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THE LAW OF THE ITERATED LOGARITHM
FOR THE RANGE OF RANDOM WALK!

By NAREsH C. JAIN AND WILLIAM E. PRUITT
University of Minnesota

Let {Xu,n = 1} be a sequence of independent identically distributed
random variables taking values in the d-dimensional integer lattice Eq, and
“let So =0, S, = X1 + -+ 4+ X.. Therange of the random walk {Sn, n = 0}
up to time n, denoted by R, is the number of distinct lattice points visited
by the random walk up to time n. Let p be the probability that the random
walk never returns to the origin. It is known that n~'R, — p a.s. and that
for p < 1if the genuine dimension is d > 4 or if the random walk is strongly
transient then there is a positive constant ¢2 such that Var R, ~ ¢%n. Inthe
present note we shall prove that in these two cases

Ro — np =1 as

lim supg—co @omn log log m)} —

and the lim inf of the same sequence is almost surely —1.

1. Intreduction. Let {X,, n > 1} be a sequence of independent identically
distributed random variables, defined on a probability space (Q, &, P), and
taking values in the d-dimensional integer lattice E;,. The sequence {S,, n > 0}
defined by S, =0, S, = >;»_, X, is called a random walk. Let p = P[S, # O,
S, # 0, ---]. The random walk is called transient if p > 0 or, equivalently, if
2iw=1 P[S, = 0] converges. It is called strongly transient if 3}, >3, P[S, = 0]
converges. The range of the random walk up to time n, denoted by R,, is the
cardinality of the set {S,, S, -- -, S,}. Kesten, Spitzer, and Whitman [9] proved
that n='R, — pa.s. forany random walk. Notethatif p = 1,thenR, =n 4 la.s.
and this case is not very interesting. In [3]and [5] it was shown that for p < I,
if the random walk is strongly transient or if the random walk has genuine dimen-
sion d = 4, then there is a positive constant ¢* such that Var R, ~ ¢°n. In the
present note we obtain the law of the iterated logarithm for R, in these two cases.

THEOREM. If p < 1 and the random walk is either strongly transient or has genuine
dimension d = 4, then there is a positive constant ¢* such that
lim sup, ... _Ro—mp g
(20°nlog log n)*

and the lim inf of this sequence is —1 a.s.

ReMmaRrk. If d = 4, then it will be clear from our proof of the above theorem
that actually we have proved more than just the law of the iterated logarithm.
For example, referring to the terminology of Feller [2], we can say that

¢, ={2log,n + 3log,n + 2logn+ --- + 2log, ,n+ (2 + 0) log, n}t
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belongs to the upper (lower) class if 6 > 0 (6 < 0), where log, n stands for the
iterated logarithm of order p. However, we have not proved this stronger result
in the strongly transient case with d < 3.

The proof for the case d = 4 is slightly easier and is given in Section 2. The
proof for the strongly transient case is in Section 3.

The first work on the range of random walk was by Dvoretzky and Erdds [1].
Subsequent related work not mentioned above appears in [4], [6], and [7]. Some
criteria for strong transience are also given in [6].

2. d = 4. We start by introducing a little notation. 7, will denote the first
hitting time of the lattice point x, i.e.,

T,=min{k = 1: S, = x};

if there are no integers k with S, = x, then T, = co. The transition probabili-
ties are P"(x, y) = P,[S, = y] and the taboo probabilities are P"(x, y) = P,[S, =
y, T, =z n]. We will use

u, =P"0,0), f,=P0,0), r=xlinfi-
Note that Y2, f, = P[T, < c0o] =1 — p. It is known [9] that u, = O(n~%?)
and it follows that for d = 3, r, = O(n'~%?).

Form a sequence {n;} of positive integers by taking for k = 1, 2, - . - all integers
in the interval [2%, 2%+?) which are of the form 2% 4 j{[k~'2*] 4 1} where j is
a nonnegative integer. There will be at most 3k2* members of the sequence in
the interval [2%, 2%+2), Let n, = 0 and for j > O define

U; = number of distinct lattice points visited in (n;, n,,,],

V; = number of distinct lattice points visited in both (n;, n;,,] and [0, n;].

We then have R, =1 + 21524 U; — 21520 V; and so
(20°n; log log n;)* (20°n; log log n;) (20°n; log log n;)*

It will be enough to prove that the sequence in (2.1) has lim sup (lim inf)) equal
to 1 (—1)a.s.since if n; < n < n;,,, then n ~ n; so the normalization is right, and

IR'n - ER’n - an +lERn,'| é n—n = o(ni%) ‘
We also need to see that ER, can be replaced by np but this is valid since
ER,=1+np+ 3" r; =np+ O(logn) = np + o(nt).

To prove that the sequence in (2.1) has the right behavior, we will show that
this is the case for the sequence involving the U’s while the sequence involving
the ¥’s tends to zero a.s. The behavior of the U’s follows immediately from
Kolmogorov’s law of the iterated logarithm ([8] page 260) since the U; are
independent,

Var Y0 Uy ~ Sich a¥(n,,, — ny) = a'n;
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and for 2% < n, < 2%+2
|U; — EU{| < nyyy — m; < k7128 + 1 = o((n;/log log n,)}) .

The Vs cause a little more difficulty and we need to estimate Var (X4} V).
Form < n < a, let

W(a;n,m) =I[S, # S,_s, -+, S, # S,,13 S, = S, for some ye[m,n]],
where I(A) denotes the indicator function of 4. Note that ¥, = ol Wla

n;, 0). Now suppose that n, < 8 < n,,,, n; < a < n,,, with m < jand write
W(a; n;, 0) = W(a; n;, B) + W(a; 8 — 1,0).
Then W(B; n,, 0) and W(a; n;, B) are independent so that
Cov (W(B; n,,, 0), W(a; n;, 0)) = Cov (W(B; n,, 0), W(a; B — 1, 0))

< EW(B; n,, 0)W(a; f — 1, 0)

é ZxPa_ﬂ(O’ x)Px[uB — é T:t é ‘B’ TO é IB] ’
the final bound being obtained by reversing the random walk. This bound
follows trivially if m = j with 8 < a. If we fix 8 and sum over all « in [, 1],
where j will vary with a, we obtain a bound of ¢(8 — n,)~* log n, by Lemma 4
of [5] since d = 4. The B summation is now carried out by summing over

B € (1, n,,] which gives a bound of ¢ log? n; and then multiplying by the num-
ber of possible values of m. This leads to

Var (X4 V;) < cilog?n; .

Suppose now that 2% < n, < 2%+2. Then

ilog*n, < (2k + 2)* 33%_, 327 = O(k*2F),
and so,
(2.2) P[5y (V; — EV))| = ent] = O(k2Fn,7Y) = O(k*27F) .
Now form a subsequence by taking every k°th member of {r;} in [2%, 2%+?) and
denote it by {n, }. There will be at most O(k~*2*) members of the subsequence
in [2%, 2%+?) and multiplying the probability estimate in (2.2) by this number
of terms still gives a convergent series. This means that we have the desired
convergence to zero a.s. of the ¥ part but only along the subsequence. However,

we shall see that this implies convergence to zero along the original sequence.
If2% <n, <n <mn,_  <2%* then

S (V; — EV)) — Die, o EV, < Sy (V; — EV))
= 2NV, — EVy) + ZGtELEV;
so that we only need a bound for EV,. But for n; < 2%+2,
EV, < yLita"ir, = O(log(n;,, — n;)) = O(k),
while both v, ., — iand i — v, can be no larger than k°. Thus
max (5o, 1 BV, Simih EV;) = O(k') = 0(2%)

and we have convergence along the original sequence as well.
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3. Strongly transient random walk. In this case the sequence {r;} is formed by
taking for k = 3, 4, - . . all integers in [2%, 2%+2) of the form 2% + j&, with j a
nonnegative integer and §, = [2%(log k)~%] 4+ 1. The number of members of the
sequence which are in [2%, 2%+2) will be O((log k)*2%). U, and ¥, are defined as
in Section 2 and the Kolmogorov law of the iterated logarithm again applies to
the sequence composed of the U’s. It also suffices to look just at the behavior
on the sequence {n;} as before. In this case,

ER, =1+ np+ 3", r; =np+ O(1)

for strong transience implies the convergence of 3 r;. Thus we only need to
show that the sequence involving the ¥’s in (2.1) converges to zero a.s. To do
this we write V; = Y, + Z; where
Y; = number of distinct lattice points hit in both (n;, n; ]
and [n; — 7, n],
Z; = number of distinct lattice points hit in both (n;, n;,,]
and [0,n; — y;) butnotin [n; — 7, 1],

and if 2% < n; < 2%+ then y; = 9, = 2¥(log k)~*. It will suffice to show that

2z (Y; — EY)) — 0 a.s. and L= (Z; — BZ;) — 0 a.s.

(3.1)
(n; log log n,)* (m; log log n;)}

We consider the Z’s first. Let
Hj = Za.ﬂEDj I[Sa = Sﬂ]
where D; = {(a, f): 2% < B < 2%+, 8 — a = 7,}. Then if 2% < n, < 2242, it
follows that }1i21 Z; < >1%_, H;, and so
P[0 Z; = 2%(log k)t for some i with n; € [2%, 2%+2)]
< P[4 H, = 24(log k)] < e2-%(log k)t X%_, EH .

It will be sufficient now to show that this last bound is summable on k since it
also dominates 2-*(log k)~ 3;i2} EZ,. Now

Jj=1
i 27M(log k)™t 35 EH; < X, 27M(log k)™t NEL, 29 L,
8 Z;o=3 2j(10gj)_‘~’ Z:=i va§1}<>ym+1 uvy
€ 2im=s 2™(log m)~t Z:y,,,s:quﬂ u,
c nu, < oo
since strong transience is equivalent to the convergence of 37 ju;. In order to
prove the first statement in (3.1) we need to estimate Var (3%} ¥;). Note that
Y; = 23500 Wlas ny, ny — 7). Suppose that n, < B < m,,, n; < a < n,,
with m < j. If 8 < n; — 7;, then W(a; n;, n; — r,) and W(B; n,,, n,, — r,) are
independent. If 8 > n; — 7;, we write

Wias ny, n; — 1;) = Was ny, B) + Wias — 1,m; — ;)

A IIA - TIA
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and then
COV(W(/S; ny, N, — Tm)’ W(Ct’; nj’ nf - TJ))
= EW(B; 1y 1y — 1) Wit B — 1, m; — 7))
SEW(a;B—1,m —y,) < r,y.
If m = jand B < a we use the bound

Cov (W(B; n;, n; — 1;), W(a; n,, n; — 1) = EW(e; n;, n; — Ti) =T

a—ng—1*
Now fix « and sum these covariances over all 8 < a to obtain a bound of

a—nj+y;
Tza]—'n,]‘] r7 + (a - nj)ra—nj—l .

Next we sum over all a € (n;, n;,,] which leads to a bound of
:T=j1 rr, + Z?itl_nj Tr -1 = O(err=71 Trr) s
and multiplying by the number of possible values of j, we obtain the estimate
Var (555 Y;) = 0 ) -
Then for 2% < n, < 2%+,

. 2k(log k)t 3 2k rr
. P i-1(y _ EY. k k)t T T,
(3.2) [1 258 (Y; i) = e2¥(logk)t] < ¢ 2% log k

As in Section 2 we must now consider a subsequence of the {n;} sequence by
taking every [2*(log k)*]th member of {,} in [2%*, 2%+?). There will be O((log k)?)
members of the subsequence in [2%, 2%+?). We multiply this number of terms
by the probability estimate in (3.2) and we want to show that the resulting series
converges. To see this,

Diies 2"‘(10g k)i szl T 2iis 2"‘(10g k)i s Z?nm_1<r§27ym T,

4 Z::=3 z_m(log m)%vm ZZ’?m—1<T§2'7m rr

cxr, < oo.

This means that the first sequence in (3.1) tends to zero a.s. along the subsequence.
The filling in can be done as in Section 2 since EY; < 3 r, = O(1) and the

number of j between two successive members of the subsequence in [22, 22k+2)
is [2*(log k)*] = o(2%(log k)?).

IA 1A
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