G is the empirical distribution of
01, + -+, On, and R(G) is the Bayes risk against G in the > component problem.

We discuss quite wide classes of procedures, ¢, which consist of using
x to estimate G, and then playing e-Bayes against the estimate in each com-
ponent problem. For one class we establish a type of uniform convergence
of the conditional risk in the m x n problem (i.e. Q has m elements, 4 has
n), and use this to get D(@, ¢) < ¢ + o(1) for another class in the m x nand
m X oo problems. Similar, but weaker, results are given in part II for the
case when Q is infinite.

0. Summary. A compound decision problem involves simultaneous consider-
ation of N statistical decision problems, each with the same generic structure.
The risk is defined as the average of the risks of the component problems. The
quantity R(G), the risk of the best “simple symmetric” procedure based on know-
ing G, the empirical distribution of the states, is usually used as a standard against
which compound procedures can be judged.

In papers most similar to the present one, Hannan and Robbins [6], Hannan
and Van Ryzin [7] and Van Ryzin [14] have proved various types of convergence
to R(G) of the risks of compound procedures which consist of using the N obser-
vations to estimate G and then playing Bayes against the estimate in each com-
ponent problem. Only component problems for which both state and action
spaces are finite were considered.

Part I of this paper extends these results by considerably weakening the con-
ditions previously imposed on the compound procedures, especially in the case
of “ties”, and by establishing some results for the case when the action space is
infinite. We also establish, for the finite action space case, a type of uniform
almost sure convergence of the conditional risk which appears in [6] only for
the 2-state, 2-action case. In Part IT we obtain some rather weaker results for
the case when the state space is infinite.

1. Introduction and notation. In the component problem there is a state space
Q indexing a family of probability distributions {P,, w € Q} over a o-field <2 of
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a sample space Z27; a measurable action space (4,.%7); and a loss function,
L = 0, defined on Q x 4 x 27, which is 4-measurable for each w and x.

A (randomized) decision function, ¢, has domain 22” x .7, and is such that
¢(x)(+) is a probability measure on .9 for each fixed x e &2°. If the state is o,
the conditional risk of ¢ given x is

(1.1) L(, $(x), x) = § 4 L(w, a, X)¢(x)(da) .

The notation of (1.1) will be extended to L(w, 4, x) = {, L(v, a, x)A(da) for
any signed measure 2 for which the right side exists; in this context, “a” will
stand for the probability measure degenerate at a so that, for example, L(w, a —
b, x) = L(w, a, X) — L(w, b, x). If L(w, ¢(x), X) is .Z-measurable, the uncondi-
tional risk is

(1.2) R(o, ¢) = § L(o, ¢(x), x) dP,(X)
which we abbreviate to § L(w, ¢) dP,.

In the compound decision problem, x.,, = (x,, X,, - - -) is distributed according
to Py = [, Py, @ = (0,, 0y, - - -) € Q= is the unknown vector of states, and if
there are N problems only x = (x,, - - -, X,) is observed. (We shall usually, as
here, omit indicating dependence on N.) We remark that the ordering implicit
in (6, 0,, --.) and (x,, x,, - - -, x,) may be quite arbitrary since the problems are

considered simultaneously; the vector notation is used because it makes many
of our statements simpler.

The choice of action for the rth component problem is allowed to depend on
x; this distinguishes the “set” compound problem from the ““sequence” problem
in which the action at the rth stage can depend on (x,, - - -, x,) only. Formally,
a compound procedure of the type we consider is an array, ¢ = {(¢,", ¢,", - - -,
éy¥): N=1,2, ...}, such that, for each N and r < N, ¢,” is defined on
&7V x 7, with ¢,7(x) being, for each x, the probability measure on .07 accord-
ing to which an action is chosen for the rth problem. We will omit the super-
script and simply write ¢ = (¢,, - - -, ¢y).

If there are N problems the conditional risk, given x, of the procedure ¢ is

(1.3) W(aa ¢a X) = N_l 71‘V=1 L(ﬁr’ ¢'r(x)’ xr)
and, if W(0, ¢, x) is <% ¥-measurable, the unconditional risk is
(1.4) RO, @) = § W(8, ¢,x)dP,(x) = § W(b, ¢)dP, .

As is becoming standard (the terminology seems to be Samuel’s [13]), we say
a compound procedure ¢ is simple if ¢,(+)(C) is a function of x, for each C e .%7.
If, in addition, the ¢, are identical, say ¢, = ¢, we say ¢ is simple symmetric
with kernel ¢. (Since the component problems are unrelated and uninformative
about each other, simple procedures might seem natural. If one component
procedure, say ¢, was “better” than the rest, we might use it on every component
problem; we would then be using the simple symmetric procedure with kernel

9.)
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We shall identify simple symmetric procedures with their kernels, and write
R(0, ¢) and W(8, ¢, x) for the risk and conditional risk given x of the simple
symmetric procedure whose kernel is ¢. For @ € Q~ and any simple symmetric
procedure ¢, R(@, ¢) = N7 31X, R(0,, ¢). Thus if R(F, ¢) = § R(w, ¢) dF =
the risk, in the component problem, of the procedure ¢ against the prior distri-
bution Fon the states, and if G denotes the empirical distribution of 6,, 6,, - - -, 0,
(as it shall, henceforth), then R(8, ¢) = R(G, ¢) for all @ and ¢, and we shall
identify the two henceforth.

Let & be the set of distributions on Q and, in the component problem, define
the Bayes envelope by R(F) = inf R(F, ¢), for each Fe <, where the infimum
is taken over @, the class of procedures for which R(w, ¢) exists and is a measur-
able function of w (this restriction is unnecessary when Q is finite). In the com-
pound problem, R(G) is the “best” we could do with a sfmple symmetric procedure
if we knew G. Defining the “modified regret” by

(1.5) A D6, ¢) = R(@, $) — R(G)

we have (cf. Gilliland [3], page 1890) that D(#, ¢) = O for all simple ¢, and if
the component problem is non-trivial—i.e. if there is no strategy ¢ for which
R(w, ¢) = inf, R(», ¢) for all o—then there isa d > 0 such that sup, D(6, @) = ¢
for all simple ¢.

The problem is to find non-simple procedures, ¢, for which D(@, ¢) converges
in some sense to zero as N — co. Robbins [11], introducing the compound de-
cision problem, proposed estimating G from x, and then playing Bayes against
this estimate in each component problem. This has been carried out in [6], [7]
and [14], and various types of convergence of D(@, ¢) obtained.

Throughout this paper ¢ denotes an arbitrary nonnegative number, possibly
depending on N. In part I, we consider procedures which consist of playing e-
Bayes against an estimate of G. With fewer restrictions on the estimator than
have previously been implicit, we consider two types of procedure: the “polytope”
and the “equivariant”. Each of these is considerably less restricted, especially
in the case of ties(or, in our case, “‘c-ties”), than procedures previously considered.
For the first we shall prove a type of “uniform almost sure” convergence of
W(6, ¢, x), analogous to Theorem 3 of [6], and use it to obtain D(@, ) < o(1) .
This result helps establish the same for equivariant procedures, and this last
result can be extended to infinite action spaces. In part II we modify these pro-
cedures and obtain slightly weaker results for the case when ( is infinite.

In both cases the convergence of W(@, @, x) to R(G) is our first concern, and
this is established by treating separately |W(@, @, X) — R(G, ¢,)| and |R(G, ¢,) —
R(G)|, where ¢, is a component procedure, to be defined later, which plays -
Bayes against G(x), an estimate of G. We will be assuming G(x) is “close” to G
so the second of these terms is dealt with if we can show that whenever F is
“close” to G and ¢ plays e-Bayes against F (i.e. R(F, ¢) < R(F) + ¢) then R(G, ¢) —
R(G) is small. This is a consequence of the following lemma.
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LeMMA 1. Let G and F be any distributions on Q, and let ¢ ¢ O, the set of com-
ponent procedures for which R(w, ¢) exists and is w-measurable. Then

R(G, ¢) — R(G) < sup; 4co § [R(®, 2) — R(w, )] d(G — F)(w)
+ R(F, $) — R(F) .
Proor.
(1) R(G, ¢) — R(F, $) = { R(w, ) d(G — F)(v),

for any procedure ¢. If ¢, is any procedure for which R(G, ¢,) < R(G) + n™?,
then

(2) R(F) — R(G) = R(F, $,) — R(G, $,) + n”*
= — §{ R(w, $,) d(G — F)(w) + n*.
Adding (1) and (2) and taking the supremum,
R(G, ¢) — R(G) — R(F, ¢) + R(F)
S SUP;yeo § [R(0, 2) — R(w, ¢)]d(G — F)(@) + n7.

Since the left side is independent of n, the proof is complete.

We note that if Q = {1,2, ..., m}, { L(w, ¢)dP, < M < oo for every v and
¢, and ¢ € @(F), (see Definition 2 below), then
(1.6) R(G, ¢) — R(G) = M 310,16, — F |+ ¢.

1. FINITE STATE SPACES

2. Definitions and preliminaries. Throughout this part, Q = {1,2, ..., m}. In
this case we have P, € # =), P,, and we define f(w, +) = (dP,/du)(+). We
assume that L(o, a, x) is £&#-measurable for each fixed w and «, and that

2.1 { L(w,a)dP, < M < o forall o and a.

DerINITION 1. G is a uniformly consistent estimator of G if, for any 7 > 0
and y > 0, there exists N,(7, y) such that

SUPws P[Xm, léw(x) —G,|>n]<y forall fe Q=

where, for each F, F, is the mass assigned by Fto the point w. With the supremum
inside the square brackets, G is uniformly strongly consistent. (An estimator G
is really a sequence of functions G, G,, .- with G : 22 ¥ — < being £2¥-
measurable for each N. We shall not need to emphasize this formality however.)

DErINITION 2. For each Fe &, let @(F) be the set of component procedures
¢-Bayes against F, i.e. those ¢ for which R(F, ¢) < R(F) + ¢. For G an estimator,
®(G) is the set of procedures of the following kind: on observing x we first
estimate G by G(x) and then choose (the choice can depend on x) a component
procedure ¢, e ®(G(x)); we use this procedure in each component problem—i.e.
we use the simple symmetric procedure whose kernel is ¢,. Formally,

®(G) = {¢: VX, 3¢, e D(G(x)) such that Vr, ¢ (X) = dy(x,)} -
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Henceforth, for each x and each ¢ e ®(G), ¢, will denote the component pro-
cedure given by Definition 2.

We shall be concerned with two subsets of ®(G): “polytope” procedures in
Sections 3 and 4, and “equivariant” procedures in Sections 5 and 6.

Throughout Sections 3, 4 and 5, 4 = (1,2, ..., n}. Let E* be k-dimensional
Euclidean space and let z: =27 — E™ be given by
22) o ax) =L, ax)fx), o=12 -, ma=12-n.

We shall adopt, for z, the same convention as for L; ie. z(w, 4, x) =
{ z(, a, x) dA(a) for any signed measure on .5 for which the right side exists.

3. Polytope procedures. In this section we define polytope procedures, and
prove the main result about them.

DEFINITION 3. A set H e E* is a half-space if, for some linear functional / and
some number p, either H or its complement is {y: I(y) < p}. Let 57, be the set
of all intersections of s half-spaces, 7 the set of all unions of ¢ members of
oF,, and 7} = z7NIE)).

For each Fe ¥ we want to restrict attention to those members of @(F) which
take on only finitely many values (at most v), and for which the corresponding
induced partition of 227 is a collection of regions each of which is an element
of ¢! for some tand s. (s, # and v are arbitrary finite numbers, fixed throughout
what follows; we will frequently not indicate dependence on them.) Formally,
¢ € O(F) isan element of @, (F) if {¢(x): x € Z7} C {vy, vy, - - -, v}, Whereyy, - -+, v,
are distinct measures on .97, and, for each j, {x: ¢(x) = v;} = Q, for some (pos-
sibly empty) Q; € -%'. Hence ¢(x)(a) = 37, Q;(x)v;(a) for each xe " and
ac A, where, as we shall continue to do, we have identified sets (Q;) and their
indicator functions {Q;(x)}.

DEerFINITION 4. (Polytope Procedures). Let G be an estimator. Then a pro-
cedure ¢ € ®(G) is an element of ®,(G) if, for each x, ¢, € ®,(G(x)), where ¢, is
as in Definition 2.

Most results obtained so far (e.g. in [6] and [14]) have been obtained for special
subsets of ®,(G)—usually the class @,(F) is replaced, in Definition 4, by those
procedures ¢ for which ¢(x)(a) = X 54 O s(¥)»5(a), where x € Q5. if B is the set
of Bayes acts against F when x is observed. That Q%€ K for sufficiently large
t and s follows immediately from Lemma 3 in Section 5. Usually vy(a) is re-
stricted to the values 0 and 1. In addition the form of the estimator, G, is usually
restricted, especially when rates have been obtained; the most common form is
Hannan’s “average of unbiased estimators”, as in Section 3 of [14].

THEOREM 1. Let G be a uniformly strongly consistent estimator of G. Then given
n > 0 and y > O there exists N(7, y) such that

Py[SUPys i1 |W (0, ¢,x) — R(G)| > e+ 7] <7
for all 8 ¢ Q~ and ¢ ¢ @,(G).
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The proof of this theorem will invoke the following lemma:

LeEMMA 2. Let (27, <2, P) be a probability space, and let P, be the empirical
distribution of N i.i.d. random variables ~P. Leth: &¢” — E* be P-integrable, and
let g: 227 — E* be SZ-measurable. Then, for any s and t,

P[sup, ey |§ 9 (H)hd(Py — P)) -0 as N—oo]=1.

This (and much more) is proved by Ranga Rao ([10], especially Lemma 7.5)
when s = t = 1, 22" = E* and g is the identity. Extending his results to intersec-
tions of half-spaces, to unions of such intersections, and finally to the inverse
images of such sets under a measurable transformation, is not difficult. Details
are given in [9] pages 12-13.

ProOF OF THEOREM 1. Let ¢ ¢ ®,(G) and, given x, let ¢, be the component
procedure guaranteed by Definitions 2 and 4. Then by Lemma 1
(3.1) |W(8,¢,x) — R(G)| < |W(0,8,x) — R(G, 65)| + |[R(G, ¢x) — R(G)]

< |W(0,9,%X) — R(G, )| + M Z5_11G, — G (X)| +¢.

The first term is | W(8, ¢, X) — R(G, ¢y)|, so rather like [W(8, ¢, x) — R(G, ¢)|
which we could handle using a variant of the strong law of large numbers.
However, in our case, the simple symmetric procedure, ¢, or ¢, is a function
of the observations x so we need, speaking roughly, to show convergence for
the “worst” ¢, i.e. we need to show convergence of sup,, [W(8, ¢, X) — R(G, ¢)|,
the sup being over ¢ € ®,(F) for all F.

If ¢ € ©(F) then ¢ = Y %_, Q;v;, where O, e 27! for each j, and v, - -, v,
are distinct measures on .%. Then

W, ¢,x) = N7 X7, 20521 (%) 2amy vi(@)L(0,, a, x,)
= Z(T:l N—l 3:1 Z;=l lJj(a) Z(r:ﬂ,:wb Qj(xr)L(ar’ a, xr) *
Now 3.9, -u Q;(%,)L(0,, @, x,) is thesumof N, = N () = 2.7, [0, = o] i.i.d.
random variables; accordingly, if Py, denotes the empirical distribution of the
N, random variables {x, : r = w} we may write
W, ¢, x)=Nr N 3u ., 2iavi(@N,§ Q; L(w, a) dPNw .

Subtracting from each side its expectation,

WO, 9, %) — R(G: §) = iy e Sty Bier (@) § 0;L(w, @) d(Py, = P,)

Thus, with S(V, 8, @, x) = 3r_, vsup,. .« |} OL(w, @) d(Py, — P,)|, we have
(3:2) sup, | (6, ¢, %) — R(G, §)| £ T (e SV, 6,0, %)

By applying Lemma 2, with & = L(, a) and g(x) = (z(1, 1, X), - - -, z(m, n, X)),
we have, for all @, w, 7, > 0 and 7, > 0,

P,[sup, SN, 6, 0, X) > 7] < 115
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where J = J(k;, w,0) = {N: N (0) > k,} and k, = ky(9,, 1) is given by Lemma 2.
With H = H(k;,,»,0) ={N: N > N'and N (0) <k}, », = p/2m and y, = y/[2m,
we have

Pdl:supN>N' 2o ]—Yﬁ'l‘foS(N, 0, w, X) > %J

DI [SUPNW' Na}(vﬂ) S(N, 0, w, X) > %J

(3.3) <, {P{supJ S(N, 8, 0, x) > %}

k
+ P, [ﬁ/ max, S(N, 6, w,x) > %J}

< 7/2 + 9(N')
where g(N') — 0 as N’ — co since max, S(N, 6, o, x) is finite valued because H

yields at most k, different values of S.
Now let N(7, r) be so large that g(N(y, 1)) < r/4 and

P0|:SLIPN>N(17,T) i1 |Gw(x) -G, > —2—77‘]4——’—1] < 7r/4 forall @.

Then (3.1), (3.2) and (3.3) yield Theorem 1.
4. Convergence of D(6, ¢) and remarks.

REMARK 1. From (3.1) and (3.3) we have that if G is uniformly consistent
(not necessarily strongly) and » > 0 then

4.1) sup, sup, P,[|W(0, ¢, x) — R(G)] > 7 +¢]—>0 as N — oo,
where the sup is over ¢ € ©,(G).

REMARK 2. An alternative way of looking at the component problem is: Let
P be any distribution on &2 whose wth marginal is P,. Let Y e22"¢ be dis-
tributed according to P and suppose that, if the state is w, only Y(v), the wth
coordinate of Y, is observed; the loss resulting from action a is L(w, a, Y(®)).

For the compound problem, Y, = (Y}, ¥,, - - ) is distributed according to
P>, 0 = (0,0, ---)ec Q> and if there are N problems only (¥,(6,), - - -, Y (0y)) =
Y(6) is observed. The conditional risk, given Y(@), of the procedure @, is
W@, §, Y(0)) = N T2, L(0,, $,(Y(6)), Y,(6,))

This is clearly the same problem as we have been dealing with but, along with
its notational clumsiness, this formulation allows us to state and prove results
using the fixed measure P> rather than the state-dependent P,. The usefulness
of this will be demonstrated in the next remark and in the beginning of the proof
of Theorem 2. For the moment we note that the “probability” part of the state-
ment of Theorem 1 can be written

P[Supys iy [W(O, B, Y(0) — R(G)| > e+ 7] <7
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REMARK 3. COROLLARY TO THEOREM 1. If G is uniformly consistent, then
sup, sup, D(8, @) < ¢ + o(1) as N — co, where the sup is over ¢ € ®,(G).

ProofF. In the notation of Remark 2, (4.1) becomes
(4.2)  sup,sup, P[|W (0, ¢, Y(0)) — R(G)| >1n+¢]—>0 as N— co.
Let ¢ € ®,(G) and C, = {Y: W(8, ¢, Y(0)) > R(G) + ¢ + §/2}, so that

(4.3) RO, $) = | W(8, $, Y(8)) dP~
< R(G) + ¢ + 82 + § C, W(8, $) dP~ .

Since W(6, $, Y(8)) < N' £, max,, L(w, a, ¥,(w)) = N=' £, W(Y,), say,
we have { C, W(@,$)dP> < N~' 37§ C, V(Y,)dP> < §/2 for P(C,) sufficiently
small, because the V(Y,) are identically distributed and integrable. The corollary
now follows from (4.2) and (4.3).

REMARK 4. None of these results is affected if ¢ depends on N. In particular,
if ¢ = 0(1) as N — oo, the conclusion of the corollary becomes sup, sup, D(8, ¢) <
o(l)as N - oo.

REMARK 5. The class @,(G) may include procedures, ¢, for which W(8, ¢, X)
is not .<Z’¥-measurable (though, for each x, the component procedures ¢, must
be elements of ®). Such procedures are included in Theorem 1 and its corollary
in the sense that, whether or not W(8, @, x) is <4’ -measurable, there is a measur-
able function U(@, x) = W(8, ¢, x) for all # and x, with U having the proper-
ties asserted for W. This follows from the fact that both S(N, @, w, x) and
m |G (x) — G,| are =Z"-measurable, and from (3.1) and (3.2).

w=1

REMARK 6. The restrictions on the class ®,(G) are two, both the results of
restrictions on the classes @,(F): that for ¢ € O,(F), (1) {¢(x): xe 27} is finite
and (2) {x: ¢(x) = v,;} € 2%} for each j. The crux of the proof of Theorem 1
is the convergence of S(N, @, w, x) which follows from Lemma 2 because of the
structure of the family of functions ., {¢(+)(a@): ac 4, ¢ € ®,(F)}. However
if, for each Fe <, ®*(F) is a subclass of ®(F) and, for each w and a,
P,[sup |gL(w, a)d(P, — P,)|— 0asN— oo] = | where the sup is taken over
9(+) € Ure, {¢(+)(@): ¢ € ®*(F)}, then Theorem 1 would hold with ®,(G) re-
placed by ®*(G). The families .., {¢/(+)(@): ¢ € ®,(F)}, a € 4, are by no means
the only ones with this property; however they are of particular interest as a
natural generalization of the standard situation, mentioned after Definition 4,
in which, for each F, ®(F) is restricted to those procedures, ¢, for which
P(x)@) = 254 Qrp(X)v ().

In fact, although v, (the measure according to which an act is chosen when
B is the set of Bayes acts) is usually permitted only to depend on B (most com-
monly, with 4 = {1, 2, ..., n), v, is degenerate at the “minimum” member of
B; see e.g. [6], [7] and [14]), Theorem 1 also applies to the case where v, is also
permitted to depend on F; and the conclusions of Theorem 1 hold if v, is a measur-
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able function of x since, from Lemma 2, SUPge 5 ¢ |§ Ovy(a)L(w, a) d(szw — P
converges to 0 with probability 1 as N — co, for each w, aand B c 4. However
Lemma 2 is not applicable if v, depends on both F and x, for we would then
need to take the sup over all Fe < as well; for details see page 19 of [9].

5. Uniformly e-Bayes and equivariant procedures. In this section we define
‘“equivariant” procedures and prove the main result congerning them. Since
our notational requirements are somewhat different in this section, it is perhaps
as well to note that, in addition to previous formulae,

R(w, §) = § 2(o, $, x) du(x)
and
R, $) = § WO, ¢, x) I1)_.f0,, x,) dp"(x) .

DEFINITION 5. A procedure ¢ € @ is uniformly ¢-Bayes against Fe <7 if

&(x)(B(F, x, ¢)) = 1 for all x, where

(5.1 B(F, x,¢) ={a: 2, z(w,a — b, x)F, < ¢/m forall be A}.
If ¢ is uniformly e-Bayes against F, then
R(F, $) = T, F, § Lo, (%), x) dP,(x) = Z0, F, § 2(0, ¢) dp
= § X2, $)F, dp < R(F) + ¢
since Y\, z(w, $)F, < min,,. , D", z(w, a)F, + ¢/m and u(Z£") = m.
Hence a uniformly ¢-Bayes procedure is e-Bayes in the usual sense.

LEmMMA 3. Let Q5, = {x: B(F, X, ¢) = B). Then for each Fe <, BC A and
e =0, Q5 7 for sufficiently large t and s.

Proor. Let T,,, = {x: 1", z(w, b — a, x)F, < ¢/m}. Then T}, € .27. Also,
Q7= Bn:=1 Tp ndeA~B U:L=1 Tha But Ui Thpe = Thnt+ Tou Thst -+ -+
Tpa ** Tpansy Toans @ disjoint union of members of .2%7,. The lemma now
follows since, for any s and ¢, E, € .25, and E, ¢ K, implies E, N E; € 2%,

Since ¢ is fixed in our discussion, we shall abbreviate B(F, x, ¢) and Q% to
B(F, x) and Q.

DEFINITION 6. For each Fe <, let @, (F) be the set of component procedures
uniformly e-Bayes against F; and, for G an estimator, let (Du(é) be the class
{@: € D (G(x)) for each x}, where ¢, is as in Definition 2.

Let g(1,2, ---,N) = (971,972, - - -, g7'N) be an arbitrary permutation of
(1,2, .-+, N) and, for any vector r = (r,, - -, ry), let gr = (ry—1, - -+, ry—1y).
Let .27 be the set of permutations on (1, 2, -- -, N), and let E denote expectation
under the uniform distribution on ..

DEFINITION 7. A procedure ¢ is equivariant if, for each N, x, and g, ¢(gx) =
gh(x); i.e. $,(g%) = ¢,-1,(x) for each r.

Since the problems are considered simultaneously, their labeling is artificial
so equivariant procedures seem reasonable. Further, if ¢ is any procedure, let
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$.(x) = E¢,.(9x) for eachx and r. Then ¢ is equivariant and it is easy to show
that EW(g0, ¢, gx) = W(6, ¢, x) for each @ and x, so that ER(g8, ) = R(8, @).
Thus if R*(G) = inf R(@, ¢) where G is given by #,, - - -, 6, and the infimum is
taken over all equivariant ¢, then ER(98, ¢) = R*(G) for all procedures, ¢.
(This might suggest that R*(G) would make a better “standard” than R(G); how-
ever, the difference between these quantities has been shown to be small under
various conditions in [6], [8] and, particularly, in [4], where it is shown that
R(G) — R*(G) < O(N-*) uniformly in @, under conditions considerably broader
than we have adopted here. We shall use this result in the proof of Theorem 2.)

DEFINITION 8. ®@,(G) is the set of equivariant members of @ ,(G).

THEOREM 2. LetGbeaumformlyconszstent estimator. Thensup,, ;,sup,D(0,$) <
o(l) + e¢as N — co.

ProoF. Let G'(x) = EG(gx). We show that ®2(G) C ®,((’) and that G is
uniformly consistent, so that it suffices to prove the theorem for ®,(G") instead
of ®,(G).

Let ¢ ¢ ®,(G)and, given rand g, let g~'k = r. Then ¢,(¢x)(B(G(9x), x,-1,)) = 1
since @ € @,(G); s0 ¢,-1,(X)(B(G(gx), x,-1,)) = 1 since ¢ is equivariant. Thus
$.()(Ne BG(g%), x,)) = 1, 50 ¢ € D(G) if N, BG(9%), x,) < BG'(X), x,).
For any ac,.. B(G(gx), x,), 2", G, (9%)z(w, a — b, x,) < ¢/m for all be A4
and g e . Hence (N)' 3, ¥, G (9%)z(w, b — a, x,) < ¢/m for all be A,
so a e B(G'(x), x,).

To show G’ is uniformly consistent, we use the notation of Remark 2 in Sec-
tion 4. Let a, B, 7, 6, be arbitrary positive numbers. Then for N > N(y, 0),
P=[X"_,|G.(Y(8)) — G,| > 7] < d for all @ so that { ,_,|G,(Y(6)) — G,|dP=(Y) <
r -+ 20 for all @, since 3=, |G, — G,| < 2. Since the Y, are i.i.d. and G(¢8) =
G(0) for all g and @ (where G(@) is the empirical distribution of 6,, ,, - - -, )
we have

§ 2 [BG(0Y(90)) — G| dP(Y)
< E§ 1., |G,(gY(98)) — G,| dP=(Y)
= E§ Nn.|6,(Y(96)) — G| dP=(Y) < 7 + 2
for all @ and g, where the equality uses the transformation theorem. Thus
P[5 |BG(0¥(98) — G > o] < TT 2.
Since G'(Y(8)) = EG(gY(g8)) for each Y and @, we have that if N > N(y, d)
with 7 + 20 < af,
P[5, |G,/ (Y(6)) — G| > a] < p forall 6.
Hence G’ is uniformly consistent, and we can use it in place of G.
Let ¢ € ®,(G") and let W, (8, ¢, x) = L(0,, $,(X), x,). Then
Wy“lr(a’ @, x) = L(eg—lr’ ¢y“1r(x)’ xg—lr) = L(ag—lr’ $,(9%), xg“lr)
= W.(90, $, 9%) .
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Since E(h(9~'N)) = N 3, h(r) for any h, we have

R0, $) = SN T W0, 6, %) [T f(O0, x,) dpe™(x)
= E[W,-14(0, @, x) TTi_, f(0r, %)) dpey(x)
= E[§ Wy(96, &, 9%) TTI-1 f(0 1> Xp-12) dptn(¥)]
= E[§ Wy(96, ¢, %) I1i: f0,-110 %) A (%)]
with the last step by the transformation theorem, since x¥ is invariant under
permutations of x. Since E[f,.., = 0] = N,/N, we have

RO, ¢) = § E[L(0 -1y, $n(X), Xy) H;cv=lf(0g—1k’ xp)] d,u”(x)
(5.2) = § E[E[L(0 -1y, $(X), Xy) I fO ks %) | 01y = @]]dpy(X)

= § D D Lo, 4,0, %), %)

X E[TIES f(O5-1 %) |01y = @] dpp¥(x)

With T(¢(x), x) as the integrand of the last expression and 8(r) = B(G'(x), x,),
we have, for all ¢ e @y (G"),

(5.3) RO, $) < § max, .y, T(@ %) dp¥(x) .

We approximate the right side of (5.3) by the risk of a procedure which is
both equivariant and polytope. Let § ¢ ®,(G’) be given by {,(x)(a) = 1 fora =
g (%), where ay(x) is the first maximizer in B of ", G, z(w, a, x). One might
expect § to do about as badly as possible against & since it “plays anti-Bayes”
against G within the restrictions imposed by membership of ®,(G’). That ¢ is
equivariant follows easily from the fact that G’(gx) = G'(x) for each x and g, so

from (5.2) and the definition of T,
§ max, s, T(a, x) dp¥(x) — R(8, )
(5.4) = Y 44 § [B(N) = B]{max,, , T(a, X) — T(ay(xy), x)} dp¥(x)
= Xpea § MaXyep T(a, X) — T(ag(xy), X) dp¥(x)
since each integrand is positive. We now show the right side is O(N~#).

For each B, consider the problem obtained from the present problem by
truncating the action space to B and using the loss function Lo, a, x) =
2ives L(w, b, X) — L(w, a, x).

Replacing L by L, in (5.2) and interchanging orders of summation, the risk
of an equivariant procedure ¢ in this new game is

(5.5) Ry0, P) = § Zyes T(b, X) — T(Py(x), x) dp™(x) .
In particular, the best equivariant procedure has risk
(5.6) Ry*(G) = § Tye s T(h, X) — Max,, , T(a, x) du"(x) ,

and the best simple symmetric procedure has risk

(5.7) Ry(G) = § e T(b, X) — T(ay(xy), x) dp™(x) .
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(Since simple symmetric procedures are equivariant we obtain (5.7) from (5.5)

by taking ¢ to be degenerate at the first minimizer in Bof 37, G, Lo, a, x,) X

f(o, x,), which is a,(x,), the first maximizer of ,”_, G, z(w, a, x,) in B.)
Substituting into the left side of (5.4) the left of (5.3) and replacing the right

of (5.4) by the difference of the left sides of (5.7) and (5.6) we obtain, for all

P e ("),

(3-8) RO, ) — R(6,C) = Xpca {Ry(G) — RXG)}.

Hannan and Huang [4] have shown that each summand on the right of (5.8)
is bounded by O(N~*) uniformly in 6. Hence

(3:9)  SUPseoya) SUPs D(6, $) < sup, {R(6, §) — R(G)} + O(N-H).

We now show that { is a polytope procedure. If , is the function correspond-
ing to “¢,” in Definition 6, then

{Cx(y) : ye %} c {al’ Ayy 00,y an}

(where “a” denotes the measure degenerate at a) for each x. We need to show
that {y: {,(y) = a} € %7}, for some tand s, foreachxand a. But{y: {,(y)=a} =
Uiscaiaen @rs N Ry where F = G(X), and Ry = {x: ay(x) = a} = Nsesicafx:
21 G z(0, b —a, x) <0} N Nyeppsaf{X: 2y G2(0, b — a,x) <0)e %7, _,.
Since we already have Q;; ¢ .2 from Lemma 3, the result follows easily.

Hence € ¢ ®1(G) with v = n, so we can apply the corollary to Theorem 1 to
the first term on the right of (5.9), completing the proof of Theorem 2.

6. Infinite action spaces. We now weaken the requirement that 4 be finite to
one which allows 4 to be approximated by a finite subset.

THEOREM 3. Let G be uniformly consistent and let B = Urew se o B(F, X) (see
Definition 5 and the sentence preceding Definition 6) be totally bounded in the metric
d(a, d') = sup, , |L(v, a — d, x)|. Then

Sup‘Pz(a) Supﬂ D(a, ¢) < e+ 0(1) as N — oco.

Proor. For each d > 0, let D; = {a,, a,, - - -, a,}, k = k(d), be such that, for
any ae B, d(a, a;) < 0 for some a; € D;. Let @e @2(6), fix 0, and let {4;: j =
1,2, ..., k} be a partition of B such that, for each j, d(a, a;) < d for every
ac A;.

Consider the problem obtained by replacing 4 by D;. For this problem, let
®,;(G) and @,,(G) satisfy Definitions 6 and 8, respectively, with “¢” replaced
by “c 4+ md”; and let R;(+) be the Bayes envelope.

We observe that min,, »r, F,z(w, a;, x) — inf, 3", F,z(0, a, x) <
0 max,, f(o, x) < ¢ for any Fe & since f(w, x) < 1. Integrating with respect
to ¢ we have, for all Fe &,

(6.1) Ry(F) — R(F) < md .

Let § = (@) be the procedure in the reduced game given by {.(x)(a;) =
#.(X)(4;) for all r, x and j.
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Since {.(g9x)(a;) = ¢r(gx)(‘Aj) = ¢,1,(X)(4;) = {,~1,(x)(a;), § is equivariant.
We will show that { € @,,(G).

Let ¢, be the function given by Definition 6. For each xe 2%, ye 2 and
a; e D;, let L (y)(a;) = x(y)(4;). Then, for each x and r, {,(x) = {\(x,). If
L(»)(a;) > 0 for some x, y and j, then ¢,(y)(4;) > 0. Since ¢, € ®,(G(x)), there
isan a ¢ 4, for which ), G (X)z(w, a — b, y) < ¢/mforall b e A. By definition
of A, this implies that ¥, G (x)z(w, a, — b, y) < ¢/m 4 & for all be A (and
hence for all b € D;). Hence ,(y)(a;) > 0 implies a; € B;(G(x), y, ¢ + md) where
B,(G, x, ¢) satisfies (5.1) when 4 is replaced by D,;. Hence ¢, € ®,,(G(x)) and
consequently & € ,;(G).

By definition of { we have, for all @ and x,

W8, $,x) — W8, L, x)| < N-' T, |W,(8, 6, %) — W,(8, ¢, x)
< N7 D S | A L0, @, %,)6,(x)(da) — L(0,, a;, %), (X)(4,)]
SN RN 2, § AL, a, x,) — L(0,, a;, x,)|$,(X)(da)
< N7 B 00, (X)(4,) = 6.
Integrating this inequality with respect to P,, we obtain
(6.2) RO, $) — RO,§) <o forall 6.
Thus, for any 6 > 0,

SUPo, ) SUP, D(6, $) < SuPo, s Sup, {|R(6, ¢) — R(G, £(9))|
(6.3) + |R(8, &(8)) — Ry(G)| + |Ry(G) — R(G)]}
< 0 + Supg,; i) Sups |R(G, €) — R;(G)| + mo
by (6.1) and (6.2).
From Theorem 2 there is a function Ny(y) = N(7, 0), such that N > N(y, 0)
implies
SUPa, ;) SUPs |R(@,8) — R{(G)| <7+ e+ md.

Substituting this in (6.3), with d(y) = r/2(2m + 1), we have, for N > N'(y) =
N(r/2, 6(7))s SUPa,4) SUps D(0, $) < 7 + ¢ as required.

II. INFINITE STATE SPACES

In this part, Q is infinite. We assume the existence of “good” estimators of
G and, with a number of conditions on the loss and density functions, we exhibit,
for arbitrary d > 0, procedures which are a slight modification of the “c-Bayes
against the estimate” type and for which D(@, ¢) < ¢ 4 d 4 o(1) as N — oo.
We shall show that the conditions we require, except for the conditions con-
cerning estimators, are satisfied in many situations.

7. Finitely based procedures. The methods of I are inappropriate when Q is
infinite because appropriate forms of Lemma 2 are not available, due to the
partial failure of the Glivenko-Cantelli theorem in infinite dimensional spaces.
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The convergence for which Lemma 2 was used could be expected if the sample
space, £, were finite but the problem of estimating G would then be virtually
incapable of solution since the distributions {P,: w € Q} would not be linearly
independent, so that the values of § P,(A4)dG(w) for each 4 e 22" would not
determine G uniquely. Thus a finite sample space seems to be desirable, for
‘convergence results analogous to those of I, and an infinite sample space neces-
sary, to estimate G; these considerations motivate the approach of this part.

Let = be a finite measurable partition of &£". For each xe ", let x' be the
member of z to which x belongs and for each Ve x, let L(w, a, V) be the value
of L(w, a, x) at a fixed but arbitrary point xe V. As in Part I, let  be the set
of distributions on Q.

DEerINITION 9. For each w ¢ Qand Ve, let P, ({V}) = P (V). For the com-
ponent game obtained by replacing &£ by =, P, by P, and L(w, a, x) by L(w,

W

a, V), let R (+) be the Bayes envelope, and R, (F, ¢) the risk against Fe Z of a
procedure ¢ € @, the set of procedures for which L(w, ¢(V), V) is w-measurable
for each Venr. For each Fe & let O (F) be the set of procedures ¢-Bayes
against F.

Component procedures available in the reduced problem are available in the
original problem in the sense that, if ¢ € @, the procedure ¢ in the original
game, given by ¢(x) = ¢(x') for every x, can be identified with ¢.

For each E and Fe <, let

(7.1) ME, F) =8Up, yeo_ Diver § L@, (V) — ¢(V), V)P (V) d(F — E)(w) .
Then, from Lemma 1 of I, for each £ and Fe <'and ¢ ¢ @,
(7.2) R.(F, ¢) — R(F) < A(E, F) + R.(E, ¢) — R(E).

The idea in what follows is that, if = is a “good” approximation to &£~ as
regards loss and density functions, we might use x,, - - -, x to estimate G but
use only x//, x,/, - - -, x,” when we play “c-Bayes against the estimate”.

8. Convergence theorems. In this section we prove convergence results for the
following class of procedures:

DerINITION 10. For G an estimator, let ® (G) = {¢: Vx, 3¢, € ®(G(x)) such
that, Vr, §,(x) = pu(,)}-

The results of this section are based on the inequality
(8.1) |R(6, $) — R(G)| < |R(8, ) — R(G)| + |R(G) — R(G)]

for any ¢ ¢ @K(G). In Lemmas 4 and 5 we deal with the first term on the right;
the second term is handled in Lemma 6.

LeEMMA 4. Let Q be totally bounded in the metric

d(w, 0') = sup{|L(w, a, V) — L(o', a, V)|: ac 4, Ver}.
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Let L(w, a, x) £ M < oo forall w, a and x, and let
d(r) = sup{|L(w, a, x) — L(w, a,y)|: 0eQ,ac 4, x' = y}.
Then, with 6 = d(x), n > 0 and y > O there exists N(n, v) such that
Py[SUPys vy, (WO, 6, %) — A(G(X), G)} > RAG) + ¢+ 53+ 7] <7,
for all 6 € Q= and all ¢ ¢ Q_(G).

Proor. Let E,, E,, - - -, E, be a partition of Q by sets of diameter <4 so that,
for each i, sup, |L(w, a, x) — L(«', a, x')| < 20 whenever w, o’ ¢ E;. For each i
let w; be an arbitrary fixed element of E,.

The proof is similar to that of Theorem 1. Let ¢ € ®_(F) for some F. Then
for any @, since |L(w, ¢(X'), x) — L(w;, ¢(x'), x")| < 20,
(8.2) W0, ¢, X) — N7 20 Dirio,e g Lo 9(%,), )| < 26

Let N, = N@,i) = Y, [0,€E], szi =N,7' Y Y. [0,¢€E]P, ., and for each
Deur,let Py (D) = N;' 1), [0, € E;][x,’ € D], so that P,_is the “average” dis-
tribution on r arising from the ¢,’s in E;, and P, is the corresponding empirical
distribution given by {x,”: 6, € E;}. Then (8.2) becomes

< 20

(8.3) 1 WO, 9.%) — BN § Lo §)dPy,

which implies |R(G, ¢) — 3™ (N,;/N) § L(w;, ¢) dPN,-I < 20. But|L(w, ¢(x'), x) —
L(w, ¢(x'), x")| £ 9, so |R(G, ¢) — R(G, ¢)| < d. Hence

(8.4) R(G,¢) = T 5§ Lws, 9) dP, | < 30.
From (8.3) and (8.4) we have
B.5) WO, 9.3 — R(G. )| =235 Lo, $)diPy, — Py | + 50

Let ¢ € @ (G) and let ¢, be the function guaranteed by Definition 10. Since
w(e, ¢, x) = W(8, ¢, x) for each x, we have, from (8.5) and using (7.2) and
the definition of ®_(F) to bound the random variable R (G, ¢,),

(8.6)  [WO.8.%) — RG] = N1 TSN, 0,1,%) + HC(9, G) + 50 + ¢

where S(N, 8, i,x) = M 3, .. [(Py, — Py )(V)]-

P, (V) istheaverage of N; independent Bernoulli random variables, and P‘Vi( V)
is the mean of this average; from this it is easy to show that E|(Py, — PN,;)( V)t =
§(Py, — Py )(V)|*dP, < 6N;%, s0 if m has ¢ elements

(8.7)  P,[supysy S(N, 0,i,%) > 7] < iy Dyex Poll(Pu, — P )(V)| > 1/qgM]
< Xy, 6¢Mi T = T(N/),  say,
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by the Markov inequality. Hence
R AR
< T P Uiy NES(N, 0.1,%) > yjm |
< 5 {P,[supNP,, SN, 8, i, x) > 7/m]

-+ Pa[:—ll\% SUPN,;<k S(N, 4,1, X) > n/mil}

for any k. The first summand is m*T(k); the second = 0 if N* > 2Mkm/[y; so
the sum — 0 as N’ — oo, proving the Lemma.

We shall need the following results in the proof of the next lemma. Only
outline proofs are given here; details can be found on pages 44-48 of [9]. For
both, A is a real-valued function on Q and «,(p) = sup {#(w) — Ae'): d(w, 0') < p},
where d is a metric on Q.

(a) The Prohorov metric on ] the set of probability distributions on a metric
space (Q, d), is given by

H*(E, F) — inf (3: E(4’) + 6 = E(A) for all closed 4 c Q}
where A’ = {w: for some o' € 4, d(w, ') < 0}.
Ifa < h(+) <a-+ Mthen|§ hd(E — F)| < Mp + a,(p), where p = H*(E, F).
The proof is accomplished by showing
§ hd(E — F) = \) Eh'[x > t] — Fh7'[x > ] dt
< W F[t— a(p) S x < 1] + pdt,
from which the result follows using Fubini’s theorem.

(b) The Lévy metric on the set of probability distributions on the real line is

given by
H(E, F) = inf {6: E(x — 0) — 0 < G(x) < F(x 4 0) + ¢ forall x}.

IfQcla,bl,c <h)<c+ Mand 2 >2p = 2H(E, F), then
b —

2

S hd(E — F)| < M| * %41 o + a3+ o) + @i+ 20)
where [x] is the integer part of x.

The proof of this is more complicated. The essential details are: construct
two partitions of [a, b], {x;} = {a + jo,j=1,---,k},and x/ < --- < x,/, where
k=1[b—a)2+1], |x; — x| < p and E(xy—) — p < Fx;) < E(x') + -
With y; = min{x;, x;} and z; = max {x;, x,'}, let h(x) = inf{h(w) : © € [y;,2;,,]N Q}
for x € (x;, x;,,). Let hy(x) take on the same value for x e (x,’, x},,), with ay(x,") =
max {hy(x,'—), hy(x;/+)}. It can then be shown that |h — h| < a,(4 + p),
|h — hy| < a,(2 +.20) and § h,dE — § hdF = — Mkp.



1180 ALLAN OATEN

LEMMA 5. If either (a) (Q, d) is a metric space and H*(G(x), G) — 0 a.e. [P,]
as N — oo for each 0 € Q, where H* is the Prohorov metric, or (b) Q is a subset of
the real line and H(G(x), G) — 0 a.e. [P,] as N — oo for each 0 € Q= where H is
the Levy metric; and if, in addition, Q and A are compact, L is jointly continuous
in w and a for each fixed x, and P (V) is continuous in o for each V ¢ x, then
A(G(x), G) — 0 a.e. [P,] for each 8, and the convergence is uniform in 6 if that of
G to Gis.

Proor. For any v and ¢ e ®_and Ve,
(8-8) Lo, (V) — V), V)P(V) — L(&', (V) — §(V), V)P, (V)]

< 2sup, |L(®, a, V) — L(o', a, V)| + M|P, (V) — P(V)|

where M = sup,, , , L(w, a, V) < oo. The right side of (8.8) — 0 uniformly as
o’ — o, because of the compactness and continuity conditions. Thus, with
= {L(w, w(V) — ¢(V), V)P(V): Ver; ¢,ve D} wehavesup,, a,(o) — 0as
o — 0.

The proof is completed by appealing to results (a) and (b) above.

Henceforth we assume that Q is separable in the metric dy(o, 0') =

SUp,.  |P(A) — P,(A)|, so the set of g-finite measures .7 = {u: P, L p for
all w € Q} is nonempty.

DerinITION 11. Leta(r) =inf ,a (7), wherea (x) = sup,a,,(7) = sup, § (f, —
fox)t dp, with f = dP, [dp and f, (x) = P,(x")/u(x") for each x.

DEerINITION 12. For each Ge ¥, let R(G) = inf R(G, ¢), where the infimum
is taken over all procedures ¢ for which R(G, ¢) existsand {§ L(w, ¢)f,,dpdG(w) =
3 L(w, )f, dG(w) dp.

RemARK. The class of procedures for which this change of order is valid does
not depend on , since (i) # can be taken to be equivalent to {P,: w € Q} because
of the separability, and (ii) if ¢ € v, {§dP,[dvL(w, ¢)dG(w)dv = § dujdv X
§ fol(®, $) dG(0) dv = §§ f, (o, $) dG(w) dp.

LeMMmA 6. Let L(w, a, X) < M for all w, a and x, and let 6 = o(rx) be as for
Lemma 4. Then with a = a(n), R(F) — R(F) £ Ma + 0 forall Fe <.

Proor. Let y# be any measure with P, « p for each w, let f, and f, beas in
Definition 11, and let ¢ be such that §§ L(w, ¢)f, dudF(0) = {§ L(v, §)f,dF(w)dp.
Then

R(F, ¢) = §§ {L(@, $(x), ') — d}f () dF(0) dp(x)
= §§ L(w, $(x), ¥)f () dF(@) dpu(x) — 5 .

Since L < M and f,(x) = f,.(¥) — (fo(¥) — f.(¥))*, we have
(8.9) R(F, ¢) + 0 = §§ Lo, $(x), X)f ,x(x) dF(w) dp(x)

— M§§ (for — fo)" dpdF(w) .
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The first term on the right is bounded below by

(8.10)  §inf,., § L(®, @, X')f,.(x) dF(w) dp()
= R(F) — M 5,0,-0 § Pu(V) dF(0)

To deal with the second term on the right of (8.9) we note that

S(ﬁu _fan:)+dnu - S(fa)ft _fw)+ d‘u = Z‘u(V)=oo S Vfwdﬂ + Z;z(V)<°° s V(fw _fanr) dﬂ
= Z/I(V)=°° Pa)( V) *
Thus, from Definition 11, a,(7) — X ,5)—w P(V) = § (fur — fu)" a1
Combining this with (8.9) and (8.10), R(F, ¢) + 6 = R(F) — Ma,(z). Since
¢ and p are arbitrary, the proof is complete.

CoROLLARY. R(G) = R.(G) — Ma — 0 for all e Q= This follows since G is
discrete so the change of order in Definition 12 is valid when either side exists.

We now combine the conditions of Lemmas 4, 5 and 6 to obtain

THEOREM 4. If Q X A is compact in a topology in which P (V') is continuous and
L(w, a, V) jointly continuous for each V € n and either (a) or (b) of Lemma 5 holds,
then there exists a function N(7, y, @) such that, for each ¢ ¢ ®_(G) and 0 € Q=,

Pa[supzv>1vm,r,a) W(0, $,Y) — R(G) >e¢+ Ma 4 60 + 1< r.
In addition, if the convergence of GtoGis uniform, N(u, v, @) = N(1, 1)-

CoOROLLARY. Under the conditions of Theorem 1, sup,_4, D(@, @) < o(1) + ¢ +
Ma + 66 as N — oo, for each @ ¢ Q= this bound is uniform in 0 if the convergence
of G is uniform.

Proor. Given 7 > 0 we have, by Theorem 4,
R0, $) = § W6, $)dP, < R(G) + ¢ + 7 + Ma + 65

if N > (9/2,7/2M, ), since W < M.

We remark, in concluding this section, that none of the results depend es-
sentially on the particular determination of L(w, a, x"), so any determination
will suffice.

9. Approximating the sample space by a finite partition. The usefulness of Theo-
rem 4 and its corollary depends on the availability of partitions for which a(x)
and d(r) are arbitrarily small.

LeEmMMA 7. Let P, & p withdP |dy = f,. Then for each o and a > O there is a
partition w,, such that «,(7) < « whenever x is a sub-partition of ..

Proor. Choose a, so that P (f,7'[0, a,]) < a/3. (We assume a < 3.) Let
a,=0, and a; = 3a;_,/(3 — a) = (3/(3 — a))’'a, for 1 < j<k where k =
min {j: P(f, '[a;, »]) < @/3}. Let a,,, = o0 and let =, = {V,-Vy, -+, V}}
where V; = f,7'[a;, a;,,]-



1182 ALLAN OATEN

Nowlet Vc V;, 1 < j< k;and xe V. Then
(fu(¥) = P(V)[(V))* = fu(0)(1 — a;_5/a;) < af (x)/3 .

Hence if 7 is a sub-partition of =,

(T) = Dyer § V(fo — PV)[(V)* dpe
= X5 ZVCVJ- § Vi,a/3dp + dp + Livevgur, § Vfdp < a.

Lemma 8. If Q is totally bounded in the metric d(w, »') = sup |P (4) — P,.(A)|,
then for any a > 0 there is a partition, «, of <2~ for which a(z) < a.

ProoF. Since Q is totally bounded in d it is separable, so for some o-finite p,
P, pforallweQ. Letf, =dP,/dy. Then d(w, o) =1 |f, — f.|de.

By Lemma 7 we can find, for each w, a partition r, such that () < a/2
whenever r is a sub-partition of r,. For any o, o’ and any =

LS VIlfo = PAW)[e(V)) = (for — PuAV)[(V))*| dpe
< ZANVIfo — foldp + S VIP(V) (V) — P, (V)[i(V)| dp}
the second summand on the right being bounded by |P (V) — P, (V)| which is
= S V'.fa) _fw’l d:u' Hence a/.:w(n.) - ayw’(n‘) = 2 s |fw _fw’I dtu = 4d((1), (1)’).
Let U, - .., U, be a covering of Q by spheres of d-diameter <«/8 with v, € U;,
i=1,2, ..., k, arbitrary. Then if r is any finite sub-partition of Tap * %> Ty
we have a,,(¢) < a,,,(7) 4 4d(w, w;) < a for w e U+ Hence a,(r) < a. Since
a(r) < a,(r) the lemma is proved.

ReMark 1. If a(z) < « for some = and d(x,) < 6 for some =, then a(r,) < «
and d(r,) < 0 for any sub-partition, r,, of = and x,. Obviously d(x) = 0 for all
= if L is independent of x.

REMARK 2. The condition of Lemma 8 holds for many families. Scheffé’s
theorem, that § |f, — f,.|dy — 0 if, for every F with p(F) < oo, p[F N {x:
|[fo(@) — fu(%)] > n}] — O for all » > 0, serves to establish total boundedness—
usually compactness—in many cases.

For example, let T map 22 into E*, u be a o-finite measure on &2~ and © =
{we E*: { e*"dy < oo} where oT is an inner product. The class of densities
{C(w)e*"™ : w € B}, where C(w) = [§ e*” dp]™, is the exponential family on 22~
generated by T and p. The well-known continuity of Cin @°, the interior of O,
implies f,(x) — f,(x) for all x and all o’ € ©°, so by Scheffé’s theorem any com-
pact subset of ©° satisfies the condition of Lemma 8.

Again, let { pdv = 1 where, for ¢ Lebesgue measure on E*, v € ¢ and dv/dp
is bounded. Let f,(x) = p(x — ), w € E*. Then § |f, — f, /| dv — 0 uniformly
as o — o', so our condition is satisfied if Q is any bounded subset of E*.

REMARK 3. In both of the above examples we also have |P,(B) — P,.(B)| — 0
uniformly as @’ — . In Lemma 5 this was obtained from the compactness of
Q and used in showing A(F, G) — 0 as H(F, G)(or H*(F, G)) — 0. However, the
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requirement that sup, , |[L(w, a, V) — L(o’, a, V)| — 0 uniformly still seems to
need separate treatment.

REMARK 4. The problem of estimating G is, in the main, still outstanding.
Robbins [12] discusses the general problem of estimating a prior distribution
function G and, under some reasonable assumptions, demonstrates the conver-
gence on the continuity set of G of a certain type of estimator. He gives no
explicit method for obtaining this type of estimator, but Deely and Kruse [1],
with the additional assumption that F,(x) is continuous in x for each w, exhibit
a method of finding an estimator satisfying Robbins’ condition. Finally, Fox
[2], in the cases (a) @ = (0, co) and P, uniform on (0, ) and (b) Q@ = (— o0, o)
and P, uniform on (w, ® + 1), exhibits estimates of G'Y> which converge [P,]
in the Lévy sense under conditions considerably weaker than the boundedness
of Q (he gives similar results for the estimation of a prior).

REMARK 5. Apart from the estimation problem, the procedures discussed here
present the practical problems of choosing an appropriate partition, =, and of
obtaining the values P,(¥) for each Ve and w € Q.

However there are many practical situations in which it is necessary either to
round off the observations or to round off the values of f,(x) when x is observed.
This implies a partition which may be adequate. Let = = {V, ---, V,} be, as
in Lemma 8, a sub-partition of each of the =, of Lemma 7. For each w € Q and
Ver, let

JAV) =infop fu(x) if sup,ey fu(x) > 3inf,c, fu(¥)/(3 — @)
= arbitrary, with inf, f,(x) < f,*(V) < sup, f,(x) otherwise.

Let @_*(F) be the collection of procedures which, when x is observed, assign

mass 1 to the set
{a: § L(w, a — b, X', *(X')u(x") dF(w) < n/k for all be A},

assigning arbitrarily if f,(x") = 0 for all w.

Suppose ¢ € ® *(F) and that R, (F, ¢,) < R(F) + 1/n. Then

R(F, ¢) = Zyes § L@, $(V), V)P(V) dF(w)
< Zver § Lo, ¢(V), V)f*(V)(V) dF(w)
+ M Ty § (PuV) — L5 V)(V) " dF (o) .
The first term on the right is bounded by
Zyex § L@, ¢,(V), VIf*(V)(V) dF(@) + 7
S Zvee § L@, u(V), V)P(V) dF(w)
+ M Zyer § (PulV) — f*V)(V))~ dF(@) .

Thus, letting n — oo,
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The last term on the right is bounded by

Msup, Ziye. |[Pu(V) — f*(V)e(V)| < M sup, § |fu(x) — f,*(X)] dpe ,

which, by an argument parallel to that of Lemma 7, is bounded by Ma. Thus
R.(F, ¢) < R(F) + n + M so that ¢ ¢ O(F) for n and « sufficiently small. Hence
our results apply to procedures which are based on f,_ *(x') instead of P (x).
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