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ON THE MARGINAL DISTRIBUTIONS OF THE LATENT ROOTS
OF THE MULTIVARIATE BETA MATRIX!

By A. W. Davis
C.S.I.R.0., Adelaide, and University of North Carolina

The marginal distributions of the latent roots of the multivariate beta
matrix are shown to constitute a complete system of solutions of an ordi-
'nary differential equation (d.e.), which is related to the author’s d.e.’s for
Hotelling’s generalized To? and Pillai’s V(m) statistics. Results may be
derived for the latent roots of the multivariate F and Wishart matrices
(2 =1). Pillai’s approximations to the distributions of the largest and
smallest roots are interpreted as exact solutions, the contributions of higher
order solutions being neglected.

1. Introduction. Let S(m X m) and T(m X m) have independent Wishart
distributions W(g, Z) and W(n, X), respectively, where X is the population
covariance matrix and ¢, n = m. The latent roots /, > ... > [ > 0 of the
multivariate beta matrix B = S(S 4 7))~ are well known to have the joint
density function

() Pmigall) = K(ms g, m) [T LTI (1 — Lm0 T (L — )
where I = (1, ---,1,) and
() K(m;q,n)

= o [ (TG + n — )T Gm — TR — )T (E(n — i))] -

The marginal distributions of the individual /; have been investigated by Roy
[14], [15], who showed that the largest root /, is of basic importance in testing
hypotheses and constructing confidence regions in multivariate analysis of vari-
ance; also by Pillai [10], Khatri [8], Sugiyama and Fukutomi [17], Sugiyama
[16], and Al-Ani[1]. Pillai[11]gave very accurate approximations to the upper
and lower tails of the distributions of /, and [, respectively, and /, has been
extensively tabulated by Heck [7] for m < 5, using Pillai’s approximation, and
Pillai ([11], [12], etc.) for m < 20. Studies of the noncentral distributions have
been made by Khatri [9] and Pillai and Dotson [13].

As n— oo, nB — W, say, having the distribution W(q, I') where I(m x m) is
the unit matrix. Hanumara and Thompson [6] have tabulated the largest and
smallest roots of W, using limiting forms of Pillai’s approximations, and dis-
cussed their application.

The present author [3], [5] has shown that the null distributions for tr B
(Pillai’s V™) and tr F (Hotelling’s generalized 7,?), where F = ST, satisfy
certain ordinary linear differential equations (d.e.’s) of order m which are re-
lated by a simple transformation. In Section 2 it is shown that the marginal
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distributions of the /; form a complete system of solutions of a similar d.e.
Thus, the power-series of Sugiyama and Fukutomi are solutions at the regular
singularities 0 and 1. Pillai’s approximations are also shown in Section 4 to be
exact solutions of the d.e., but approximations to the distributions insofar as
contributions from higher-order solutions are neglected. Corresponding results
for the latent roots of F and W, are readily deduced.

2. The differential equation. Let D"(s,/) = {0 < x, < - - < x, <I<x,, <+ <L
x, < 1} € R7, where R is the real line. The marginal density function f,(/) of
[, is given by

(3) f:s(l) = SDm‘l(s,l) ¢m;q,n(xl’ cres Xelos l’ Xgs =0t xm—l) dx

where dx = [[7;! dx;; it is proportional to

4 flamm=D(L — [pe=mmD § ) @) [175(0 — x;) dx,

in which @ denotes ¢,,_,.,_, ,_,. Define

(5) U (x)=QX) D, (0 — %) -+ (I = Xppmo1-r)) >
(r=0,1,...,m—1),

the summation being extended over the (") selections of integers a(l) < - -+ <

a(m — 1 — r) from theset 1,2, ..., m — 1. Whenr = m — 1, the sum is taken

to be unity. We now introduce the m functions

(6) L,.() = \pm,n ¥ x) dx, (r=0,1,...,m—1),

noting that f,(/) is proportional to [te=m=D(1 — [)t»===D[ . Our object is to
show that, for each s, the L, are related by a system of first-order differential
equations which are independent of 5. Differentiating (6),

@) L ()= —-ZO+Z% + (r+ 1)L, ,.,, where
(8) Z = Som-ruory Wolls Xy ooy Xy Lox s ooy Xy ) dX
Z® = {pmoseny Wolls Xy oo Xy by Xy ooy X, ) dXL
Now let g(1), - - -, p(r) denote the set of subscripts complementary to a(1), - - -,

a(m — 1 —r). We have
L, . = §pm-1i0,0 PX) 2o (! - Xoy) 0 (L= Xgimo1-p)
%) X[ = xg0) + -+ 4+ (0= Xp) + Xy + -+ + Xp)] dX
= (m - r)Ls,'r—l + ®s,r ’

say. Integration by parts with respect to the x,;, yields

(10) g +n—2m+2)0, =I1—-D[Z)) - 2Z72]
+i(qg—m+nL,,+ ¥, ., where

(11) wa,r = SDm—l(s,l)(D(x) Za (l - xa(l)) e

(I = Xatmo1-r) D521 Xpi) (1 = Xp5)) Dawsii(Xa) — %)~ dX.
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A term similar to (11) occurred in the derivation of a d.e. for Hotelling’s
generalized T ([3] (2.13)), and the same approach yields
(12) ¥,,=%m—nr(m+r—3)L,,_, + r(r— ({1 =2)L,,
+ 3r(r + DI(L = DL, 14 -
Finally, eliminating the Z’s, ©’s and ¥’s from (7), (9), (10) and (12), we find that
l(l — DL, =im—-—rg+n—m+r— 1L, _,
(13) +4r[(l =g —m+71)—ln—m+ L,
+ 30+ D+ 211 = DL, 0
r=0,1,...,m—1),
where L, _, =L, , =0.

We observe that the system (13) is independent of s, and in principle one could
successively eliminate L, ,, - - -, L, ,_,, arriving at a homogeneous linear d.e. of
order m having each L, , as a solution. Clearly the f, will be solutions of a
similar d.e.; furthermore, they will constitute a linearly independent and hence
complete system of solutions, since as / — 0+
(14) DB ~ ky(m; g, pmmotemtn (s =11, -0 m)

where
(15) k(m;q,n) = K(m;q,n)/[K(s — 1,9+ m—5s+1,n—m+s—1)
X Km — s;9g —s,m — s+ 3)].
This is easily proved by writing x; = Iw; (j = S, -++,m — 1) in (4) and letting
[ — 0. We note in addition that (13) is invariant under
(16) g—n, n-—gq, l—>1—-1,

provided that we also replace L, , by (—1)"L, ,; this reflects the obvious result
that (16) transforms f,(/) into f,, ,,_,().

3. Solutions of the d.e. It is convenient to introduce H, = (1 — I)"L_, (r = 0,
1, ..., m — 1) and to express (13) as a matrix d.e. for H = (H,, ---, H,,_,)":

17) dH[dl = [I7'A + (1 — )'C]H,
where
a, 0 ¢, d, 0
b, " . : .
(18) A= . . , C = .
L. ey
0 b, a,., 0. - -c,,
a, =%r(g—m-+r), b,=3(m—r(g+n—m+r—1)

¢, = —ir(n —m +r+2), d,=4r+ H)(r+2).

The d.e. (17) is of Fuchsian type, with regular singularities at / =0, 1 and
infinity, and we refer to [2], Chapter 4, for the general theory of such d.e.’s.



LATENT ROOTS OF THE MULTIVARIATE BETA MATRIX 1667

Assuming a series solution H = ;= A, [°*" in || < 1, we obtain Ak, = ph,, so
that p must be one of the latent roots a,, - - -, a,,_, of A4, and A, the corresponding
latent vector. To relate this fundamental set of solutions to the f,(/), we first
obtain a non-singular transformation H = PM, where P(m x m) is independent
of [, such that P'4P = diag(a,). A suitable choice is
19) P ={py},

Py = (=)7L @G+ n—mtng—m+j+r+1),

with inverse

(200 P ={p5}.  pi= I G —m g —m i)
Both P and P! are lower triangular, and M, = H,. It may be shown that

Los Yo 0
booton
(21) P-'CP =G = :
v
0 PR
where

o= (m—i)n—i)g+i—1)g—m4i—1)g—mi—2)
X(@+n—m+i—1)
2 —m+2—2)(g—m+ 2 — 1Y¥q —m + 2i)],
(22) m=i—3im+n—3—m+1
+ $i(i + D)(m — i)n — i)f(g — m + 2 — 1)
— 3+ 1)+ 2 — i — 1) — i — V(g — m + 20 + 1),
v =3 + )i +2).
The d.e. (17) now takes the form
(23) dM/dl = [I-'diag(a,) + (1 — [)"'G]M,

and assuming a solution M = 37,7, /**" corresponding to the latent root a,
of A4, we obtain the following recurrence relations for the components (7, ,, - -
”’m—l,r) Of the 7]1‘:

M

Moo =1, Ni0=0 (E#p),

(24) (r — q; + ap)”i,fr

=A%+ s+ (r=1) —a; 4+ a,]n; 00 + ¥iTisrn s

i=0,--..m—1; r=1,2,...).
This form of solution unfortunately breaks down if a; — a,, is a positive integer
for some i. Infact, a,,, —a,=4(g —m+ 1) + p (p £ m — 2), which is an
integer if ¢ — m is odd, while a,,, —a,=q¢g—m +2(p+ 1) (p<m—3)is
always an integer. Generally in such situations the solution must be obtained
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by limiting procedures which may produce logarithmic terms. However, it may
be seen from (6) that the L_, are in fact representable by power series, and it
appears that if a; — a, is a positive integer for i > p, then the right-hand side
of the ith equation in (24) vanishes identically when r = a; — a,. Thus 7, is
an undetermined constant introducing the a;-solution at this stage, and the power
series form is preserved.

We also see from (24) that the 7, , are zero for r < p in the a,-solution, while

(25) T, =(p+ DYIPo(g—m+p+i+1)=¢,, say.

Hence M(l) = O(l*»**) as [ — 0*, and since a,_, + (m — s) = L(m — s)(q —
s + 2), it follows from (14) that L, ,6 must be some linear combination of the
@ 4 Qp_oy1> -+, and a,_,-solutions. The coefficient of the a,__-solution is
clearly k(m; g, n)/§,,_,, but the remaining coefficients have not been determined
for general s. However, the density function f,(/) of the largest root corresponds
to the largest root a,,_, of 4, and is thus completely specified by (24). The re-
sulting power series coincides with the result of Sugiyama and Fukutomi [17].

4. Pillai’s approximations. A particular solution corresponding to the smallest
root @, = 0 of 4 may be given explicitly as an (m — 1)th degree polynomial.
Writing (z);, = z2(z+ 1) -+« (z + i — 1), (2).;, = 2(z — 1) - - - (z — i 4 1), it may
be shown that

(26) Tow = (= 1Y ()00 — 1) g + 1 — m),
+ (g —m+ 1) (g —m+ )]

Thus we obtain the following approximation to the lower tail of f, (/) for large
g by neglecting the a,, - - -, a,,_, solutions (i.e., terms of order /*~™*! at least):

@7 fall) = k(s g, maI(1 — ey

X 2 ("G +n—m)(g — 1) (i (=0D)7,
where

(28) k(m; g, n) = 7t0(3(g + n — m + 1)/[2"T(EmT (39T (Gn)] -

Using (16), a corresponding approximation to the upper tail of f,(/) for large
n (near the regular singularity / = 1) is obtained. The result is found to be
simply the right-hand side of (27) multiplied by (—1)™~".

The integrated form of the approximation was arrived at by Pillai [11] using
a different approach, and used in a series of tabulations of the upper 5%, and
194 points of /,. Its accuracy to essentially five places of decimals when n, >
m + 11 was demonstrated at least for m < 10 by substituting in explicit expres-
sions for the distribution function [10]. In order to investigate the usefulness
of the d.e. (23), some percentage points were calculated by following the a,,_,-
solution out from the origin, using the same computation procedure as in [4].
The method appeared to be effective at least up to m = 7, since on comparing
the 194 points, i.e., the less accurate results of the d.e. and the more accurate
results of the approximation, these were generally found to differ by no more
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than a unit in the fifth decimal place. On the other hand, the 5% points ob-
tained from the d.e. tended to exceed Pillai’s by about three units in the fifth
decimal place. The d.e. approach should be more accurate at lower significance
levels, and a tabulation of upper 109, points has been made.

5. Some remarks. The success of the Pillai approximation suggests a similar
approach to the other roots, approximating the lower tail of f, by the a,,_,-
solution for large ¢, and deducing a corresponding result for the upper tail of
[m-s+1 When n is large using (16). No general results corresponding to (27) have
been obtained, but it has been found, for instance that when m = 3 the distri-
bution of /,, the median root, is closely approximated by a beta density with
parameters ¢ — 1 and n — 1. Upper 5% and 19, points based on this approxi-
mation are identical to five decimal places with those published by Pillai and
Dotson [13], except where the latter have employed interpolation.

Differential equations for the latent roots of F and W, (defined in Section 1)
are readily deduced from (13). The approximation used by Hanumara and
Thompson [6] corresponds of course to an exact solution of the d.e. in the
Wishart case. The Wishart d.e. is in fact closely related to the author’s d.e.
[5] for the moment generating function of Pillai’s V™ — tr B. If we write
Apigm = Eexp(—sV™), then it is easily seen that the density of the largest root
of W, is proportional to e~t*uime=12, . .(1u).
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