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ROBBINS-MONRO PROCEDURE WITH BOTH VARIABLES
SUBJECT TO EXPERIMENTAL ERROR

By Vicrav DupPa¢ aAND FRANTISEK KRAL

Charles University, Prague, and College of Chemical
Technology, Pardubice

The limiting behavior of the one-dimensional RM procedure is inves-
tigated when the prescribed x-levels of sequential experiments can be
realized with random errors only. The errors of constant variance and of
variance decreasing to zero are studied in Sections 2 and 3, respectively.

0. Introduction. In the Robbins-Monro procedure for finding the root of the
equation M(x)=0 it is assumed that for each x the’value M(x) is observable
subject to an experimental error (with zero expectation). However, situations
may occur where even the precise setting of the x-level of an experiment is
impossible without error. These situations are studied in the present paper;
Section 2 deals with errors unaffected by the experimenter, while in Section 3
it is assumed that the error in x-level can be made arbitrarily small for an in-
versely proportional price. In the latter case, it is intuitively clear that it is
needless to pay for high precision at the starting steps of the procedure; the
precision should be increased in the course of the approximation process.

1. Assumptions and notation. Let U, and V, be two families of random varia-
bles, the parameter space being the real line R. For each Borel set A4, let the
probability distributions PU=(4), P'+(A) be measurable functions of x. Further
suppose EU, = EV, = 0 for all xe R.

Let M(x) be a measurable function, let § be the unique root of M(x) =0,
the location of which is to be found.

Let us define the RM procedure with errors in setting the x-levels as follows:

Let x, be a constant or a rv with Ex,?> < -+ oco; for n = 1 set recursively

(1'1) Xnt1 = Xp — an(M(x'n + un) + vn) ’
where a,, n > 1, is a sequence of positive numbers satisfying

2ime1 @, = + 00, Dime1 @ < 4o,

u,,n > 1, are rv’s whose conditional distributions, given x,, u;, « + -, #,_;, ¥y, * -+,
v,_,, coincide with those of U, , and v,, n > 1, are rv’s whose conditional dis-
tributions, given x,,u,, ---,u,, v, -++, v, ,, coincide with those of V, ., .
(Note that x, are uniquely determined by X,, u;, « -+, Uy, Uy, « -5 Vp_y2)

Throughout the paper, C, C,, C,, - -- will denote positive constants. The
symbols O and O~ will denote the upper and lower order estimates, i.e., for
sequences of positive numbers, f, = O(g,) will stand for f, < Cg,, n = 1, and
fu=07g,) for f, = Cg,, n = 1.
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2. Case of irreducible errors. The usual conditions ensuring the convergence
of RM method are no more sufficient for the convergence of the sequence (1.1).
(See Remark 2.1 below.) A set of strengthened conditions is given in the
following

THEOREM 2.1. Suppose the following conditions are satisfied:

(2.1) M is odd with respect to 0, i.e.,
MO + u) = — MO — u) forall uz=0;

(2.2) M s strictly increasing;
(2.3) |M(x,) — M(x)] < C, + Cy|x, — x| forall x,x,eR;
(2.4) U, is a symmetric rv for each xe R, i.e.,

PU,fu)y=PU,= —u) forall uecR;
(2.5) Var U, £ C, foreach xeR;
(2.6) VarV, < C, forall xeR.

Then x, converges to 0 with probability 1 as well as in mean-square.

Proor. Introducing the function
2.7 M*(x) = EM(x + U,), xXeR,
we may rewrite (1.1) as
(1.1y Xppr = X, — A, M*(x,) — a,y, ,

where y, stands for M(x, + u,) — M*(x,) + v,.
We have E(y,|x,) = 0; to see that, take first the conditional expectation of y,
given x,, u,, make use of E(v,|x,, u,) = 0and then take conditional expectation
given x, only. Thus (1.1) may be viewed as the usual RM procedure for finding
the root of M*(x) = 0. We first observe that M*(x) is defined for all x € R (this
follows from (2.3) and (2.5)), and that 6, the root of M, is a root of M*, too,
(this is a consequence of (2.1) and (2.4)). Further, M*(x) is a measurable func-
tion, as follows from the measurability of PVs.

To prove the convergence x, — 6 (w.p. 1 and in mean-square), we shall use
Dvoretzky Theorem, specialized for the RM method in Result 1 of [3], page 50.
That means to prove

(2.8) By, < Gy, nzl;
(2.9) |M*(x)| < Cy|x| + C;, XeR;
(2.10) inf,_,,, M*(x) >0, SUp, _s<—, M*(x) < 0 for every 7 > 0.
We first show that Var M(x 4 U,) is bounded. By (2.3) we have

IM(x + U,) — M()| = C, + GJU.,
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hence

VarM(x + U,) < E(M(x 4+ U,) — M(x))* < 2C* + 2C’EU * < 2C* + 2CC, .
Now, by (2.6)

E(y,| %0 u,) < (M(x, + u,) — M*(x,)} + Cy
hence (2.8) follows:
E(y,’) < 2C? 4+ 2C2C; + C(= C;, say).

To prove (2.9), we first use (2.4) and (2.1) to rewrite M*(x) as

(2.11)  M*(x) = § M(x + u)PV=(du) = M(x)P(U, = 0)
+ Sco by {M(x + 1) + M(x — u)}P75(du) = M(x)P(U, = 0)
+ S0 e (MW + (x — 0)) — M(w — (x — 0)}P"=(dw) ,

with W, = U, + 4.
Hence, by (2.3), |M*(x)| £ C, + 2C,|x — 0| follows.

To prove (2.10), let » > 0 be given; then for each x > 6 + 75, the relation
(2.11) together with the monotoneity of M imply
(2.12)  M¥(x) = M@ + 7)P(U, = 0)

, + S0, 400 (MW + 1) — M(w — 9)}P7=(dw) .
By éebyéev inequality, P(|U,| < C,) = 4 for a C;, and the integrand in (2.12)
is bounded from below by a C(7) > 0 on (6, & + C], as follows from the strict
monotoneity of M. Owing to the symmetry of U,, we thus obtain
M*(x) = } min (M(0 + 1), C()) -

Hence inf,_,,, M*(x) > 0. The inequality sup,_,._, M*(x) < O follows in the
same way.

REMARK 2.1. The assumptions of the oddness of M and of the symmetry of
U, are essential; if either is violated, then the approximations x, may converge
to a value different from 6, since M*(@) is, in general, no longer zero.

REeMARK 2.2. If in addition to (2.4) and (2.5), the distribution of U, is inde-
pendent of x, then (2.2) can be weakened to

2.2y M is non-decreasing for all xe R and PY(u: M is [at least one-
sidedly] increasing at ¢ + u) > 0.

The proof of the Remarks is immediate. As an illustration to Remark 2.2
consider the following

ExAaMPLE. Let M(x) =signx, V, =0, P(U, = 1) = P(U, = —1) = 4, forall
xeR. Then x, does not converge (as M*(x) =0 for all —1 < x< 1). If
however in the same example, U, = 1,0, 1 with respective probabilities (1 — p),
p> (1 — p)(p > 0), then x, — 0 w.p. 1 and in mean-square, as now condition
(2.2)' is fulfilled.
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3. Case of reducible errors. We shall retain the overall assumptions of Section
1, but we shall allow the rv’s U, to depend on n as well, denoting them by
U, We shall understand that the conditional distribution of u, is that of U, ,.

THEOREM 3.1. Suppose the following conditions are satisfied:

3.1 IM(x)| < Cj|x| + C,,  forall xeR;

(3.2) inf, _,,, M(x) >0, sup, ,._,M(x) <O, forevery 7 >0;
3.3) Ul < K71 for some 0 < K, / +oo andforall xeR;
(3.4) VarV, < C, forall xeR.

Then x, — 6 with probability 1 and in mean-square.

Proor. This time we shall refer to the Generalization 5 of Dvoretzky Theorem
([3] page 49). Defining random transformations

3.5) T.(xX)=x—a,Mx+U,,),
we may rewrite (1.1) as
X1 = n(xn) — a7, .
The conditions laid by the cited theorem upon v, are satisfied: Denoting by
t, the value assumed by 7',(x,), we have E(v,|x,, t,) = 0, as E(v,|x,, t,, u,) = 0;
further, E(v,*) < C,, according to (3.4).

It remains to investigate the transformations T,. Let o, and 7,, n > 1, be
two null sequences of positive numbers such that

Zfr’:;l anpn - +OO and inf[m—0|>1],n IM(x), > ‘O,n .
If |x — 0] < 5, + K,7", then (according to (3.1) and (3.3))

(3.6) T (x) — 0| <7, + K, + Cpa, = a,(say);
if |x — 0] > », + K, then
(37) |Tn(x) - 0[ é lx - 0' — QP s

owing to (3.2) and the definition of p,. Thus we have (combining (3.6) and
(3.7))

|T,(x) — 0| £ max (a,, |x — 0| — a,p,), n=>1,

with @, — 0 and }] a,p, = + oo and for all x € R and all realizations of T,(x).
But this is the condition required by the cited theorem. []

In the sequel, we shall replace the condition of uniform boundedness of U, ,
by a null sequence, by an analogous condition on variances:

(3.8) VarU,, < K,”* forsome 0< K, /~ +oco andforall xeR.

n,r =

An analog to Theorem 3.1 can be proved then for a slightly less general class
of functions M; but instead of that, we shall investigate a special case in more
detail and by different tools.
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We shall denote
N=Z$=1Km’ n;l,

(the total cost of first # experiments) and we shall study the asymptotic behavior
of the mean-square error

B, = E(x, — 0)*
as a function of N, for N running to infinity through partial sums of the K,,’s.
THEOREM 3.2. Suppose conditions (3.4) and (3.8) are satisfied. Further suppose
(3.9) Cy < (M(x%,) — M(x))/(%, — %) £ Cyy, X, % €R;
(3.10) a, =an™*, nz1 with a> (2Cy)™"; .
(3.11) K, = C,n~, n=1 with a>0.
Then

(3.12) B, = O(N-«lt+a) 0O<ac<l,
— O(N—ll(1+a)) a g 1 R

and the choice a = 1 (leading to B, = O(N~?Y)) is optimal in the following sense:
If a = 1, then there exist U,, V,, M(x), satisfying all the conditions of the theorem
and such that

(3.13) B, = O7(N-#+) for some ¢ > 0.

Proor. From (1.1) we get by subtracting #, squaring, taking conditional ex-
pectations and using the basic assumptions

(14)  E(¥pn — 0)'| %) = (3, — 0)" — 2a,(x, — O)E(M(x, + u,)|x,)
+ @ E(M(x, + u,)| %) + a’E(v,}| %) .
Denoting by 0, . the middle term of (3.9), we can write
Mx + U,.) = @oo(* — 0) + Quoir,  Une»
hence (using (3.8), (3.9) and Schwarz inequality)
(¥ — OBM(x + U,,)) = Cy(x — 0) — CuK,7Hx — 0]
and also
E(M(x + U,.) = 2C{(x — 0)' + K,7'} .
Inserting these inequalities into (3.14) and applying (3.4) to its last term, we get
(3.15)  E((xp — 0y %) = (1 — 2Cya, + 2Ca,%)(x, — 0)
+ 2C,K,ta,|x, — 0] + a,}(2C, K, 4+ C,) .
Now, take expectations on both sides of (3.15), then apply the inequality
E(X)) = 7 + 17 EX) 7>0,
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to rv’s x, — 6 with
Ny = 2C14/(TC13K7}) s r > 0.

Finally, insert for a, and K, from (3.10), (3.11) and choose 7 so that (2—7)Cy,a> 1
holds and so that the inequality resulting (after the indicated operations) from
(3.15) remains true (at least for lange n) even if the term of order a,2E(x, — 6)?
is deleted. Denoting E(x, — 0)* as b, when considered as a function of n, we
thus get

(3.16) b, < (1 — (2 — y)Cyaln)b, + Cyua/nt+* + C,a*/n?, n=n,.
Hence by a lemma due to Chung ([1] Lemma 1) we get

b, = O(1/n%), . O<ax<l,

= O(1/n), a=1;

since N = 3% _ K, = Cyn'**(i.e., n = C5!NV+) the assertion (3.12) follows.
The optimality proof is similar to that of Theorem 3 in [2]: If @ > 1, choose
U, =0, xe R, V, satisfying (3.4) and Var V, < C,, x € R, and M satisfying (3.9).
Then starting from (3.14) we obtain
b'n+1 2 (1 - 2C14a/n)bn + Cwaz/n2 :

Hence, by [1], Lemma 2, b, = C,/n, n > 1, i.e., By = C,/N""+* which gives
(3.13),as 1/(1 + a) < &.

If « <1, choose P(U,,=n"")=PU,,=—n?)=4%4 V,=0, xeR;
M(x) = 2x for x < 0, M(x) = xforx > 0. (Thusf =0, C, =1, C,, =2, etc.)
After easy calculations we get
(3.17) EMx -+ U,,)) < 3x/2 — 1]2n*?),

(3.18) xE(M(x + U, ,)) £ 2x* — x/(2n*'?),
for all xe R. Combining (3.17) with the obvious relation E(x,,,) = E(x,) —
an 'E(M(x, + u,)), we have
B(%,1) = (1 — 3a/2n)E(x,) + a2n+P)
hence E(x,) = 1/(3n*?), n = n,, according to [1], Lemma 2, taking into account

that 0 < a <1, a > 4. Inserting the last inequality into (3.18), we get
E(x,M(x, + u,)) £ 2E(x,*) — 1/(6n"), and using this in (3.14),
b,.. = (1 — 4a/n)b, + a/(3n'*+), nx=n.
Hence, by the same lemma, b, > C,/n", i.e., B, = C,/N*/"*® which again gives
(3.13), asnow a/(1 + a) < L. [0
THEOREM 3.3. If the conditions of Theorem 3.2 are satisfied and if further the
second derivative of M exists and is bounded for all x € R, then
BN — O(N—za/(1+a)) 0 <
— O(N—1/(1+a))

D= Q
A 1A
R



STOCHASTIC APPROXIMATION PROCEDURE 1095

The choice a = % (leading to B, = O(N~Y)) is optimal, i.e., if a + %, then there
exist U,, V,, M(x), satisfying all the conditions of the theorem and such that

B, = O }(N-¥+) for some &> 0.
Proor. The proof is similar to that of Theorem 4 in [2] and will be omitted.

4. Generalization. The problem studied in the present paper can be formu-
lated also for the Kiefer-Wolfowitz procedure for finding the maximum of a
function. However, the results are of a very limited importance, since the
presence of errors in setting the x-levels makes KW procedure practically in-
applicable. On the other hand, a generalization to multidimensional RM pro-
cedure might be of interest.
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