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A THEOREM ON OBSTRUCTIVE DISTRIBUTIONS!

By R. A. WIISMAN

University of Illinois at Urbana-Champaign

Let N be the stopping time of a sequential probability ratio test of
composite hypotheses, based on the i.i.d. sequence Zi, Z, - - - with common
distribution P. If for every choice of stopping bounds there exist constants
¢>0,0< p <1 such that P{IN >n} <cp"n=1,2,.--, we say that N is
exponentially bounded under P; otherwise P is called obstructive. A theo-
rem is proved giving sufficient conditions for P to be obstructive. By virtue
of this theorem it is possible to exhibit families of obstructive distributions
in several examples, including the sequential r-test.

1. Introduction. This paper is a continuation of [4] and [5] and supplies par-
tial answers to unresolved questions in those papers.

Let Z,, Z,, - - - be i.i.d. random vectors with common distribution P, and let
P = {P,: 0 c O} be a family of distributions, not necessarily containing P. We
shall call & the model. Suppose ©, and 0, are two disjoint subsets of © and it
is desired to test sequentially against each other the two (usually composite)
hypotheses H;: # € ©;, j = 1, 2. Suppose, furthermore, that there is a group of
invariance transformations which is transitive over each 0, so that the restric-
tion to invariant tests reduces the composite hypotheses to simple ones. In terms
of these simple hypotheses let R, be the probability ratio at the nth stage of
sampling, and L, = log R,. With an invariant sequential probability ratio test is
meant a sequential procedure that chooses two stopping bounds /, and /, and
stops sampling at the smallest positive integer n for which

(1'1) ll<Ln<12

is violated (and then accepts H, or H, according as L, < I, =1,). Let N be
the stopping variable thus defined.

The distribution of N depends on the stopping bounds /,, /,, and on P, the
true distribution of the Z; (it is emphasized once more that P is not necessarily
a member of &”). We are interested in particular in the question whether the
distribution of N has the following desirable property: for every I, I, there exist
constants ¢ > 0 and 0 < p < 1 such that

(1.2) P{N > n} < cp", n=12,..

In this case we shall say that N is exponentially bounded (under P). If, for some
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P, Nis not exponentially bounded we shall say that P is obstructive. In [4] Sec-
tion 4 and [5] Section 3 an example was treated where it has been possible to
give a complete characterization of the obstructive P’s. On the other hand
Examples 2 and 3 in [4] provided only incomplete results insofar as the existence
of obstructive P’s was not demostrated. Shown in each of those two examples
was that if P is indeed obstructive it must belong to a certain well-defined family
of degenerate distributions. For the sake of discussion it is convenient to call
those distributions suspect. Theorem 2.1 in Section 2 in the present paper per-
mits now to conclude that in Examples 2 and 3 of [4] certain of these suspect
distributions are indeed guilty of being obstructive. This narrows the gap but
does not close it since we still do not know how to deal with all the suspect
distributions.

Theorem 2.1 is also applied to the sequential r-test. In [5] Section 4 a family
of suspect P’s was exhibited and with the help of Theorem 2.1 it is possible now
to brand all the P’s in this family as obstructive. It should be kept in mind,
however, that in the case of the sequential s-test we only know how to deal with
P’s under which Z* has finite moment generating function (m.g.f.). It is not
known whether there are obstructive P’s among those under which Z? has in-
finite m.g.f.

It deserves mention perhaps that although the applications in this paper are
exclusively to invariant sequential probability ratio tests, Theorem 2.1 is not
inherently so restricted. Conceivably there may be applications to sequential
tests of composite hypotheses that do not arise from an invariance reduction.

2. The theorem. If the model .77 is an exponential family, L, is a function
only of n and the sufficient statistic X, = (1/n) 1, X;, where X,, X,, - . - arei.i.d.
random vectors and the components of X; are certain functions of Z;. Although
Theorem 2.1 is not stated in terms of an exponential family, it is formulated with
that kind of an application in mind.

A central role in the theorem is played by the sequence of random variables
®, = n®(X,), and the real-valued function @ satisfies certain regularity condi-
tions (in the applications @ arises in a natural way but in the theorem it does
not matter where @ comes from). @, is used as an approximation to L, and is
usually much easier to handle. What Theorem 2.1 proves is that under certain
conditions on P and @, and appropriately chosen symmetric stopping bounds
—I, = I, = B, say, the expected sample size is infinite, which implies the viola-
tion of (1.2). The method of proof reduces the problem in successive stages to
a generalization of a problem first solved by Blackwell and Freedman [1] Theo-
rem 1 (a one-dimensional generalization is given in [2] Corollary 1 to Theorem 2).

THEOREM 2.1. Let X, X,, - - - be i.i.d., their common distribution P being sup-
ported on k-dimensional Euclidean space R*, such that EX/'X, < co; put EX, = §
and X, = (1/n) 2 X;. Let {L,,n=1,2, ...} be a sequence of finite and real-
valued random variables such that L, depends only on X,, ---, X,,. For any B> 0
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let N(B) be the smallest integer n = 1 such that |L,| > B. Suppose there exists a
function @: R* — R with the following properties: (1) ®(&) = 0; (ii) there is a
neighborhood of & on which © has continuous second partial derivatives; (iii) let A be
grad @ evaluated at &, then P{A'(X, — &) = O} = 1; (iv) using the notation ®, =
n®(X,), there exist positive numbers r and B, such that for every n = 1,2, ...,
|IX, — &|| < r implies |L, — ®,| < B,. Then for some choice of B we have
EN(B) = co. Hence P is obstructive.

Proor. By making a translation in R* we may suppose ¢ = 0. Condition (iii)
of the hypothesis of the theorem says that with P-probability one the random
walk takes place in the hyperplane {x ¢ R*: A’x = 0} so that in the following we
shall restrict attention to this plane. Taking into account (i): ®(0) = 0, (ii) and
(iil), we can assert the existence of r, > 0 and B, > 0 such that |®(x)| < By||x||*
whenever |[x|| < r,. Without loss of generality we may identify r, with r of (iv)
by choosing the latter sufficiently small. Thus, || X,|| < rimpliesboth |L, — ®@,| <
B, (from (iv)) and |®,| < nB,||X,|[*. Putting S, = 37 X,, these implications can
be written as

(2.1) S]]l < nr]=[|L, — @,| < B, @, < (1/n)By||S, "] .
Put
(2.2) o = EX/'X,

which is finite by assumption. Take any constant B, such that

(2.3) B, > 4B,

and take any integer

(2.4) n > By[(By?) .

Since the variances of the components of X, are finite, and EX, = 0, as n — oo
the distribution of S,/n* converges to a multivariate normal law (with mean 0).
Therefore, given the positive constant

(2.5) ¢ = §(By/B,)*,

we have, for some n, > n,, '

(2.6) P{IS, Jlimt < ¢} > 0.

Recalling the definition of N(B) from the hypothesis of the theorem, and con-
sidering for any fixed n > 1 the event {N(B)} > n}, we have {N(B) > n} 1 Q
(= sample space) as BT co. Thus, if 4 is any event, we have {4, N(B) > n,} 1 4

and therefore P{4, N(B) > n;} 1 PA, as B—oo. Apply this to 4 = event on the
left-hand side of (2.6); that is, define the event C (depending on B) as

(2.7) C = {lIS,,|| < en?, N(B) > ny},

then, taking (2.6) into account, we see that PC > 0 for sufficiently large B.
Choose any B > B, + B, such that PC > 0.
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Define N, as the smallest integer n > n, such that |L,| > B, 4 B, then on C
(where N(B) > n,) we have N(B) > N, since B > B, + B,. This accounts for the
second inequality in
(2.8) EN(B) = §{, N(B)dP = §, N, dP .

Now define N, as the smallest integer n > n, such that ||S, — S, || = cn?. For
any n > n, we have on C (where [|S, || < cn,}) the implications

2.9)  [IIS, — Syl < ent] = [IS,]| < e(nt + nH)] = [|IS,]] < 2en?] .
Furthermore, from n > n, > n,, (2.4) and (2.5) it follows that

(2.10) [ISa]l < 2ent] = [[IS,]| < nr].
Then from (2.1), (2.5) and (2.10) we obtain
(2.11) (IS, < 2ent] = [|L,] < B, + (1/m)Bil|S, I

< B, + (1/n)By(nB,/B;) = B, + B] .

Recalling the definitions of N, and N,, from (2.9) and (2.11) we deduce that on
C, [N, > n] = [N, > n], for every n, so that N, < N,. Therefore,

(2.12) {¢ N,dP = {, N,dP = PC EN,,

the equality in (2.12) following from the fact that by (2.7) C is defined only in
terms of X, ..., X,, whereas N, depends only on the X, for i > n,. Since
PC > 0, in order to show EN(B) = co it is sufficient, by virtue of (2.8) and
(2.12), to show EN, = co.

Define N, as the smallest integer n > 1 such that ||S,|| = ¢(n, 4+ n)? then it is
easily seen from the i.i.d. character of the X; that n, + N, has the same distribu-
tion as N,. Hence it suffices to show EN, = co. Finally, define N, as the smallest
integer n > 1 such that ||S,|| = cn?, then clearly N, < N,. We shall prove now
EN, = co.

For convenience of notation we shall write N instead of N,. Let the com-
ponents of X;be X;;,j =1, - - -, k, then the components of S, are S,; = 27, X;;
so that E||Sy||* = E 3%, 8%; = 2k E(OY, X;;)*. Now suppose EN were < oo.
By the second of Wald’s equations [3] (3.1), proved in great generality by Chow,
Robbins, and Teicher [2] (17), we have for each j = 1, - . -, k (remembering that
EX,; = 0) E(X Y, X;, = EN EX}; so that E||S,||* = EN }%_, EX}; which can be
written, using (2.2), as

(2.13) E||S,||* = ¢*EN .
On the other hand, ||Sy||* = ¢*N by the definition of N, so that
(2.14) E||Sy||* = ¢*EN .

Comparing (2.13) and (2.14) leads to ¢* = ¢* = B;/(4B,), using (2.5). But this
contradicts (2.3). []

3. Applications. (a) Sequential t-test (see [5] Section 4). Under the model
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Z the Z; are N({, ¢*) and the hypotheses H; are {/o = y;, j = 1, 2, with the 7,
given and distinct. The X; may be taken as (Z;%, Z;)' so that ® may be restricted
to the half plane {x = (x;, x,)’: x, > 0}. It was shown in [5] Section 4 that

(3.1) (I)(x) = 18(7’2x2x1—§) - 18(7’13‘2)‘1_5) — %h? + ‘%le

with () = dua(u) + log a(u) and a(u) = 4{u + (4* 4 4)}], —c0 <u < co0. It
is easily seen that @ has partials of all orders, so that (ii) of Theorem 2.1 is sat-
isfied. -Condition (iv) was proved to hold in [5] Section 4. It was shown there
also that (iii) implies either P{Z, = 0} = 1 which case we exclude for reasons
explained in [5] Section 4, or P is one of the following two-point distributions:

3.2) P{Z, = (0" + O)C[(0" + )t £ o]} = 3[1 F o(0® + &) 7H]

in which ¢ == 0 and ¢ > 0 are the mean and standard deviation of Z, under the
true distribution P. Inorder that (i) of Theorem 2.1 be satisfied we deduce from
(3.1) that = {/(a* + £** has to solve the equation

(3.3) B(ram) — B(rin) — 41’ + 3" =0.

With the unique solution for » from (3.3) the family (3.2) is a one-parameter
family of two-point distributions, obtained from a single one by scale transfor-
mations (it is assumed here that 7,2 = 7,* for otherwise the solution of (3.3) is
7 = 0 which leads to the excluded case P{Z, = 0} = 1). From Theorem 2.1 in
[5] we know that among all P under which Z;* has finite m.g.f. only the family
(3.2) with » satisfying (3.3) is suspect, and from Theorem 2.1 in the present
paper we see that these distributions are indeed obstructive. Thus, in the case
of the sequential ¢-test the distributions P under which Z? has finite m.g.f. are
now completely classified into those that are obstructive and those under which
N is exponentially bounded.

(b). Tests about the mean vector or about the characteristic roots of the covariance
matrix. In [4] Examples 2 and 3 (Sections 5, 6) the model & prescribes the Z;
to be d-variate N(¢, Z). In Example 2d = 2,{ = Oand, forj = 1, 2, H, specifies
the values of the characteristic roots of 2. In Example 3 d is arbitrary, X =
identity matrix, and H; specifies the value of ||{||. (In the latter example the
existence of obstructive distributions was demonstrated by R. H. Berk (private
communication).) As shown in [4] both problems—as far as investigation of
exponentially bounded N is concerned—are special cases of the following prob-

lem: X, X,, --. are i.i.d. k-vectors, |L, — ®,| < B, for some constant B, uni-
formly in n, and @, is given by
(3-4) Q, = || X7 X[l + a Xt [|X]| + bn

with the constants ¢ and b depending on the specific problem. It was shown
that N is exponentially bounded unless

(3.5) P X, + a|lX,[| + b =0} = I
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for some unit vector u (i.e. ||u]| = 1). Thus, in the terminology of Section 1,
distributions P of the form (3.5) are suspect. Which of those P can actually be
asserted to be obstructive in the light of Theorem 2.1?

For P of the form (3.5) we may replace @, in (3.4) by

(3.6) D, = ||Xt Xl — " I X,
so that
3.7) D(x) = ||x|| — w'x, x e Rk,

for some unit vector u. Obviously, ® possesses continuous partials of all order
at every x except at x = 0. For the application of Theorem 2.1 it is therefore
necessary to exclude those P for which ¢ = 0. (Theorem 2.1 in [5]is not appli-
cable either to this ® when § = 0.) From (3.7) we see that (i) of Theorem 2.1
is satisfied if and only if £/||§|| = u. Furthermore, we compute grad ®(x) =
x/||x|| — u so that in (iii) A = &/||€|| — u, which = 0 if (i) is satisfied. From Theo-
rem 2.1 we conclude then that if P is such that the components of X, have finite
variances and & = O is in the direction of u, then P is obstructive. On the other
hand, if £ # 0 is not in the direction of # and the components of X, have finite
m.g.f., then Theorem 2.1 of [5] tells us that N is exponentially bounded (one
could say that these P’s have been “‘exonerated”). Thus, among the suspect P’s
(given by (3.5)) we have delineated two subfamilies, one obstructive, the other
not. However, not all suspect P’s have thus been classified. For instance, we
do not know whether suspect P’s under which some of the components of X,
have infinite variance are obstructive. Also, the special case of suspect P’s with
¢ = 0 still has to be dealt with (in Example 3 of [4] it cannot happen that P is
suspect and § = 0, but in Example 2 it can happen).

After this paper was written R. H. Berk noticed that suspect P’s with £ = 0
are indeed obstructive if the X’s with P-probability one lie in a one-dimensional
linear space. This can be seen as follows: In (3.5) we may suppose that  lies
in the same one-dimensional linear space to which the X’s are confined under
P. Then (3.6) implies that N is the first passage time of a one-dimensional ran-
dom walk through a single barrier. It is well known that with £ = 0 we have
EN = oo (this follows most easily from the first of Wald’s equations: if EN were
finite, then E YV u'X; would equal #’6EN = 0). Therefore, P is obstructive.
Note also that (3.5) implies that X, has, under P, either a one-point or a two-
point distribution. Thus, in the one-dimensional case, X, has a finite m.g.f.
under any suspect P. Therefore, in the one-dimensional case the suspect P’s
can be classified according to the value of #’¢, with #’¢ > 0 implying that P is
obstructive, u’¢ < 0 that N is exponentially bounded under P. However, in di-
mension 2 or higher the question is still open.
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