The Annals of Mathematical Statistics
1972, Vol. 43, No. 4, 1147-1154

FURTHER REMARKS ON SEQUENTIAL ESTIMATION:
THE EXPONENTIAL CASE!

By NORMAN STARR AND MICHAEL WOODROOFE
The University of Michigan

A sequential procedure for estimating the mean of an exponential dis-
tribution is proposed. It is shown to perform well for large values of the
mean, and the results of a Monte Carlo study indicate that it also performs
well for moderate values of the mean.

1. Introduction. Let x,, x,, - - - be independent random variables with com-
mon exponential density defined by

1
f(X)=?eXP(—X//J), x>0,
where g > 0 is unknown. Given a sample x,, - .-, x, of size k = 1, we shall
estimate p by %, = (x; + - - - + x,)/k, incurring the loss
(1) L= A%, = p) + k.

Here 4 > 0 is chosen in advance of experimentation to express the weight
that the experimenter assigns to estimation error relative to sampling costs.

The expected loss E(L,) = (1/k)A;* + k is minimized by taking a sample of
size k = ¢, where by definition ¢ = A*x and we have treated k as a continuous
variable. The minimum expected loss is then

B, = Abp + Ap=c+c=2c.

Thus, the minimum expected loss is equally divided between losses assignable
to estimation error and the cost of sampling.

Of course, since it is the parameter # which we wish to estimate, the optimal
sample size ¢ is unknown. However, as a possible measure of the efficiency of
any procedure for estimating z, we may compare the expected loss 3, arising
from the particular procedure with 8,. We shall give a sequential procedure
which determines the sample size as a random variable in such a manner that
the regret R,, defined by R, = $, — B,, is small for all ¢ > 0.

Procedures similar to the one which we shall propose have been discussed in
[4], [5], and [7] for normal observations. There the sample size n was de-
termined by estimating the variance of x; at each stage, so that, as a consequence
of normality, the estimate %, and the event that n = k were independent for
every k. Similarly, we shall also determine the sample size by estimating the
variance of x; at each stage, but since the variance is now ¢?, ¥, and the event
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{n = k} will be highly dependent in our case. This presents several additional
difficulties in the analysis of the regret.

2. The Procedure. We define our sample size n to be the least integer k = m
for which k > A} - %, where the starting sample size m > 2 is at the disposal of
the experimenter. In the sequel, we shall see that the choice of m plays a
crucial role in determining the efficiency of the procedure.

When sampling is terminated, we will have observed x, - .-, x, and will
estimate ¢ by %,, incurring the loss L, defined by (1). The expected loss is then
B = AE[(%, — uf) + En)

which is easily seen to be a function of ¢ alone.

Although it follows from the results of [6] that E(%,) < s, there is still reason
to believe that our procedure should be efficient. To see why this is so, consider
the transformation y, = x;/¢, j= 1,2, ---. The y; are then independent, ex-
ponentially distributed random variables with common expectation one. More-
over, At . ¥, = ¢j,, so that

2) n = least k = m for which k = c¢j,,
and the resulting loss becomes L, = c*( )7”’— 1)* + n. Therefore,
3) Pr(L, < B;) = Pr(c(y, — 1)* + n < 20)
=Pr(ct|p, — 1] < (2 — nfc)t).
Now, as ¢ — oo, nfc — 1 w.p. 1 ([3]), and ¢}(y, — 1) has a limiting standard
normal distribution ([1]). Therefore, from (3) we have
limPr (L, < ) =2®(1) — 1 = .683

as ¢ — oo. Here @ defines the standard normal distribution function. There-
fore, approximately 689 of experiments in which the sequential procedure is
used will result in losses less than §,.

Concerning the regret, we shall show in the next section that R, is bounded
as ¢ — oo, and in Section 4 we shall present the results of a Monte Carlo simula-
tion for several moderate values of c. We shall see there that the magnitude of
R, for moderate ¢ depends crucially on the choice of the starting sample size 7.
Indeed, we have already excluded the choice m = 1 from our sampling plan,
for in this case R, — oo as ¢ — oo, as we shall also show in Section 3. It
appears from the Monte Carlo simulation that in the absence of prior informa-
tion about ¢, m = 4 or 5 is a reasonable choice of the starting sample size.

3. The Regret for large c.
THEOREM. Let n be defined by (2). Then, R, < 0(1) as ¢ — oo.

The proof of the theorem depends on several lemmas.

LemMMA 1. E(n) — ¢ < O(1) as ¢ — oo.
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The proof of the lemma is given in [6]. Indeed, it is shown in [6] that
En) —c =1 4+ mPr(cp, £k, for all k = m), so that limsup (E(n) —c) < 1

as ¢ — oo.
LemMMA 2. E(7) < (¢ + m)E(n).

Proor. From the definition of » and the fact that the y, are nonnegative, we
have (n — 12 < e(y,+---+y,) on {r>m}. Moreover, for any m = 2,
n—nmm < (n— 1)}, so that n* —nm < e(y, +---+ p,) w.p. 1.  The lemma
now follows from Wald’s lemma.

LemMA 3. Let p = m be an integer. Then, Pr (p < n<c/2) = O(c™®) as c— co.

Proor. The proof may be developed along lines similar to those of [5].
Sketching it, we have

Pr(p<n<cf2)= 22, Pr(n=k)
< T2, Pr ey, < k)
|
/2 (ke __~ _ xk-le—z
22, 8¢ k) e x

erc? Z;/:p kp+15kk—p s

“4)

IA

IA

where 6, = (k/c)e*~*/?. Since d, < (1/2)et < | for k < ¢/2, the last summation
in (4) converges to a finite limit as ¢ — oo, and the lemma follows.
LemMA 4. Fork = 1, E[(n — ¢)*] = O(c*) as ¢ — oo.

The lemma may be proved by a martingale argument similar to that given
in [7] for a related problem.

CorOLLARY 1. E(r) = ¢ + O(l) as ¢ — co.

Proor. From (2) and Wald’s Lemma, we have E(n*) = cE(n). Therefore,
by Lemma 4, O(c) = E[(n — ¢)’] = E(n*) — 2cE(n) + ¢* = ¢* — cE(n), as
asserted. Lemma 4 and Corollary 1 yield stronger conclusions: see Section 3.

Letz, =k(,— )=y, +---+py, — k, k = 1. Then, we have

Lemma 5. (i) E(z,}) = ¢ + O(1); (ii) E(z,®) = O(c); and (iii) E(z,') < O(c?)

as ¢ — ©oo.
Proor. We rely heavily on the results of [2], which imply
E(z,) = E(n) and E(z,*) = 3E(nz,) + 7E(n)

where y > 0. Thus, (i) follows from Lemma 1 and Corollary 1, and (ii) will
follow if we can show that E(rz,) = 0. To see this observe first that since

|k §usi 2. AP < Kk(§ z,°dP)} Pr (n > k)t
<kiPr(n>k)}—-0 as k— oo,
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we may safely write
E(nz,) = 2Diew[(k — 1) $asim1 2o dP — k §,5, 2, dP]
+ 2em-1 Susk Ze dP

The first sum obviously telescopes to zero, while the second is nonnegative by
the results of [6].

To prove (iii), observe that from [2], E(z,') < 6E(nz,’) + 4yE(nz,) + 0E(n)
where y and § are positive. Therefore, by the Schwarz Inequality and Lemmas
1 and 2, we have

E(z,) < 6E(n))* E(z,")! + 4rE(m)! E(z,”)* + O(c)
< O(c)E(z,")t + O(c?) .
A contradiction now follows easily from the assumption that lim sup c2E(z,*) =

oo, thus completing the proof of the lemma.
Returning to the proof of the theorem, we observe that the regret is

R, = GE[(§, — 1f] — ¢ + E(n) —c.

By Lemma 1, E(n) — ¢ = O(1), so it will suffice to show E(S,) < ¢ + O(1),
where S, = ¢y, — 1)%.. With z, as defined above, we have
S, =c¢nz2=2z"+ ("t — 1)z,2.

Therefore, by Lemma 5, it will suffice to show that E[(c’n™* — 1)z,’] < O(1).
Expanding ¢*»~? — 1 as a function of n about n = ¢, yields
3) (¢n? — 1)z’ = —<£> (n — ¢)z,* + 3c*d~*(n — ¢)’z,’,

c
where d lies between ¢ and n. Let

U =—c'(n—c)z? and V,=cd*(n—c)z,’.

Then, it will suffice to show that E(U,) < O(1) and E(V,) = O(1).
To see that E(U,) < O(1), observe that n — ¢ = ¢j, — ¢ = cz,/n by definition
of n and z,. Therefore,

0.5 -(3)se= (1) (55
n c nc
The expectation of —c¢~'z,? is at most O(1) by Lemma 5 (ii). To analyze the
expectation of (n — c)z,*/nc write

© B[ )] = S ()00

+ Sn>c/2 (n — c> zn3 dP .

nc

Now, on n < ¢/2 we have j, < 1 by (2), so that 0 < —z, < n. Therefore, the
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first integral on the right side of (6) is bounded in absolute value by
Sogep W dP < *Pr(n < cf2) = O(1) .

Moreover, by Holder’s Inequality, the absolute value of the second integral on
the right side of (6) is at most

20 E[(n — ¢ }1E(z,)}
which is O(1) by Lemmas 4 and 5.
To see that E(V,) = O(1), again write
(7 E(V,) = $psep d-4(n — )z, dP
+ Susep C*d(n — c)’z,>dP .
It follows easily from (5) that on n < ¢/2, d* = ()m*c* > ¢*, so that the first
integral on the right side of (7) is at most
Sogep (m — €)’2,2dP = §,y, (n — c)’z,>dP
+ s2m<n5012 (n - C)2Z,n2 dpP
< 4m*c?Pr(n < 2m) + ¢*Pr(2m < n < ¢/2),

which is O(1) by Lemma 3. Here we used the fact that for k < ¢/2, n < k
implies z,> < k. Finally, since d > ¢/2 on n > ¢/2, the second integral on the
right side of (7) is at most

16cE[(n — ¢)’z,}] < 16¢2E[(n — ¢)*]}E(z,*)},

which is O(1) by Lemma 4 and 5. This completes the proof of the theorem.

We will now show that if m = I in (2), then R, — co as ¢ — co, in contra-
distinction to the result of our theorem. To see this write R, = ¢*E[(y, — 1)*] —
¢ + E(n) — c, as in the proof of the theorem. Moreover, when m = 1, it is
still true that E(n) = ¢ + O(1), so it will suffice to show that when m =1,
CE[(J, — 1)}] — ¢ — o0 as ¢ — oo. To see this write
(8) CE[(y — 1)) = ¢ §uca 0 — 1)°dP

+ ¢ $asi (Ju — 1)7dP.

The first integral on the right side of (8) equals
9) —(e7Ve  cHete — 1)) = ¢ + 0(1).

To determine the asymptotic behavior of the second, observe that ¢(y, — 1)
has limiting chi-square distribution with one degree of freedom as ¢ — co.
Therefore,

(10) liminf §,., ¢(j, — 1)*dP = 1

as ¢ — oo by Fatouw’s Lemma. Equations (8), (9), and (10) combine to give the
desired conclusion.

4. The Regret for moderate ¢. In order to study the procedure for moderate
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values of ¢, standard exponential deviates were generated on a computer and
5000 values of n, y,, and L, computed form = 2, - - -, 16 and for various values
of c¢. The results are tabled below. In cases where the computations for several
consecutive values of m produced the same values of n, y,, and L,, these values
were given for the smallest of the several values of m.

It is noteworthy that when m = 2, the regret is always nearly twice as large
as when m = 4. The reason for this is easily understood. For example, when
m = 2 and ¢ = 100, the probability that n = m is

Pr(n =m) = Pr(y + y, < .04)
= {* xe~*dx ~ 0.0008 ,
so that we may expect the event » = m to occur about 4 times in 5000 runs.
But n = m implies y, < 0.02 in which case L, exceeds ¢*(1 — j,)* = 9604. On
the other hand, when m = 4 and ¢ = 100,
Pr(n = m) = {;** ()x*e* dx < 0.000027 ,

so that we may expect the event n = m to occur fewer than 3 times in every
100,000 repetitions of the procedure.

With the exception of the case ¢ = 25, the choices m = 4 and m = 5 seem
to do about as well as can be anticipated. In the absence of prior information,
we recommend their use in practice.

n J R

mean st. dev. mean " st. dev. mean cst. dev.
c=10
m=2 9.19 3.76 .849 .37 5.36 19.8
m=23 9.45 3.49 .873 .35 3.14 16.3
m= 9.61 3.30 .888 .33 1.88 14.3
m=1>5 9.78 3.11 .901 .32 0.90 13.1
m =10 11.25 1.79 .963 .27 —1.48 10.5
m=15 15.07 0.38 .999 .25 1.37 9.1
¢c =25
m=2 24.12 6.06 .936 .24 13.18 79.0
m=23 24.31 5.69 .943 .23 8.47 61.5
m = 24.39 5.54 .946 .22 6.57 53.5
m=235 24.42 5.47 .948 .22 5.76 49.9
m = 10 24.52 5.28 .951 .21 3.81 42.1
m=15 24.66 5.00 .955 .20 1.70 35.6
C = 50
m= 49.72 7.92 .979 .16 13.10 167
m = 49 .87 7.45 .983 .15 5.98 108
m = 49.89 7.40 . .983 .15 5.05 98

(cont.)
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n y R

mean st. dev. mean " st. dev. mean st. dev.

C = 50

m= 49.92 7.32 .984 .15 3.82 84
m =16 49.92 7.31 .984 .15 3.70 82
c = 100

m=2 99.50 10.6 .988 .10 12.40 359
m=23 99.52 10.6 .988 .10 10.33 329
m=4 99.61 10.0 .989 .10 1.05 145
c = 150

m=2 149.94 12.7 .995 .08 11.94 488
m= 149.97 12.5 .995 .08 7.61 380
m= 150.00 12.3 .995 .08 3.18 218
¢ = 200

m=2 199.53 14.6 .994 .07 13.70 630
m=23 199.62 14.1 .994 .07 —1.98 284

5. Concluding remarks.

1. We do not know whether R, is nonnegative for all ¢ > 0, or not. The
negative value —1.48 when m = ¢ = 10 appears too large to be due to chance,
while the negative value —1.98 when m = 3 and ¢ = 200 does not. In any
case R, —» mas ¢ — 0, and lim §,/B, = 1 as ¢ — oco.

2. The methodology here developed applies also to estimating a normal
variance. Let w;, w,, --- be independent random variables having a common
normal distribution with unknown mean ¢ and unknown variance ¢%, and
suppose that by estimating ¢* with 5,° = (w? +.-- 4 w,?> — kw?)/(k — 1) we
incur the loss

L, = A(s® — o* + k.

The expected loss is minimized, among fixed sample size procedures, by taking
k = (2A4)t . ¢* + 1 observations, in which case the expected loss is 8, = 4¢ + 1
with ¢ = ¢%(4/2)}. We determine a random sample size j by j= least odd
integer k = m for which k = (24)t - s,> + 1. (We permit stopping only with
an odd number of observations in order to expedite the analysis.) Write j, =
S31/0% Then, J,, ,, - - - has the same distribution as the sequence of successive
averages of standard exponential random variables, and j= 2n + 1, where
n = least integer k = m’ for which k > ¢y, and m’ = (m — 1)/2. Moreover,

B. = E(L;) = AE(s};,, — 0% + E())
= 2[CE(j,} — 1) + Em)] + 1.

Therefore, if m’ > 2(m = 5), then the regret R, = 8, — B, = 2[c*E(j,* — 1)* —
¢ + E(n — c)] is bounded above as ¢ — oo by the theorem of Section 3.
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3. The referee has remarked that stronger conclusions are possible in Lemma
4 and Corollary 1 than were given, namely

(11) Em)zc—1—2c% + O(c™)
(12) Var (n) < ¢ + 2¢t + 0(1) .

To see this, observe that since ny, = (n — 1)j,_, = (n — 1)}/c on n > m.
Consequently, n > m impliesn —c 2 ¢(j, — 1) = (n — 1))/n —c=n—c — 2,
so that

h—c—1<clp,— 1|+ 1=8}+1.

Therefore, E[(n — ¢ — 1)’] < E(S,) + 2E(S)t + 1 + mPr(n = m) < ¢ + 2¢t +
O(1). (11) now follows as in the proof of Corollary I, and then (12) follows
from Var (n) = E[(n — ¢ + 1)’] — (E(n) — ¢ + 1)

Acknowledgment. We wish to thank the referee for the above remark and for
his careful reading of our manuscript. We also thank Mr. Martin Weinrich
for his assistance with the computation.
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