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THE ASYMPTOTIC NONCENTRAL DISTRIBUTION OF
HOTELLING’S GENERALIZED T.2!

By R. J. MUIRHEAD
Yale University

In this paper a general method is proposed for deriving the asymptotic
noncentral distribution of Hotelling’s generalized T,? statistic for the case
of large error degrees of freedom n. The approximation is given here to
order n;~2 and further terms in the expansion can be readily obtained.

1. Introduction and summary. The T;? statistic of Hotelling [5] and Lawley [9]
is used as a test of significance in the multivariate analysis of variance and, in
the noncentral case, is defined as

(1.1) T = T2/n, = tr 8,8,

where the m X m matrices S, and S, are independently distributed on », and n,
degrees of freedom respectively, estimating the same covariance matrix, with S,
having the Wishart distribution and S, having the noncentral Wishart distribu-
tion with matrix of noncentrality parameters Q. Constantine [1] has obtained
the exact distribution of T;? over the range |T| < 1 as a power series involving
generalized Laguerre polynomials. This series is very difficult to work with and it
appears necessary, in order to calculate powers of the test, to obtain asymptotic
expansions for the distribution. Of particular interest is the case of large n,, i.e.,
large error degrees of freedom. Here the distribution of T}? tends to y* on mn,
degrees of freedom and noncentrality parameter tr Q. An asymptotic expansion,
up to order n,”', has been obtained by Siotani [13] and It [7] and, more recently,
the expansion has been extended up to order »,~? by Siotani [14] using perturba-
tion techniquesand by Hayakawa [3] using weighted sums of generalized Laguerre
polynomials. It appears rather difficult to extend the expansion further using
either of these two methods. In this paper a reasonably general derivation is
outlined which can be readily utilized to give further terms in the expansion.

It is shown in Section 3 that the moment generating function (mgf) of T;? can
be expressed as an integral involving the generalized Bessel function of the second
kind, B;, which was defined by Herz [4]. The integral concerned appears very
difficult to evaluate but, using a system of partial differential equations satisfied
by B;, an asymptotic expansion is derived for B;, which then allows immediate
integration and expresses the expansion of the mgf, given here to order »,7%, in
terms of generalized Laguerre polynomials. This expansion is inverted in Sec-
tion 4 to yield the expansion, given here to order »n,~?, of the cumulative distri-
bution function (cdf) in terms of noncentral y* density functions.
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1672 R. J. MUIRHEAD

2. Preliminary results. In the ensuing sections use will be made of the follow-
ing definitions and results. Let R be an m X m symmetric matrix, I', (a) =
amm-VI4 ™ T'(a — £(i — 1)) and, throughout the paper, p = 4(m + 1). Then
Muirhead [9] has shown that the confluent hypergeometric function ¥(a, c; R),
defined by the integral

1
I (@)

satisfies each partial differential equation (pde) in the system

{550 €tr (—RS)(det S)*=7 det (I + S)°~*—*dS,

2.1y W, R) =

2 R, ?
@2 RVt fe—hm—1) = R4} Druse g} o2

3 R, — R,) 9R,
_%Z;":l’...__L______ay (i:l,z,...,m)

where R, R,, - - -, R, are the distinct latent roots of R. This system yields a
system of pde’s for the generalized Bessel function of the second kind, B;(R),
defined by Herz [4] as the integral

(2.3) By(R) = (g5 etr (—RS) etr (—S~")(det S)’~7dS.

First we obtain B; as a limiting function from the confluent function ¥.
LeEMMA.

2.4 lim,_, (T, (a)a™=" W¥(a, c; a'R)} = B,_,(R) .

This can easily be proved using the integral representation (2.1) for ¥. Now,
from the system of pde’s (2.2) satisfied by ¥(a, c; R) it is readily verified, using
(2.4), that

THEOREM. B, (R) satisfies each pde in the system

o R, |0
(2.5) Ri—a—]—g—% + {c —3(m — 1)+ § X m} 31{_

It is worth pointing out that this system of pde’s is also satisfied by ,Fi(c; R),
the generalized Bessel function of the first kind (see Muirhead [8]).
Constantine [2] has defined the generalized Laguerre polynomial L, *(R) by the
integral
(2.6) etr (—R)L,%(R)
S
Lw(@ + p)
where C,(S) is the zonal polynomial of S corresponding to the partition x =
(ky ky» - -+, k) of k into not more than m parts. The Laguerre polynomials

§ss0 61 (—S)(det $)C,(S) Fi(a + p; —SR) dS
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have the expansion (see [2])

a k ( 1)3(:) 0( )
2. LR) = (a + p).C 5, (ZDC) C(R)
( 7) ® ( ) (a p)x x(I) Zs— Z (a )a Ca(I)

where (%) is the coefficient of C,(R)/C,(I) in the “binomial” expansion
(2-8) Cl + R)/C(I) = Xk 2, ()CAR)/C,() -
These coefficients have been tabulated up to k = 8 by Pillai and Jouris [11].

3. The asymptotic expansion of the mgf of 7,2 The joint distribution of the
matrices S, and S, in (1.1) may be written as
(3.1) etr (—1Q)
Pm(%nl)rm(%n2)
where, without loss of generality, the population covariance matrix X is taken
to be 47,. The mgf of T = n,tr $,S,~! is then

9(t, Q) = E[etr (—tn,S,8,7)] .

etr (—S,) etr (—S,)(det S,)i"~?(det S,)4"7 F,(4n,; 1QS,)

Multiplying (3.1) by etr (—m,S,S,™") and integrating over S, > 0 using (2.3) we
obtain

tr (—1Q)
32) g(r,Q) = _S=2¥)
OB 0D = p G

X B_y, (m,1S)dS, .

§s,50 otr (—S;)(det S))im7 (F (1n;; 1QS))

It is possible to express g(t, Q) as various other integrals (see Constantine [1])
which certainly appear more elementary than (3.2). Unfortunately these forms
do not appear to lend themselves easily to asymptotic expansion.

It appears very difficult to carry out the integration with respect to S, in
(3-2) to obtain g(z, Q) explicitly, but an asymptotic expansion for g(¢, Q) can
be obtained in the following way. Using the system of pde’s derived in Sec-
tion 2 for the Bessel function of the second kind we can expand the function
B_;,,(n,1S))/T,,(3n,) asymptotically for large n,. Rearranging this expansion in
terms of zonal polynomials C,(S,) we may then carry out the integration in
(3:2), using (2.6) to obtain an asymptotic expansion for g(z, Q) in terms of the
generalized Laguerre polynomials. |

Now, in the expression (3.2) for g(#, Q) we have the function B_ yny(31. R) with
R = 215,. Since g(t, Q) is a mgf the boundary condition

(3.3) lim v By, (3 RT3 = 1

must clearly be imposed. From Section 2 we have that y(R) = B_ 1ny (37, R) satis-
fies the system of pde’s

& R,
aR); + {1 BRI Rj} oR,

R, oy _, i=1,2, ...
Ri—Rja_.Rj—znzy (l— ) ’ 9m)

<

(3.4) R

- % Z;Ll,j#i
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where R, R,, - - -, R, are the latent roots of R. It is easily shown, using either
(2.4) or equation (5.7') of Herz [4], that

3.5) lim, .. B_,,, (3mn.R)/T,(3n,) = etr (—R),

SO putting

(3.6) B_,, (37 R)/T, (4n,) = etr (— R)G(R)

we may easily obtain the system of pde’s satisfied by the function G(R). We
could now look for a solution of this system of the form

(3.7) G(R) ~ 1 + T, PRy,

where P, (0) = O for all k so that the boundary condition (3.3) is satisfied. How-
ever, a significant reduction in work is obtained if instead of G we consider the
function

(3.8) H(R) = In G(R) ~ i Qu(R)m™

where Q,(0) = 0 for all k. The system of pde’s satisfied by H(R) is readily found
to be

0*H 0H\? m R, oH
(9 R {3Ri2 + <5E> } + {1 T 2R A S B R, — Rj} R,
R, oH ,
_%ZT=1,7¢1&—_—]&8R]:—12-(W1+1)—R2 (121’2’,.,’"1).

Since we are only concerned with symmetric solutions of (3.9) we need only work
with the first pde (i = 1). We substitute the series (3.8) into this pde and equate
coefficients of like powers of n,”* on both sides. Equating constant terms gives

9Q,J0R, = 2R, — (m + 1)

so that

(3.10) O =s5—(m+1)s

wheres, = R" + .- - + R,",since the Q, are symmetric functions of R, - - -, R,,.
Similarly, equating the coefficients of n,!, and of n,7%, and integrating gives
(3.11) 0, = —8s, + 3m + 4)s, + 57 — (m + 1)’s,

and

(3.12) 0, = 10s, + &(5m + 8)s, — 8s,5, + (6m® 4 16m + 13)s,
+ (4m 4+ S5)s* — (m + 1)%s, .

The coefficients of higher powers of n,~' may be obtained in a similar manner
if required.
We now exponentiate H to give the function

(3.13) G(R) = e"® ~ 1 4+ Y=, P,(R)n,~*

and we express the P, in terms of zonal polynomials using the tables in James
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[7]. For example
Pi=0 =35 —(m+1D)s
(3.14) = Co(R) — 3Cun(R) — (m + 1)C(R)
= 2O[Cin(S) — 3Cx(8)] — 2(m + 1)Ci (S)

since R = 2¢S,. In a similar way we can express

P,= 0, + 30 and Py =0y + 0.0, + 30/

as polynomials in the latent roots of S, of degree 4 and 6 respectively, but the
lengthy expressions are not given here. Thus we have

B_j,,(1,1S))

(3.15) = etr (—2£S)[1 + n,7'P, 4+ n,7*P, + n,7*P, + O(n,™)] .
Fm(%”z)
Now substitute (3.15) in (3.2) and integrate term by term. The first term is
etr (—34Q - .
_1“((%—31)) Ys,00 €8 (—(1 + 20)S,)(det S)m~ Fy(4m; 3QS,) dS,
t
=etr{ — Q) 1 2f)7immy
(-5 N TR A
The other terms are integrated using (2.6). For example, the coefficient of n,~" is
-1
ST G etr (= (1 208)(det S)0m7 s JS)P,(5) S,
m\2"%1

_ etr<—1 J: . 9)(1 + 2’)'*"‘"1{(1 ertzzy[% <_w—iﬁg>

— 3Ly, <_m—ll-—2t) Q):l - <—1%> (m + 1)Lt <—2_($2t) Q)}

where ¢ = 4n, — p. Hence it is readily seen that we may write

t
+ 2t

X {1 + n,'T, + n,7°T, + n,°T; + O(n,™)}

where T, T, and T, are obtained from P,, P, and P, respectively by replacing
the zonal polynomial C,(S,) by

(3.16)  g(t,Q) = etr <_1 Q> (1 + 20)-tmm

(1 4 26)*L¢ <_2(1_12_t) Q> with ¢ =4m —p.

4. The inversion of the mgf. T,, 7, and T in the expansion (3.16) for g(z, Q)
contain terms of the form

[1 Jz:zt]k L(‘z—(ﬁQ)

In order to obtain (3.16) in a form which allows easy inversion, it is necessary
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to express [2t/(1 + 2¢)]* in terms of powers of (1 4 2¢)~*, and also to expand L.°
in terms of zonal polynomials using (2.7), which may then be expressed in terms

of the power sums ¢, = w,”" + --- + o," where 0,, - - -, 0, are the latent roots
of Q. Doing this we obtain
T Jlr 2 A Jlr 2y Lo F Ot Dl
+ 4(1+2t)2 [0, — 2(m + 2m + 1)o, + mm(m + n, + 1)]
+§(_11’J;_~27)[al—mnl] —|—n%(n1—m— 1)

and other much more lengthy expressions for T, and 7,. Now, since (1 +
20)~r2etr (—tQ/(1 + 2¢)) is the mgf of a noncentral y* distribution on r degrees
of freedom and noncentrality parameter tr Q = ¢,, we may invert the expansion
(3.16) for g(t, Q) term by term to give Pr (7, > x) in terms of noncentral y*
distribution functions. This expansion can then be rearranged in terms of non-
central y* density functions, which are probably more convenient from a com-
putational point of view. The final expansion is given, up to order n,7%, in the

THEOREM. The noncentral cdf of T} = n,tr S, S,™ can be approximated up to
the order n,~* by

(4.1) Pr(T¢ > %) = Pr(, () > %) + T‘n_ T4 8y G2y (3)
2

1

+ 48n,?

51 by Pny 425(X) + O(n,™®)

where Pr (3,%(,) > x) denotes the probability that a noncentral y* variate on k degrees
of freedom and noncentrality parameter o, exceeds x; ¢ (x) denotes the probability
density function, evaluated at x, of a noncentral y* variate on k degrees of freedom
and noncentrality parameter o,;
a, = —mn(n, —m — 1), a, = —2n0, + mn(m + n, + 1),
a, = —a, + 2(m + n, + oy, a, = ag,,
b, = —mn[3mPn, — 2m*(3n? — 3n, + 4) 4 3m(n® — 2n?® 4 5n, — 4)
— 4Q2n? — 3n, — 1)],
b, = 2mn*m — n, + 1)o, — mn,[3m’n, + 2m*(3n,* + 3n, — 4)
— 3m(3n® — 2n? — Sn; + 4) — 42n? — 3n, — 1)],
b, = —12n%?® 4 6n[m* — m(n, — 1) — 4]0,
— 2p[m® — 2m* — 3m(n? + 1) — 4(2n, 4 1)]o,
+ mn[3m’n, — 2m*(3n? — 3n, — 4) — 3m(3n® + 2n? + 11n, — 4)
— 4(10n* 4+ 9n, + 1)],
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= —12n,0,0, — 160, + 12[2mn, + (3n? + 2n, + 4)]¢?
— 6[m’n, — m(3n? — n, + 8) — 4(7n, + 4))o,
— 12[m*(3n? 4 4) + 3m(n? + n? + 8n, + 4) + 8(2n? + 3n, + 2)]o,
+ 3mn,[m’n, 4 2m*(n?® + n, + 4) + m(n® + 2n? + 21n, + 20)
+4Q2n3 + 5n, + 9)]
= —30, 4 12(m + 3n, + 1)0,0, + 800,
— 12[m* + 2m(2n, + 1) + (3n?2 + 4n, + 11)]o?
— 6[m’n, + m(3n? + n, + 28) + 4(11n, + 12)]a,
+ 12[m*n, + 2m*(n? 4 n, + 4) + m(n® + 2n? + 21n, + 20)
+ 4(2n? + 5n, 4 5)]o,,
= 90 — 122m + 3n, + 2)0,0, — 1120,
+ 12[m* 4 2m(n, + 1) + (n} + 2n, + 7)]o,?
+ 6[m’n, + m(n? + n, + 20) + 4(5n, + 8)]a,,
= —902 4+ 12(m + n, + 1)g,0, + 480,, by = 30,2

The terms of order n,~® may also be obtained from previous results. When
Q =0 (4.1) agrees with the expansion of the central cdf obtained by Ito [6],
Davis [2] and Muirhead [11].

(1]
[2]
(3]

(4]
(3]

(6]
(7
(8]

(]
(10]

(11]
(12]
[13]

[14]

REFERENCES

CONSTANTINE, A. G. (1966). The distribution of Hotelling’s generalized Ty2. Ann. Math.
Statist. 37 215-225.

Davis, A. W. (1968). A system of linear differential equations for the distribution of
Hotelling’s generalized To2. Ann. Math. Statist. 39 815-832.

Hayakawa, T. (1970). On the derivation of the asymptotic distribution of the generalized
Hotelling’s Ty? (abstract). Ann. Math. Statist. 41 1799.

Herz, C. S. (1955). Bessel functions of matrix argument. Ann. of Math. 61 474-523.

HOTELLING, H. (1947). Multivariate quality control, illustrated by the air testing of sample
bomb-sights. Techniques of Statistical Analysis, 111-184. McGraw-Hill, New York.

It6, K. (1956). Asymptotic formulae for the distribution of Hotelling’s generalized To?
statistic. Ann. Math. Statist. 27 1091-1105.

Ito, K. (1960). Asymptotic formulae for the distribution of Hotelling’s generalized Ty?
statistic II. Ann. Math. Statist. 31 1148-1153.

JaMmes, A. T. (1964). Distribution of matrix variates and latent roots derived from normal
samples. Ann. Math. Statist. 35 475-501.

LAawLEY, D. N. (1938). A generalization of Fisher’s Z-test. Biometrika 30 180-187.

MUIRHEAD, R. J. (1970a). Systems of'partialdiﬂerential equations for hypergeometric func-
tions of matrix argument. Ann. Math. Statist. 41 991-1001.

MUuIRHEAD, R. J. (1970b). Asymptotic distributions of some multivariate tests. Ann. Math.
Statist. 41 1002-1010. .

PiLLar, K. C. S. and Jouris, G. M. (1969). On the moments of elementary symmetric
functions of the roots of two matrices. Ann. Inst. Statist. Math. 21 309-320.

StoTaNt, M. (1957). Note on the utilization of the generalized student ratio in the analysis
of variance or dispersion. Ann. Inst. Statist. Math. 9 157-171.

Storani, M. (1971). An asymptotic expansion of the non-null distribution of Hotelling’s
generalized Ty?-statistic. 4nn. Math. Statist. 42 560-571.

DEPARTMENT OF STATISTICS
Y ALE UNIVERSITY
NEew HaveN, CoNNEcCTICUT 06520



