A NOTE ON THE CLASSICAL OCCUPANCY PROBLEM¹

By C. J. PARK

University of Wisconsin

Assume that n balls are randomly distributed into N equiprobable cells. The ball is presumed to have probability p, 0 of staying in the cell and <math>(1-p) of falling through. Let S_0 denote the number of empty cells. In this note we establish the asymptotic normality of S_0 as n and N tend to infinity so that $np/N \to c > 0$, $np/N^{\frac{5}{2}} \to \infty$ and $n/N \to 0$, or $3np/N - \log N \to -\infty$ and $n/N \to \infty$. We accomplish this by estimating the factorial cumulants of S_0 .

- 1. Introduction and summary. Assume that n balls are randomly distributed into N cells with equal probabilities, i.e. each ball has probability 1/N of falling into ith cell, $i=1,2,\cdots,N$. The ball is presumed to have probability p, 0 of staying in the cell and <math>(1-p) of falling through. Let S_0 denote the number of empty cells. In this note we will show that the asymptotic distribution of S_0 is normal as n and N tend to infinity with one of the following conditions being satisfied:
 - (i) $np/N \rightarrow c$, $0 < c < \infty$,
 - (ii) $n/N \rightarrow 0$ and $np/N^{\frac{5}{6}} \rightarrow \infty$,
 - (iii) $n/N \to \infty$ and $3np/N \log N \to -\infty$.

We establish the asymptotic normality of S_0 by estimating the factorial cumulants of S_0 and utilizing the similar method given by Harris and Park [4]. For the special case when p = 1, the asymptotic distribution of S_0 has been extensively studied (see for example [5], [6], [8] and [9]). Harkness [3] gives numerous examples of situations for which the distribution of S_0 can be applied (see also the references therein).

2. Asymptotic normality of S_0 . The probability distribution of S_0 is well known (see for example [3]) and given by

$$P[S_0 = x; n, N, p] = {\binom{N}{x}} \sum_{k=0}^{N-x} (-1)^k {\binom{n-x}{k}} \left(1 - \frac{(k+x)}{N} p\right)^n,$$

$$x = 0, 1, \dots, N.$$

The mth factorial moment of S_0 is given by

(1)
$$\mu_{[m]} = N^{(m)} \left(1 - \frac{mp}{N} \right)^n, \qquad m = 0, 1, \dots,$$

where $N^{(m)} = N(N-1) \cdots (N-m+1)$. Consequently the factorial moment

Received June 22, 1970; revised March 9, 1972.

¹ This research was primarily done while the author was at the University of Nebraska. Sponsored by the United States Army under Contract No. DA-31-124-ARO-D-462.

generating function can be written as,

(2)
$$\varphi_{n,N}(t) = \sum_{m=0}^{\infty} \frac{\mu[m]}{m!} t^m = \sum_{m=0}^{N} {n \choose m} \left(1 - \frac{mp}{N}\right)^n t^m.$$

Let $K_{n,N}(t)$ be the corresponding factorial cumulant generating function, then

(3)
$$K_{n,N}(t) = \log \varphi_{n,N}(t) = \sum_{m=1}^{\infty} k_{[m]} \frac{t^m}{m!},$$

where $k_{[m]} = k_{[m]}(n, N)$ is the *m*th factorial cumulant of S_0 . The factorial cumulants are related to the cumulants in the same way as the factorial moments are related to the moments, that is,

(4)
$$k_{m} = \sum_{j=1}^{m} \alpha_{j,m} k_{[j]},$$

where $\alpha_{j,m}$ are the Stirling numbers of the second kind. To establish the asymptotic normality of S_0 , we will show that for m > 2

$$k_m k_2^{-m/2} \rightarrow 0$$

as n and N tend to infinity. Now we introduce the following theorem.

THEOREM 1. The mth cumulant of S_0 ,

$$k_m = O(N)$$
 as $N \to \infty$, for $m = 1, 2, \cdots$

Proof. Let

$$P(t) = (1 + t)^N = \sum_{\nu=0}^{N} {N \choose \nu} t^{\nu}$$
,

a polynomial of degree N with every root -1. Then let

$$P_{1}(t) = P(t) - p \frac{t}{N} P'(t)$$

$$= \sum_{\nu=0}^{N} {N \choose \nu} \left(1 - p \frac{\nu}{N}\right) t^{\nu}.$$

For $\nu \geq 1$, define

$$P_{\nu+1}(t) = P_{\nu}(t) - \left(p \frac{t}{N}\right) P_{\nu}'(t) ;$$

then we readily see that

$$P_n(t) = \sum_{\nu=0}^{N} {N \choose \nu} \left(1 - p \frac{\nu}{N}\right)^n t^{\nu} = \varphi_{n,N}(t)$$

where $\varphi_{n,N}(t)$ is defined in (2). Now define

$$Q_n(t) = \frac{N}{p} P_{n+1}(t) = \frac{N}{p} P_n(t) - t P_n'(t) .$$

Then it can be verified (cf. Lemma 1 and Lemma 2 in [4]) that for every $n \ge 1$ $Q_n(t)$ has N real roots and all of its roots ≤ -1 because $P_n(t)$ is a polynomial

of degree N and has N real roots ≤ -1 . Hence, $N^{-1}\log P_n(t) = N^{-1}\log \varphi_{n,N}(t) = N^{-1}K_{n,N}(t)$ is analytic in |t| < 1. Thus for |t| < 1,

$$\begin{aligned} \operatorname{Re} \left(N^{-1} \log P_n(t) \right) &= N^{-1} \log |P_n(t)| \\ &\leq N^{-1} \log \sum_{\nu=0}^N \binom{N}{\nu} |t|^{\nu} = \log \left(1 + |t| \right) \leq \log 2. \end{aligned}$$

We can now apply a well-known theorem of Carathéodory (see [1], [2] and [7]), that is, if $f(z) = \sum_{j=1}^{\infty} \alpha_j z^j$, |z| < 1 and Re $[f(z)] \le 1$ for |z| < 1, then $|\alpha_j| < 2$ for all j. Thus, since

$$K_{n,N}(t) = \sum_{m=1}^{\infty} k_{[m]} t^m / m!$$

we have

$$|k_{[m]}| \leq Nm! \log 4;$$

thus the theorem follows from (4).

Now from (1), we have

$$\begin{split} E(S_0) &= \mu(S_0) = N \left(1 - \frac{p}{N}\right)^n, \\ \operatorname{Var}(S_0) &= \sigma^2(S_0) \\ &= N^2 \left(\left(1 - \frac{2p}{N}\right)^n - \left(1 - \frac{p}{N}\right)^{2n} \right) + N \left(\left(1 - \frac{p}{N}\right)^n - \left(1 - \frac{2p}{N}\right)^n \right). \end{split}$$

We now establish the limiting distribution of

$$S_0^* = (S_0 - \mu(S_0))/\sigma(S_0)$$
.

THEOREM 2. If one of the conditions (i)—(iii) in Section 1 is satisfied, the limiting distribution of S_0^* , as n and N tend to infinity, is the standard normal distribution.

PROOF. To establish the theorem it suffices to show that $k_2^{-m/2} \to 0$ for m > 2. From Theorem 1, this is equivalent to showing that $Nk_2^{-\frac{3}{2}} \to 0$. Let $n/N = \alpha(n, N)$ and since $\alpha(n, N) = o(N)$, we have

$$k_2 = \sigma^2(S_0) = Ne^{-\alpha p}(1 - e^{-\alpha p} - \alpha p e^{-\alpha p}) + O(\psi(\alpha))$$

where $\psi(\alpha) = \max{(\alpha, \alpha^2)}$. Thus, the conclusion holds for $\alpha \to 0$ as n and N tend to infinity with $np/N^{\frac{3}{8}} \to \infty$, and for $\alpha \to \infty$ as n and N tend to infinity with $3np/N - \log N \to -\infty$. The conclusion clearly holds if α has a positive limit as n and N tend to infinity.

Remark. The probability distribution of S_0 can be written as

$$P[S_0 = x; n, N, p] = \sum_{t=0}^{n} P(S_0 = x; t, N, 1) {n \choose t} p^t (1 - p)^{n-t}$$

where $P(S_0 = x; t, N, 1)$ denotes the probability distribution of the number of empty cells when t balls are randomly distributed into N equi-probable cells and p = 1.

The limiting distribution of the number of cells occupied by i balls, $i \neq 0$, is under investigation and we hope to report the result in the future.

3. Acknowledgment. The author is indebted to the referee for his useful comments.

REFERENCES

- [1] CARATHÉODORY, C. (1907). Über den Variabilitätbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. *Math. Ann.* 64 95-115.
- [2] CARATHÉODORY, C. (1911). Über den Variabilitätsbereich der Fourierchen Konstanten von positiven harmonischen Funktionen. *Rend. Circ. Mat. Palermo* 32 193-217.
- [3] HARKNESS, W. L. (1969). The classical occupancy problem revisited. Technical Report No. 11, Dept. of Statistics, The Penn. State Univ.
- [4] HARRIS, B. and PARK, C. J. (1968). A note on the asymptotic normality of the distribution of the number of empty cells in occupancy problems. Math. Research Center Summary Report No. 955, Univ. of Wisconsin. To appear in *Ann. Inst. Statist. Math.*
- [5] OKAMOTO, M. (1952). On a non-parametric test. Osaka J. Math. 4 77-85.
- [6] RÉNYI, A. (1962). Three new proofs and a generalization of a theorem of Irving Weiss. Magyar Tud. Akad. Mat. Fiz. Oszt. Kozl. A 7 203-214.
- [7] Riesz, F. (1911). Sur certaines systemes singuliers d'equations integrales. Ann. Sci. École Norm. Sup. 28 33-62.
- [8] SEVAST'YANOV, B. A. and CHISTYAKOV, V. P. (1964). Asymptotic normality in the classical ball problem. *Theor. Probability Appl.* 9 198-211.
- [9] Weiss, I. (1958). Limiting distributions in some occupancy problems. Ann. Math. Statist. 29 878-884.

MATH RESEARCH CENTER UNIVERSITY OF WISCONSIN MADISON, WISCONSIN 53706